روی

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به ناوبری پرش به جستجو
فارسیEnglish
مسرویگالیم
-

Zn

Cd
ظاهر
نقره-gray
ویژگی‌های کلی
نام، نماد، عدد روی، Zn،‏ 30
تلفظ به انگلیسی ‎/ˈzɪŋk/‎ zingk
نام گروهی برای عناصر مشابه فلزات واسطه
توصیحات مربوط به گروه Alternatively considered a post-فلزات واسطه
گروه، دوره، بلوک ۱۲، ۴، d
جرم اتمی استاندارد 65.38(2) گرم بر مول
آرایش الکترونی [Ar] 3d10 4s2
الکترون به لایه 2, 8, 18, 2
ویژگی‌های فیزیکی
حالت جامد
چگالی (نزدیک به دمای اتاق) 7.14 g·cm−۳
چگالی مایع در نقطه ذوب 6.57 g·cm−۳
نقطه ذوب 692.68 K،‎ 419.53 °C،‎ 787.15 °F
نقطه جوش 1180 K،‎ 907 °C،‎ 1665 °F
گرمای هم‌جوشی 7.32 کیلوژول بر مول
گرمای تبخیر 123.6 کیلوژول بر مول
ظرفیت گرمایی 25.470 کیلوژول بر مول
فشار بخار
فشار (پاسکال) ۱ ۱۰ ۱۰۰ ۱k ۱۰k ۱۰۰k
دما (کلوین) 610 670 750 852 990 1179
ویژگی‌های اتمی
وضعیت اکسید شدن +2, +1, 0
(amphoteric oxide)
الکترونگاتیوی 1.65 (مقیاس پاولینگ)
انرژی‌های یونش
(more)
نخستین: 906.4 کیلوژول بر مول
دومین: 1733.3 کیلوژول بر مول
سومین: 3833 کیلوژول بر مول
شعاع اتمی 134 pm
شعاع کووالانسی 122±4 pm
شعاع واندروالانسی 139 pm
متفرقه
ساختار کریستالی hexagonal
مغناطیس diamagnetic
مقاومت ویژه الکتریکی (20 °C) 59.0 nΩ·m
رسانایی گرمایی (300 K) 116 W·m−1·K−1
انبساط گرمایی (25 °C) 30.2 µm·m−1·K−1
سرعت صوت (سیم نازک) (دمای اتاق) (rolled) 3850 m·s−1
مدول یانگ 108 GPa
مدول برشی 43 GPa
مدول حجمی 70 GPa
نسبت پواسون 0.25
سختی موس 2.5
سختی برینل 412 MPa
عدد کاس 7440-66-6
پایدارترین ایزوتوپ‌ها
مقاله اصلی ایزوتوپ‌های روی
ایزوتوپ NA نیمه‌عمر DM DE (MeV) DP
64Zn 48.6% 64Zn ایزوتوپ پایدار است که 34 نوترون دارد
65Zn syn 243.8 d ε 1.3519 65Cu
γ 1.1155 -
66Zn 27.9% 66Zn ایزوتوپ پایدار است که 36 نوترون دارد
67Zn 4.1% 67Zn ایزوتوپ پایدار است که 37 نوترون دارد
68Zn 18.8% 68Zn ایزوتوپ پایدار است که 38 نوترون دارد
70Zn 0.6% 70Zn ایزوتوپ پایدار است که 40 نوترون دارد
72Zn syn 46.5 h β 0.458 72Ga
Zn-TableImage.svg

'روی یا زینک ´´zinc´´عنصری است شیمیایی با علامت اختصاری Zn که دارای عدد اتمی ۳۰ است. روی فلزی است به رنگ سفید متمایل به آبی که بر اثر رطوبت هوا تیره رنگ می‌شود و در حین احتراق رنگ سبز براقی تولید می‌کند. روی بعد از آهن، آلومینیوم و مس چهارمین فلز مورد استفاده در دنیا می‌باشد. از موارد استفاده روی می‌توان آلیاژهای مختلف از جمله برنج و فولاد گالوانیزه را نام برد. روی یکی از عناصر شیمیایی جدول مندلیوف است که نماد آن Zn و عدد اتمی آن ۳۰ می باشد.

تاریخچه[ویرایش]

آلیاژهای روی از قرن‌ها پیش استفاده می‌شده‌است. کالاهای برنجی که به ۱۰۰۰–۱۴۰۰ سال پیش بازمی‌گردند در فلسطین پیدا شده‌اند و اشیاء رویی با ۸۷٪ روی در ترانسیلوانیا ما قبل تاریخ یافت شده‌اند. به خاطر نقطه جوش پایین و واکنش شیمیایی این فلز (روی جدا شده دود شده و قابل دست یابی نبود) خصوصیات واقعی این فلز در زمان باستان مشخص نشده بود. ساخت برنج به رومی‌ها نسبت داده شده و مربوط به ۳۰ سال پیش از میلاد می‌باشد. آن‌ها کالامین و مس را با یکدیگر در بوته آهنگری حرارت می‌دادند که در این عمل اکسید روی در کالامین کاهش میافت و فلز روی آزاد توسط مس به دام انداخته می‌شد و به شکل آلیاژ درمی‌آمد. برنج بدست آمده یا در قالب ریخته می‌شد یا با چکش به شکل‌های مختلف درمی‌آمد.

روی

استخراج و تصفیه روی نا خالص در ۱۰۰۰ سال پیش از میلاد مسیح در هند و چین صورت می‌گرفته‌است. در غرب نیز کشف فلز روی به Andreas Marggraf آلمانی در سال ۱۷۴۶ بر می‌گردد.
شرح تولید برنج در اروپای غربی در کتاب‌های آلبرتوس مگنوس در سال ۱۲۸۴ به چشم می‌خورد. این فلز در قرن ۱۶ به میزان قابل توجه شناخته شد. Agricola در سال ۱۵۴۶ اعلام کرد که وقتی که سنگ معدن روی گداخته می‌شود فلز سفید می‌تواند منقبض شود و دیواره کوره را بتراشد. او در نوشته‌های خود به این مسئله نیز اشاره کرد که فلزی شبیه آن به نام Zincum در Silesia تولید می‌شده‌است. پاراسلیوس (متوفی به سال ۱۵۴۱) اولین کسی در غرب بود که گفت Zircum فلزی جدید است که در مقایسه با فلزات دیگر خواص شیمیایی جداگانه‌ای دارد. نتیجه آن است که فلز روی زمانی شناخته شده که Margaraf کشفیاتش را شروع کرد و در حقیقت فلز روی دو سال زودتر توسط شیمیدان دیگری به نام Anton Von Swab تجزیه شده و بدست آمده بود. اما تحقیقات Margraaf جامع تر بود و بخاطر تحقیقات این دو شخص آن‌ها به عنوان کاشفین روی شناخته می‌شوند. قبل از کشف تکنیک غوطه وری سولفید روی Calamine تنها منبع معدنی فلز روی بوده‌است.

خصوصیات قابل توجه[ویرایش]

لایه‌های الکترونی روی

وزن اتمی۶۵٫۳۸ چگالی ۷٫۱۳۳ نقطه ذوب۴۱۹٫۸۳ درجه سانتیگراددرجه سختی بر حسب واحد موهس ۵/۲ دارای ظرفیت۲ درگروهIIB جدول تناوب دارای ایزوتوپ‌های طبیعی۷۰ -۶۸-۶۶-۶۴ وایزوتوپ‌های رادیواکتیو۷۲-۷۱-۶۹-۶۵-۶۳-۶۰ روی فلز نرم و سفیدباقابلیت چکش خواری باجلای خاکستری متمایل به آبی قابل حل دراسیدهاوبازهاوغیرقابل حل درآب می‌باشد.[۱]

روی فلزی است که در Vielle Montagne و Zinkgruvan استخراج می‌شود و برای آبکاری الکتریکی فولاد مورد استفاده قرار می‌گیرد. مانند فلزات دیگر به آرامی واکنش نشان می‌دهد. با اکسیژن و دیگر غیر فلزات ترکیب شده و با اسید رقیق واکنش نشان داده و گاز هیدروژن آزاد می‌کند. چهارمین فلز متداول و مورد استفاده بوده و بعد از آهن آلومینیوم و مس بیشترین فلزی تولیدی می‌باشد. حالت اکسیداسیون متداول این عنصر +۲ می‌باشد.

کاربردها[ویرایش]

یک تاس زینتی ساخته شده از مس و روی

روی برای آبکاری الکتریکی فلزها استفاده می‌شود تا از زنگ زدگی آن‌ها جلوگیری کند. روی در آلیاژهایی نظیر برنج Nickel Silver فلز ماشین تحریر فرمول‌های مختلف لحیم نقره آلمانی و… بکار می‌رود.
برنج بخاطر استقامت و مقاومت در برابر زنگ زدگی و خوردگی کاربردهای وسیعی دارد. روی به‌طور گسترده در صنعت خودروسازی در Die Castingها استفاده می‌شود. روی لوله‌ای به عنوان قسمتی از محتوی باتری‌ها مورد استفاده قرار می‌گیرد.


از این فلز برای گالوانیزه کاری آهن، تولید ظروف، صنایع نظامی، خودروسازی، کشتی سازی، باتری سازی و تولید آلیاژ برنج استفاده می شود. از آنجا که آلیاژ برنج در برابر زنگ زدگی و خوردگی مقاومت بالایی دارد می توان از آن در بسیاری از صنایع استفاده نمود. همچنین فلز روی جهت تولید مشتقات خالص خود همچون اکسید روی، کلرید روی، کربنات روی، نیترات روی و سولفات روی استفاده می شود.[۲]

اکسید روی به عنوان رنگ‌دانه‌های سفید در رنگ‌های آبی و همچنین به عنوان فعال‌کننده در صنعت Rubber استفاده می‌شود. به عنوان Over the counter ointment به صورت لایه نازکی بر روی پوست بی حفاظ صورت و بینی استفاده می‌شود تا از کم شدن آب پوست جلوگیری کرده و در برابر آفتاب سوختگی در تابستان و باد زدگی در زمستان از پوست محافظت کند. استفاده از آن برای کودکان در هر مرحله از عوض کردن کهنه کودک توصیه شده زیرا از تحریکات پوستی جلوگیری می‌کند. کلرید روی به عنوان بوگیر و همچنین محافظ چوب نیز مورد استفاده قرار می‌گیرد. سولفید روی در رنگدانه‌های درخشان، برای تولید عقربه‌های ساعت و موارد دیگری که در تاریکی می‌درخشد استفاده می‌شود.

اکسید روی

محلول‌های ضدعفونی‌کننده‌ای که از Calamine ساخته شده و ترکیبی از Zn-Hydroxy-Carbonate و سیلیکات است برای درمان جوش‌های پوستی استفاده می‌شود. فلز روی شامل ویتامین‌های مورد مصرف روزانه و مواد معدنی نیز می‌باشد و با توجه به فلزات دیگر این فلز دارای خاصیت ضد اکسیداسیون است که از پیری زود رس پوست و مفصل‌های بدن محافظت می‌کند. با بررسی خواص روی به این نتیجه رسیده‌اند که این عنصر می‌تواند به بهبودی بعد از عمل جراحی سرعت بخشد. Zinc Gluconate Glycine از قرص‌های مکیدنی برای درمان سرما خوردگی و التهاب دهان و لوزه‌ها می‌باشد.

نقش روی در تغذیه گیاهی[ویرایش]

روی از جمله عناصر کم مصرف برای گیاهان است. این عنصر در ساختمان اسید آمینه تریپتوفان که پیش ماده سنتز اکسید است شرکت دارد و همچنین به همراه مواد پر مصرف ازجمله ازت و فسفر در تشکیل یاخته‌های اولیه گل دخالت دارد. روی در کانی‌های خاک به صورت قابل تبادل در کلوئیدهای رس و هوموس یافت می‌شود. با افزایش pH و قلیایی شدن خاک، جذب شدن سطحی آن افزایش یافته و مقدار این عنصر در محلول خاک کاهش می‌یابدو شعاع یونی روی شبیه آهن (فرو) و منیزیم بوده و می‌تواند تا حدودی جایگزین این یون‌ها شود. روی به صورت فعال جذب می‌شود، یون مس به شدت از جذب روی جلوگیری می‌کند و همچنین فسفر نیز جذب روی را کاهش می‌دهد. قابلیت جذب روی به کی لات ساز در خاک که در اثر تراوش ریشه یا تجزیه مواد آلی تأمین می‌شود بستگی دارد.[۳]

اهمیت روی بر افزایش کمی و کیفی محصولات کشاورزی[ویرایش]

یکی از وظایف مهم روی در گیاهان ساخت پروتئین است، بنابراین کمبود روی موجب کاهش مقدار پروتئین و افزایش مقدار آمینواسیدهای آزاد و آمیدها می‌شود؛ و همچنین روی در تولید هورمون اکسین، آنزیم‌های مسول تولید نشاسته، فتوسنتز، سوخت و ساز نیتروژن (فعال سازی آنزیم رداکتاز)، آنزیم‌های انتقال دهنده فسفات (هگزوکیناز) و نیز در تولید تریپتوفان و هورمون رشد (اسید ایندول استیک) نقش مؤثری دارد. در حضور اسید ایندول استیک، کلروفیل بیشتری ساخته می‌شود، پیری به تأخیر افتاده و میزان فتوسنتز در نهایت افزایش می‌یابد[۴]

وضعیت روی در خاک[ویرایش]

روی در خاک بیشتر به صورت ترکیبات بسیار کم محلول هیدروکسید یا کربنات روی وجود داردکه بخش عمده آن به شکل غیرقابل استفاده برای گیاهان می‌باشند. روی برای گیاهان در اکثر خاک‌های کشور کمتر از یک میلی‌گرم بر کیلوگرم تخمین زده می‌شود بنابراین گیاهان یا نمی‌توانند ریزمغذی‌ها را جذب کنند یا در صورت جذب به دلیل رسوب در آوندها، امکان استفاده از آن‌ها وجود ندارد. تشابه الکترونی یون کادمیوم با یون روی موجب می‌شود که کادمیوم به جای روی جذب گیاه شود، لذا در خاک‌هایی که قابلیت استفاده از روی پایین است، جذب کادمیوم توسط ریشه گیاه افزایش می‌یابد.[۵]

نشانه‌ها ی کمبود روی[ویرایش]

کمبود روی در برگ گندم
علائم کمبود روی

به صورت کوتولگی گیاه، کوچک ماندن برگ‌ها و کوتاه شدن میان گره‌ها، و با کاهش سبزینگی بین رگ برگ‌ها همراه است.[۶]

کمبود روی در در خاک‌های زراعی کشور به دلایل متعددی از جمله مصرف کودهای فسفاتی، بیشتر مشاهده می‌شود.

روش تولید فلز روی[ویرایش]

برای تولید فلز روی ابتدا خاک معدنی روی خرد و آسیاب می‌شود و در صورت داشتن سرب به همراه خود، به واحد فلوتاسیون منتقل می‌شود تا سرب جدا شود. خاک‌های سولفوره نیز پس از انتقال به کوره به حالت اکسیده تبدیل شده و قابل استفاده می‌شوند. پس از آماده‌سازی خاک، کنسانترهٔ به دست آمده در مخازن استیل، توسط سولفوریک اسید و آب مورد عمل لیچینگ قرار می‌گیرند، سولفات آهن و سولفات آلومینیوم جهت رسوب دهی با هالوژن‌هایی نظیر کلر و فلوئور برای جلوگیری از چسبندگی در کاتدها استفاده می‌شوند. روی موجود در خاک با عمل لیپینگ حل شده و سولفات روی به دست می‌آید. نیکل، کبالت، کادمیوم، آهن و برخی عناصر دیگر موجود در خاک نیز به همراه روی حل می‌شوند، از این رو باید قبل از الکترولیز یون‌های مزاحم حذف شوند. برای حذف آهن و کبالت از محلول، پرمنگنات پتاسیم به همراه آمونیوم پرسولفات اضافه می‌شود تا آهن دو ظرفیتی به آهن سه ظرفیتی تبدیل شود. با افزودن دوغاب آهک هیدراته به محلول و بالا بردن pH، آهن و کبالت اکسید شده و رسوب می‌دهند و از محلول جدا می‌شوند.[۷]

نقش زیست شناختی[ویرایش]

روی از عناصر ضروری زندگی انسان است که برای بقاء و زندگی وی لازم است. کمبود روی در حیوانات موجب افزایش وزن می‌شود. روی در انسولین Zinc Finger Proteins و آنزیم‌هایی مانند Super Oxide Dismutase وجود دارد. بر اساس بسیاری از منابع مصرف قرص‌های حاوی روی می‌تواند در برابر سرما خوردگی و آنفلوآنزا ایمنی ایجاد کند. با این حال هنوز بر سر این مسئله اختلاف نظر وجود دارد.

در واقع روی یک ماده معدنی اصلی کمیاب است که بعد از آهن، بیشترین میزان را در بدن داراست. روی به‌طور عمده در ماهیچه‌ها ذخیره می‌شود، اما در یاخته‌های خونی سفید و قرمز، پرده شبکیه چشم، استخوان‌ها، پوست، کلیه‌ها، کبد و پانکراس نیز یافت می‌شود. غده پروستات در مردان نسبت به سایر اعضا، بیشترین مقدار روی را داراست.
بعضی از تحقیقات و مطالعات نشاندهنده مؤثرترین قرص‌های روی در جلوگیری و کاهش علایم سرماخوردگی بوده‌است. شما می‌توانید قرص‌های روی را به راحتی از داروخانه برای درمان سرما خوردگی بخرید.

کاربردها در پزشکی[ویرایش]

مکمل‌های روی می‌توانند دارای این فواید باشند:

  • کمک به جلوگیری از سرطان
  • جلوگیری ودرمان ریزش مو
  • تقویت فعالیت سیستم ایمنی
  • تسریع بخشیدن به بهبود زخم‌ها
  • درمان آکنه
  • جلوگیری از دژنراسیون ماکولا (از بین رفتن بینایی که در افراد مسن اتفاق می‌افتد)
  • درمان بعضی از موارد بی اشتهایی عصبی (بی اشتهایی نشانه‌ای از کمبود روی است و افراد در دهه دوم زندگی بیشتر در معرض خطر کمبود روی ناشی از فقر غذایی هستند).
  • تقویت و بهبود باروری مردان مخصوصاً در بین سیگاریها.
  • درمان روماتیسم مفصلی (با داشتن آثار ضد التهابی).
  • درمان بیماری ویلسون (یک اختلال ناشی از ذخیره بیش از حد مس).
  • کاهش تغییرات در حس چشایی طی درمان سرطان. یو
  • تقویت حس چشایی و بویایی.

بعضی از بیماری‌ها، بر روی جذب روی تأثیر می‌گذارند یا باعث افزایش نیاز به روی می‌شوند؛ لذا این بیماران از مکمل‌های روی سود می‌برند:

منابع غذایی[ویرایش]

ما ۲۰ تا ۴۰ درصد میزان روی موجود در غذا را جذب می‌کنیم. غذاهایی مانند گوشت قرمز، ماهی، مرغ و بوقلمون، آماده‌ترین شکل قابل دسترس روی قابل جذب هستند. روی موجود در سبزیجات کمتر برای بدن ما قابل دسترس است و فیبر سبزیجات به تنهایی میزان روی را که قابل جذب و استفاده است کمتر می‌کند. محصولات لبنی و تخم مرغ دارای میزان نسبتاً خوبی روی هستند اما جذب روی از این مواد مشکلتر است.

غذاها و ادویه‌هایی که حاوی فلز روی هستند

غذاهای زیر بهترین منبع قابل استفاده روی است:
صدف نرم‌تن (غنی‌ترین منبع)، گوشت قرمز، میگو، خرچنگ و دیگر ماهی‌های صدف، منابع دیگر روی که کمتر قابل جذب است شامل لوبیا، نخود چشم سیاه، سویا، بادام زمینی) غلات کامل، فیبرو، توفو، مخمر آبجو، سبزی پخته شده، قارچ، لوبیا سبز و دانه کدو است.

اشکال دیگر[ویرایش]

سولفات روی رایجترین مکمل قابل استفاده روی است. این ترتیب نسبت به سایر اشکال کمترین قیمت را دارد. اما حداقل جذب را دارد و باعث آشفتگی معده می‌شود. پزشک معالج معمولاً ۲۲۰ میلی‌گرم از سولفات روی را که حاوی تقریباً ۵۵ میلی‌گرم عنصر روی است، تجویز می‌کند. شکل‌های قابل جذب تر که قابل دسترس هستند عبارت‌اند از: پیکولینات روی، سیترات روی، استات روی، گیسرات روی و مونو میتونین.

اشکال مختلف روی دارای میزان متفاوتی از روی در ترکیب هستند. در برچسب این ترکیبات، همیشه به دنبال میزان عنصر روی بگردید. معمولاً ترکیبات روی دارای ۳۰ تا ۵۰ میلی‌گرم از عنصر روی هستند. به خاطر داشته باشید که از غذای روزانه چیزی حدود ۱۰ تا ۱۵ میلی‌گرم روی جذب می‌کنید، پزشک معالج شما هنگام تجویز مکمل‌های روی، باید این میزان دریافتی روزانه از طریق غذا را در نظر داشته باشد. قرص‌های روی در داروخانه‌ها قابل دسترس هستند و برای درمان سرماخوردگی مفید هستند. همچنین جوانه گندم منبع خوبی از روی می‌باشد که خوردن آن به همه افراد توصیه می‌شود.

نحوه مصرف[ویرایش]

قبل از اینکه از مکمل‌های روی استفاده کنید یا پزشک متخصص تغذیه مشورت کنید. وقتی شما بهترین فایده را از مکمل‌های روی می‌برید که آن را با آب یا آب میوه (نه با شیر) در بین غذاها مصرف کنید و هم‌زمان با مکمل‌های آهن و کلسیم، آن‌ها را مصرف نکنید. اگر برای معده شما مشکل ایجاد کرده باشد می‌توانید آن را همراه غذا مصرف کنید.

موارد احتیاط[ویرایش]

بیشتر مواد معدنی کمیاب، در صورت مصرف بیش از حد برای بدن سمی هستند و این نکته در مورد روی صدق می‌کند. نشانه‌های مسمومیت عبارت‌اند از: آشفتگی معده، و استفراغ و معمولاً وقتی ایجاد می‌شود که ۲۰۰۰ میلی‌گرم یا بیشتر مصرف شده باشد. مطالعات نشان می‌دهد که تا ۱۵۰ میلی‌گرم روی خطری ندارد اما معمولاً این میزان مورد نیاز نیست و با استفاده بدن از عناصر دیگر تداخل دارد. تحقیقات نشان می‌دهد که مصرف روزانه کمتر از ۵۰ میلی‌گرم مصرف مطمئنی است اما اطلاعاتی در مورد مصرف طولانی مدت این مقدار روی در دسترس نیست.

قبل از استفاده از روی یا سایر مکمل‌ها، با پزشک خود مشورت کنید.

یک عارضه جانبی منفی شناخته شده از روی این است که میزان زیاده روی باعث کاهش HDL (کلسترول خوب بدن) و افزایش LDL (کلسترول بد بدن) می‌شود. بعضی از تحقیقات نشان می‌دهد که مصرف خیلی زیاد روی باعث کاهش عملکرد ایمنی می‌شود در حالی که مطالعات دیگر این نظر را تأیید نمی‌کند. اگر سولفات روی باعث تحریک معده شود شکل دیگری از روی، برای مثال سیترات روی را مصرف کنید و قبل از آن با پزشک مشورت کنید. سایر عوارض جانبی از مسمومیت با روی عبارت‌اند از: سرگیجه، سردرد، خواب آلودگی، افزایش تعریق، ناهماهنگی عملکرد عضلات، عدم تحمل الکل، توهم و کم خونی.

تداخل‌های احتمالی[ویرایش]

چون روی با دیگر عناصر تداخل دارد شما می‌توانید از مولتی ویتامین، یا عناصر خونی آماده شامل روی، آهن و فولات استفاده کنید. این به شما کمک می‌کند تا میزان عناصر را در یک حد تعادل نگه دارید. مصرف زیاد روی می‌تواند با جذب مس تداخل کرده و باعث کمبود مس شود. این مسئله به میزان آهن بدن اثر گذاشته و می‌تواند منجر به کم خونی شود.
مصرف زیاد آهن و مس با جذب روی تداخل می‌کند. روی با جذب فولات تداخل دارد. قبل از مصرف روی یا هر مکمل دیگر با پزشکتان مشورت کنید.

تداخل‌های احتمالی عبارت‌اند از:

  • ویتامین ب-۱۲ سطح تولید ملاتونین را تغییر می‌دهد. اگر سطح ملاتونین خون شما پایین میزان ویتامین ب-۱۲ نیز پایین است. مصرف ویتامین ب-۱۲ (۱/۵ میلی‌گرم متیل کوبالامین در روز) می‌تواند باعث بهبود اختلالات خواب شود، زیرا این ویتامین تولد ملاتونین را افزایش می‌دهد.
  • داروهای ضد التهابی غیر استروییدی (NSAIDs)، مانند آسپیرین و ایبوپروفن سطح تولید ملاتونین در بدن را کاهش می‌دهد؛ بنابراین بهتر است قبل از خواب از این داروها استفاده نکنید. بتابلاکرها نیز مانع بالا رفتن ملاتونین در شب می‌شوند.
  • پروتئین، ویتامین ب-۶، نیاسین آمید و استیل کارنیتین همگی به تولید ملاتونین کمک می‌کنند.
  • بعضی از داروهای ضد افسردگی سطح ملاتونین مغز را افزایش می‌دهند. بنزودیازپینها، مانند والیوم و زاناکس (Xanax)، مانع از تولید ملاتونین می‌شوند.

الکل و کافئین و دیورتیک و بلوک‌کننده‌های کانال کلسیم مانع از تولید ملاتونین می‌شوند.

میزان مورد نیاز روزانه[ویرایش]

بررسی‌های انجام شده نشان می‌دهد که نیاز خانم‌ها به این عنصر مهم وضروری روزانه، حداقل ۱۰ میلی‌گرم و نیاز آقایان روزانه، حداقل ۱۲ میلی‌گرم است. بیشتر دیده می‌شود که مقدار مصرفی روی بسیار کم‌تر از مقدار نیاز بررسی شده‌است.
مرکز تغذیه کشور آلمان (DGE) و آمریکا (RDA) توصیه می‌کنند که برای پیشگیری از امراض حاصل شده از کمبود روی، خانم‌ها روزانه ۱۲ میلی‌گرم و آقایان ۱۵ میلی‌گرم روی به بدن خود برسانند. البته دوز و مقدار درمانی که توسط دکتر ورباخ بیان شده، روزانه بین ۱۰۰–۲۰ میلی‌گرم است. اصولاً” دوز ۱۵ میلی‌گرم در روز را حد متوسط دریافت روزانه می‌دانند.

دوز درمانی[ویرایش]

دوز درمانی توسط روی روزانه حدوداً” ۵۰ میلی‌گرم است. تأمین روی به صورت ترکیبات گلوکونات روی برای بدن بسیار خوب و قابل تحمل و با جذب خوب است. به یاد داشته باشید که کلیه مکمل‌های حاوی روی بایستی همراه غذا مصرف شده تا از ایجاد تهوع جلوگیری شود. توجه داشته باشید، افرادی که به مدت طولانی روزانه ۵۰ تا ۳۰۰ میلی‌گرم روی مصرف کرده‌اند، می‌توانند دچار اختلال جذب املاح آهن ومس شده و همچنین به کمبود این دو املاح در بدن دچار شوند. حتی دیده شده‌است کسانی که روزانه ۲ گرم به مدت طولانی روی خورده‌اند، علائمی مثل استفراغ، تهوع، دردهای شکمی و تب را نشان داده‌اند. افرادی که دچار ناراحتی‌های کبد ی و روده‌ای اند، بایستی قبل از مصرف مکمل‌های حاوی روی، حتماً با پزشک خود مشورت داشته باشند.

روی و بیماری‌های پوست[ویرایش]

دیده شده‌است که غلظت روی در پوست و چشم بیشتر از هر عضو و اندامی در بدن است. مصرف روی در سوختگی‌ها، اعمال جراحی وبهبود زخم‌های بدن، ضروری است. روی باعث بهبود هر چه سریعتر زخم‌ها می‌شود و کمبود روی بهبود زخم‌ها را به تعویق می‌اندازد، به ویژه در بیماران دیابتی، زخم‌های پا و عفونت این زخم‌ها است که حتی می‌تواند به قطع عضو هم منجر شود.
بنابراین وجود روی به مقدار کافی در برنامه غذایی این افراد بسیار مهم است. مصرف روی در ترمیم سوختگی‌ها، زیاد بوده و به‌طور معمول در خون بیماران دچار سوختگی، کمبود روی مشاهده می‌شود و با دادن روی اضافی می‌توان، بهبود و ترمیم زخم و پوست را تسریع کرد. این مسئله حتی در سوختگی‌های درجه ۳ به دنبال مصرف محلول‌ها و ترکیبات حاوی روی به اثبات رسیده‌است و هم‌اکنون نیز از این ترکیبات (مانند پماد زینک اکساید و…) استفاده می‌شود.
به عبارتی روی به عنوان ترمیم‌کننده بافتی و پوستی شناخته شده‌است. افرادی که از اگزما و حساسیت زجر می‌برند، به‌طور معمول دارای سطح پایین روی در خون هستند و می‌توان با دادن ۳۰ میلی‌گرم روی (معادل ۲۰۰ میلی‌گرم گلوکونات روی است) بهبود بیماری آن‌ها را تسریع کرد.

روی و مرض قند[ویرایش]

نکته دیگر در مورد مصرف روی و بیماران دیابتی این است که تأثیر انسولین به‌طور مستقیم با روی در ارتباط است. میزان عنصر روی در پانکراس افراد سالم دو برابر دیابتی‌ها است که می‌تواند نشانهٔ نقش آن در تولید انسولین باشد. مشاهده شده‌است که نقصان روی در خون باعث هیپو انسولینیمیا (کاهش انسولین خون) می‌شود. کمبود روی به صورت مزمن و دائمی صدمهٔ بزرگی به یاخته‌های بتا پانکراس که انسولین ترشح می‌کنند، می‌زند و در سنین بالا، افراد دارای کمبود طولانی مدت روی می‌توانند دچار دیابت نوع ۲ بشوند.
به‌طور کلی می‌توان گفت که در خون اکثر افراد مبتلا به دیابت، کمبود روی دیده می‌شود و متأسفانه دفع روی در ادرار آن‌ها مشاهده می‌شود؛ بنابراین رساندن روی اضافی به بدن بیماران دیابتی ضروری است. فقر روی به ویژه در دیابتی‌ها زخم‌های مزمن ورید پا را ایجاد می‌کند که گاهی منجر به قطع انگشتان یا پا می‌شود. با دادن روی اضافی نه تنها زخم‌های دیابتی زودتر ترمیم شده بلکه علاوه بر آن سطح سیستم ایمنی نیز افزایش می‌یابد.

عوارض کمبود روی در سایر موارد[ویرایش]

به دنبال افت سیستم ایمنی در اثر کمبود روی، بیماری‌های اتوایمیون (خودایمنی) مثل آرتریت روماتویید، لوپوس، شوگرن، پسوریازیس و… افزایش می‌یابد.
نقصان روی در مردان وزنان موجب اختلالات باروری می‌شود. اغلب مردان وزنان که جهت درمان مشکل خود اقدامات زیادی انجام داده‌اند، باید مسئلهٔ کم بودن روی را نیز در نظر گرفته و نسبت به رفع آن اقدام کنند.

نقصان روی در بدن خانم‌های باردار می‌تواند منجر به رشد ناکافی و کند جنین یا زایمان زودرس شود. یکی از علل میوم رحم و کیست‌های پستان در خانم‌ها، کمبود روی می‌باشد و دیده شده‌است که با تجویز روی به بدن آن‌ها بهبودی حاصل شده‌است. هم چنین دیده شده‌است که در خانم‌هایی که دچار عفونت‌های راجعه قارچی دستگاه تناسلی می‌شوند و به هیچ درمان منظم دارویی جواب نمی‌دهند، تجویز روی به مقدار کافی، باعث بهبود آن‌ها شده‌است.
هم چنین مصرف روی در بهبود ریزش مو به اثبات رسیده‌است و امروزه کمبود روی را از علل مهم ریزش مو می‌دانند، که البته بایستی سایر علل ریزش مو مانند کمبود ویتامین‌ها، کم خونی و… نیز مد نظر قرار گیرد.

کمبود روی در کودکان همراه با بی اشتهایی، اختلال چشایی طعم غذا، پیکا (حالتی شبیه ویار حاملگی)، بی‌حالی، غش، اختلال رفتاری و وقفه در رشد، خود را نشان می‌دهد، هم چنین در نوجوانان به صورت تأخیر بلوغ جنسی و ظهور نکردن صفات ثانویه جنسی بروز می‌کند.
کمبود روی در افراد مسن، در هنگام راه رفتن، اختلال تعادل را ایجاد می‌کند که با تجویز داروی روی قابل درمان است.

روی در تشکیل هموگلوبین دخالت دارد و در مواردی فقط تجویز روی همراه دیگر نیازها، این عارضه را درمان می‌کند. روی در رشد فیزیکی بدن مؤثر است، هم چنین کوتاهی قد و کمبود وزن در کودکان ایرانی با تجویز روی قابل درمان است و بهتر می‌باشد که رساندن روی به مقدار کافی به بدن مادر در دوران بارداری و شیردهی مد نظر قرار گیرد. به علاوه باعث ریزش مو می‌شود.

جذب روی در بدن[ویرایش]

جذب روی آسان نبوده و دفع آن نیز به سختی صورت می‌گیرد و به همین دلیل در تجویز روی و استفاده از آن باید رعایت این مشکل، منظور شود. به علت آن که روی در ناحیهٔ اولیهٔ روده باریک جذب می‌شود، پروتئین در جذب آن دخالت دارد و لازم است کمبود پروتئین در افراد دچار نقص روی نیز درمان شود.

پیدایش[ویرایش]

روی بیست و سومین عنصر در پوسته زمین از نظر فراوانی می‌باشد. بسیاری از سنگ‌های معدنی سنگین استخراج شده حاوی ۱۰٪ آهن و ۴۰–۵۰٪ روی می‌باشند. معادنی که از آن‌ها روی استخراج می‌شود شامل Sphakrite, Zinc Blende, Smith sonite, Calamine, Franklinite می‌شوند. تاکنون نزدیک به ۶۰ نوع کانی روی شناخته شده‌است روی عنصری به‌طور طبیعی وجود ندارد. از این شمار سولفور روی با نام اسفالریت یا بلاند (ZnS) شناخته شده، مهم‌ترین کانی است. از دیگر کانی‌های با اهمیت روی می‌توان به اسمیت زونیت ZnCO3، همی مورفیت (Zn4Si2O7(OH و زنسیت (ZnO) اشاره کرد.

ترکیبات[ویرایش]

اکسید روی معروفترین ترکیبی است که به‌طور گسترده در ترکیبات روی مورد استفاده قرار می‌گیرد و به عنوان رنگ‌دانه سفید در رنگ‌ها استفاده می‌شود. همچنین در صنعت Rubber کاربرد داشته و به عنوان Opaque Sunscreen فروخته می‌شود. دیگر ترکیبات روی به استفاده غیر صنعتی می‌رسند مانند: کلرید روی در بو گیر سولفید روی در رنگ‌های شب تاب و متیل روی در آزمایشگاه شیمی آلی. تقریباً یک چهارم فراورده‌های روی به صورت ترکیبات روی مورد مصرف قرار می‌گیرد.

ایزوتوپها[ویرایش]

روی طبیعی در ۴ ایزوتوپ پایدار تشکیل شده‌است: Zn64 Zn-66, Zn-67, Zn-۶۸ که در این میان Zn۶۴ فراوانترین آن‌ها (۴۸٫۶٪ فراوانی طبیعی) می‌باشد. برای این عنصر ۲۲ رادیو ایزوتوپ اکتیو شناسایی شده‌است که در میان آن‌ها Zn-۶۵ با نیمه عمر ۲۴۴٫۲۶ روز و Zn-۷۲ با نیمه عمر ۴۶٫۵ ساعت پایدارترین و فراوانترین ایزوتوپ می‌باشند. دیگر ایزوتوپ‌های رادیو اکتیو این عنصر نیمه عمرهای کمتر از ۱۴ ساعت هستند و بیشتر آن‌ها نیمه عمری کمتر از یک دقیقه دارند. این عنصر همچنین ۴ حالت متا دارد.

هشدارها[ویرایش]

فلز روی سمی نیست اما حالتهایی به نام Zinc Shakes یا Zinc Chills وجود دارند که با استنشاق اکسید روی تازه و خالص تحریک می‌شوند.

شناخت محیط رشد روی[ویرایش]

روی در تولید و فعالیت آنزیم‌ها، همچنین در ایجاد پروتئین مؤثر است. کمبود روی باعث کوچک ماندن برگ‌های گیاه و کوتاه شدن فاصله میان گره‌ها می‌شود. واکنش خاک، بر قابل استفاده بودن روی برای گیاه، مؤثر می‌باشد. معمولاً در خاک‌های قلیایی، و در خاک‌های محتوی فسفر بیش از حد، روی غیرقابل استفاده می‌گردد. در خاک‌های شنی، به راحتی شسته شده و از زمین خارج می‌شود. برای رفع کمبود روی، سولفات روی را به خاک اضافه می‌کنند. هر چند که شرایط خاک‌های ایران سولفات روی شدیداً تثبیت می‌شود و بازده آن کم است و به صورت Zn EDTA بازده بیشتری دارد.

تأثیر روی بر روی هورمون مردانگی(تستوسترون)[ویرایش]

زینک یا روی یکی از مهم‌ترین عناصر اثر بخش در تولید تستوسترون طبیعی در بدن مردان است چرا که از تبدیل تستوسترون به استروژن (هورمون زنانه) جلوگیری می‌کند، با تولید آنزیمی به نام ارومایتاس ازین عمل جلوگیری می‌کند. عکس عمل نیز در بدن توسط روی اتفاق می‌افتد یعنی هورمون‌های زنانه را به مردانه تبدیل می‌کند و باعث تولید اسپرم‌های سالم‌تر نیز می‌شود، یعنی تبدیل استروژن به تستوسترون به صورت طبیعی، منابع طبیعی برای جذب زینک یا روی در مواد غذایی: الف) جگر ب) غذاهای دریایی ج) حبوبات و دانه‌های روغنی د) تخم مرغ همچنین میزان مصرف صحیح روی را در تصویر زیر می‌توانید مشاهده نمایید.

منابع[ویرایش]

https://web.archive.org/web/20141206210151/http://elikacompany.com/?post_type=product&p=344

  1. منبع کتاب (نقش روی درافزایش کمی وکیفی محصولات کشاورزی وبهبودسلامتی جامعه) تألیف دکترملکوتی ودکترلطف اللهی
  2. «شمش روی». گروه صنعتی الای. دریافت‌شده در ۲۰۱۹-۱۱-۰۴.
  3. جلیلی مرندی، رسول (۱۳۹۴). میوه کاری. ارومیه: جهاد دانشگاهی واحد آذربایجان غربی. صص. ۱۰۳. شابک ۹۷۸-۹۶۴-۶۰۳۲-۲۳-۱.
  4. ملکوتی، محمد جعفر (۱۳۹۴). توصیه بهینه مصرف کود برای مصرف محصولات کشاورزی در ایران. تهران: مبلغان. شابک ۹۷۸-۹۶۴-۲۶۱۴-۹۵-۰.
  5. ملکوتی، محمد جعفر (۱۳۹۴). توصیه بهینه مصرف کود برای محصولات کشاورزی ایران. تهران: مبلغان. شابک ۹۷۸-۹۶۴-۲۶۱۴-۹۵-۰.
  6. خوشخوی، مرتضی (۱۳۹۱). اصول نوین باغبانی. شیراز: دانشگاه شیراز. صص. ۱۷۶. شابک ۹۷۸-۹۶۴-۴۶۲-۴۵۴-۴.
  7. «شمش روی». گروه صنعتی الای. دریافت‌شده در ۲۰۱۹-۱۱-۰۴.

خواص روی - وبگاه علمی پاکمن

Zinc,  30Zn
Zinc fragment sublimed and 1cm3 cube.jpg
Zinc
Appearancesilver-gray
Standard atomic weight Ar, std(Zn)65.38(2)[1]
Zinc in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson


Zn

Cd
copperzincgallium
Atomic number (Z)30
Groupgroup 12
Periodperiod 4
Blockd-block
Element category  Post-transition metal, alternatively considered a transition metal
Electron configuration[Ar] 3d10 4s2
Electrons per shell
2, 8, 18, 2
Physical properties
Phase at STPsolid
Melting point692.68 K ​(419.53 °C, ​787.15 °F)
Boiling point1180 K ​(907 °C, ​1665 °F)
Density (near r.t.)7.14 g/cm3
when liquid (at m.p.)6.57 g/cm3
Heat of fusion7.32 kJ/mol
Heat of vaporization115 kJ/mol
Molar heat capacity25.470 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 610 670 750 852 990 1179
Atomic properties
Oxidation states−2, 0, +1, +2 (an amphoteric oxide)
ElectronegativityPauling scale: 1.65
Ionization energies
  • 1st: 906.4 kJ/mol
  • 2nd: 1733.3 kJ/mol
  • 3rd: 3833 kJ/mol
  • (more)
Atomic radiusempirical: 134 pm
Covalent radius122±4 pm
Van der Waals radius139 pm
Color lines in a spectral range
Spectral lines of zinc
Other properties
Natural occurrenceprimordial
Crystal structurehexagonal close-packed (hcp)
Hexagonal close packed crystal structure for zinc
Speed of sound thin rod3850 m/s (at r.t.) (rolled)
Thermal expansion30.2 µm/(m·K) (at 25 °C)
Thermal conductivity116 W/(m·K)
Electrical resistivity59.0 nΩ·m (at 20 °C)
Magnetic orderingdiamagnetic
Magnetic susceptibility−11.4·10−6 cm3/mol (298 K)[2]
Young's modulus108 GPa
Shear modulus43 GPa
Bulk modulus70 GPa
Poisson ratio0.25
Mohs hardness2.5
Brinell hardness327–412 MPa
CAS Number7440-66-6
History
DiscoveryIndian metallurgists (before 1000 BCE)
First isolationAndreas Sigismund Marggraf (1746)
Recognized as a unique metal byRasaratna Samuccaya (800)
Main isotopes of zinc
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
64Zn 49.2% stable
65Zn syn 244 d ε 65Cu
γ
66Zn 27.7% stable
67Zn 4.0% stable
68Zn 18.5% stable
69Zn syn 56 min β 69Ga
69mZn syn 13.8 h β 69Ga
70Zn 0.6% stable
71Zn syn 2.4 min β 71Ga
71mZn syn 4 d β 71Ga
72Zn syn 46.5 h β 72Ga
| references

Zinc is a chemical element with the symbol Zn and atomic number 30. Zinc is a slightly brittle metal at room temperature and has a blue-silvery appearance when oxidation is removed. It is the first element in group 12 of the periodic table. In some respects, zinc is chemically similar to magnesium: both elements exhibit only one normal oxidation state (+2), and the Zn2+ and Mg2+ ions are of similar size. Zinc is the 24th most abundant element in Earth's crust and has five stable isotopes. The most common zinc ore is sphalerite (zinc blende), a zinc sulfide mineral. The largest workable lodes are in Australia, Asia, and the United States. Zinc is refined by froth flotation of the ore, roasting, and final extraction using electricity (electrowinning).

Brass, an alloy of copper and zinc in various proportions, was used as early as the third millennium BC in the Aegean, Iraq, the United Arab Emirates, Kalmykia, Turkmenistan and Georgia, and the second millennium BC in West India, Uzbekistan, Iran, Syria, Iraq, and Israel/Palestine.[3][4][5] Zinc metal was not produced on a large scale until the 12th century in India, though it was known to the ancient Romans and Greeks.[6] The mines of Rajasthan have given definite evidence of zinc production going back to the 6th century BC.[7] To date, the oldest evidence of pure zinc comes from Zawar, in Rajasthan, as early as the 9th century AD when a distillation process was employed to make pure zinc.[8] Alchemists burned zinc in air to form what they called "philosopher's wool" or "white snow".

The element was probably named by the alchemist Paracelsus after the German word Zinke (prong, tooth). German chemist Andreas Sigismund Marggraf is credited with discovering pure metallic zinc in 1746. Work by Luigi Galvani and Alessandro Volta uncovered the electrochemical properties of zinc by 1800. Corrosion-resistant zinc plating of iron (hot-dip galvanizing) is the major application for zinc. Other applications are in electrical batteries, small non-structural castings, and alloys such as brass. A variety of zinc compounds are commonly used, such as zinc carbonate and zinc gluconate (as dietary supplements), zinc chloride (in deodorants), zinc pyrithione (anti-dandruff shampoos), zinc sulfide (in luminescent paints), and dimethylzinc or diethylzinc in the organic laboratory.

Zinc is an essential mineral, including to prenatal and postnatal development.[9] Zinc deficiency affects about two billion people in the developing world and is associated with many diseases.[10] In children, deficiency causes growth retardation, delayed sexual maturation, infection susceptibility, and diarrhea.[9] Enzymes with a zinc atom in the reactive center are widespread in biochemistry, such as alcohol dehydrogenase in humans.[11]

Consumption of excess zinc may cause ataxia, lethargy, and copper deficiency.

Characteristics

Physical properties

Zinc is a bluish-white, lustrous, diamagnetic metal,[12] though most common commercial grades of the metal have a dull finish.[13] It is somewhat less dense than iron and has a hexagonal crystal structure, with a distorted form of hexagonal close packing, in which each atom has six nearest neighbors (at 265.9 pm) in its own plane and six others at a greater distance of 290.6 pm.[14] The metal is hard and brittle at most temperatures but becomes malleable between 100 and 150 °C.[12][13] Above 210 °C, the metal becomes brittle again and can be pulverized by beating.[15] Zinc is a fair conductor of electricity.[12] For a metal, zinc has relatively low melting (419.5 °C) and boiling points (907 °C).[16] The melting point is the lowest of all the d-block metals aside from mercury and cadmium; for this, among other reasons, zinc, cadmium, and mercury are often not considered to be transition metals like the rest of the d-block metals.[16]

Many alloys contain zinc, including brass. Other metals long known to form binary alloys with zinc are aluminium, antimony, bismuth, gold, iron, lead, mercury, silver, tin, magnesium, cobalt, nickel, tellurium, and sodium.[17] Although neither zinc nor zirconium are ferromagnetic, their alloy ZrZn
2
exhibits ferromagnetism below 35 K.[12]

A bar of zinc generates a characteristic sound when bent, similar to tin cry.

Occurrence

Zinc makes up about 75 ppm (0.0075%) of Earth's crust, making it the 24th most abundant element. Soil contains zinc in 5–770 ppm with an average 64 ppm. Seawater has only 30 ppb and the atmosphere, 0.1–4 µg/m3.[18] The element is normally found in association with other base metals such as copper and lead in ores.[19] Zinc is a chalcophile, meaning the element is more likely to be found in minerals together with sulfur and other heavy chalcogens, rather than with the light chalcogen oxygen or with non-chalcogen electronegative elements such as the halogens. Sulfides formed as the crust solidified under the reducing conditions of the early Earth's atmosphere.[20] Sphalerite, which is a form of zinc sulfide, is the most heavily mined zinc-containing ore because its concentrate contains 60–62% zinc.[19]

Other source minerals for zinc include smithsonite (zinc carbonate), hemimorphite (zinc silicate), wurtzite (another zinc sulfide), and sometimes hydrozincite (basic zinc carbonate).[21] With the exception of wurtzite, all these other minerals were formed by weathering of the primordial zinc sulfides.[20]

Identified world zinc resources total about 1.9–2.8 billion tonnes.[22][23] Large deposits are in Australia, Canada and the United States, with the largest reserves in Iran.[20][24][25] The most recent estimate of reserve base for zinc (meets specified minimum physical criteria related to current mining and production practices) was made in 2009 and calculated to be roughly 480 Mt.[26] Zinc reserves, on the other hand, are geologically identified ore bodies whose suitability for recovery is economically based (location, grade, quality, and quantity) at the time of determination. Since exploration and mine development is an ongoing process, the amount of zinc reserves is not a fixed number and sustainability of zinc ore supplies cannot be judged by simply extrapolating the combined mine life of today's zinc mines. This concept is well supported by data from the United States Geological Survey (USGS), which illustrates that although refined zinc production increased 80% between 1990 and 2010, the reserve lifetime for zinc has remained unchanged. About 346 million tonnes have been extracted throughout history to 2002, and scholars have estimated that about 109–305 million tonnes are in use.[27][28][29]

A black shiny lump of solid with uneven surface

Isotopes

Five stable isotopes of zinc occur in nature, with 64Zn being the most abundant isotope (49.17% natural abundance).[30][31] The other isotopes found in nature are 66
Zn
(27.73%), 67
Zn
(4.04%), 68
Zn
(18.45%), and 70
Zn
(0.61%).[31] The most abundant isotope 64Zn and the rare 70Zn are theoretically unstable on energetic grounds, though their predicted half-lives exceed 4.3×1018 years[32] and 1.3×1016 years,[31] meaning that their radioactivity could be ignored for practical purposes.

Several dozen radioisotopes have been characterized. 65
Zn
, which has a half-life of 243.66 days, is the least active radioisotope, followed by 72
Zn
with a half-life of 46.5 hours.[30] Zinc has 10 nuclear isomers. 69mZn has the longest half-life, 13.76 h.[30] The superscript m indicates a metastable isotope. The nucleus of a metastable isotope is in an excited state and will return to the ground state by emitting a photon in the form of a gamma ray. 61
Zn
has three excited metastable states and 73
Zn
has two.[33] The isotopes 65
Zn
, 71
Zn
, 77
Zn
and 78
Zn
each have only one excited metastable state.[30]

The most common decay mode of a radioisotope of zinc with a mass number lower than 66 is electron capture. The decay product resulting from electron capture is an isotope of copper.[30]

n
30
Zn
+
e
n
29
Cu

The most common decay mode of a radioisotope of zinc with mass number higher than 66 is beta decay), which produces an isotope of gallium.[30]

n
30
Zn
n
31
Ga
+
e
+
ν
e

Compounds and chemistry

Reactivity

Zinc has an electron configuration of [Ar]3d104s2 and is a member of the group 12 of the periodic table. It is a moderately reactive metal and strong reducing agent.[34] The surface of the pure metal tarnishes quickly, eventually forming a protective passivating layer of the basic zinc carbonate, Zn
5
(OH)
6
(CO3)
2
, by reaction with atmospheric carbon dioxide.[35] This layer helps prevent further reaction with air and water.

Zinc burns in air with a bright bluish-green flame, giving off fumes of zinc oxide.[36] Zinc reacts readily with acids, alkalis and other non-metals.[37] Extremely pure zinc reacts only slowly at room temperature with acids.[36] Strong acids, such as hydrochloric or sulfuric acid, can remove the passivating layer and subsequent reaction with water releases hydrogen gas.[36]

The chemistry of zinc is dominated by the +2 oxidation state. When compounds in this oxidation state are formed, the outer shell s electrons are lost, yielding a bare zinc ion with the electronic configuration [Ar]3d10.[38] In aqueous solution an octahedral complex, [Zn(H
2
O)6]2+
is the predominant species.[39] The volatilization of zinc in combination with zinc chloride at temperatures above 285 °C indicates the formation of Zn
2
Cl
2
, a zinc compound with a +1 oxidation state.[36] No compounds of zinc in oxidation states other than +1 or +2 are known.[40] Calculations indicate that a zinc compound with the oxidation state of +4 is unlikely to exist.[41]

Zinc chemistry is similar to the chemistry of the late first-row transition metals, nickel and copper, though it has a filled d-shell and compounds are diamagnetic and mostly colorless.[42] The ionic radii of zinc and magnesium happen to be nearly identical. Because of this some of the equivalent salts have the same crystal structure,[43] and in other circumstances where ionic radius is a determining factor, the chemistry of zinc has much in common with that of magnesium.[36] In other respects, there is little similarity with the late first-row transition metals. Zinc tends to form bonds with a greater degree of covalency and much more stable complexes with N- and S- donors.[42] Complexes of zinc are mostly 4- or 6- coordinate although 5-coordinate complexes are known.[36]

Zinc(I) compounds

Zinc(I) compounds are rare and need bulky ligands to stabilize the low oxidation state. Most zinc(I) compounds contain formally the [Zn2]2+ core, which is analogous to the [Hg2]2+ dimeric cation present in mercury(I) compounds. The diamagnetic nature of the ion confirms its dimeric structure. The first zinc(I) compound containing the Zn–Zn bond, 5-C5Me5)2Zn2, is also the first dimetallocene. The [Zn2]2+ ion rapidly disproportionates into zinc metal and zinc(II), and has been obtained only a yellow glass only by cooling a solution of metallic zinc in molten ZnCl2.[44]

Zinc(II) compounds

Sheets of zinc acetate formed by slow evaporation
Zinc acetate
White lumped powder on a glass plate
Zinc chloride

Binary compounds of zinc are known for most of the metalloids and all the nonmetals except the noble gases. The oxide ZnO is a white powder that is nearly insoluble in neutral aqueous solutions, but is amphoteric, dissolving in both strong basic and acidic solutions.[36] The other chalcogenides (ZnS, ZnSe, and ZnTe) have varied applications in electronics and optics.[45] Pnictogenides (Zn
3
N
2
, Zn
3
P
2
, Zn
3
As
2
and Zn
3
Sb
2
),[46][47] the peroxide (ZnO
2
), the hydride (ZnH
2
), and the carbide (ZnC
2
) are also known.[48] Of the four halides, ZnF
2
has the most ionic character, while the others (ZnCl
2
, ZnBr
2
, and ZnI
2
) have relatively low melting points and are considered to have more covalent character.[49]

In weak basic solutions containing Zn2+
ions, the hydroxide Zn(OH)
2
forms as a white precipitate. In stronger alkaline solutions, this hydroxide is dissolved to form zincates ([Zn(OH)4]2−
).[36] The nitrate Zn(NO3)
2
, chlorate Zn(ClO3)
2
, sulfate ZnSO
4
, phosphate Zn
3
(PO4)
2
, molybdate ZnMoO
4
, cyanide Zn(CN)
2
, arsenite Zn(AsO2)
2
, arsenate Zn(AsO4)
2
·8H
2
O
and the chromate ZnCrO
4
(one of the few colored zinc compounds) are a few examples of other common inorganic compounds of zinc.[50][51] One of the simplest examples of an organic compound of zinc is the acetate (Zn(O
2
CCH3)
2
).

Organozinc compounds are those that contain zinc–carbon covalent bonds. Diethylzinc ((C
2
H5)
2
Zn
) is a reagent in synthetic chemistry. It was first reported in 1848 from the reaction of zinc and ethyl iodide, and was the first compound known to contain a metal–carbon sigma bond.[52]

Test for zinc

Cobalticyanide paper (Rinnmann's test for Zn) can be used as a chemical indicator for zinc. 4 g of K3Co(CN)6 and 1 g of KClO3 is dissolved on 100 ml of water. Paper is dipped in the solution and dried at 100 °C. One drop of the sample is dropped onto the dry paper and heated. A green disc indicates the presence of zinc.[53]

History

Ancient use

Large black bowl-shaped bucket on a stand. The bucket has incrustation around its top.
Late Roman brass bucket – the Hemmoorer Eimer from Warstade, Germany, second to third century AD

Various isolated examples of the use of impure zinc in ancient times have been discovered. Zinc ores were used to make the zinc–copper alloy brass thousands of years prior to the discovery of zinc as a separate element. Judean brass from the 14th to 10th centuries BC contains 23% zinc.[4]

Knowledge of how to produce brass spread to Ancient Greece by the 7th century BC, but few varieties were made.[5] Ornaments made of alloys containing 80–90% zinc, with lead, iron, antimony, and other metals making up the remainder, have been found that are 2,500 years old.[19] A possibly prehistoric statuette containing 87.5% zinc was found in a Dacian archaeological site.[54]

The oldest known pills were made of the zinc carbonates hydrozincite and smithsonite. The pills were used for sore eyes and were found aboard the Roman ship Relitto del Pozzino, wrecked in 140 BC.[55][56]

The manufacture of brass was known to the Romans by about 30 BC.[57] They made brass by heating powdered calamine (zinc silicate or carbonate), charcoal and copper together in a crucible.[57] The resulting calamine brass was then either cast or hammered into shape for use in weaponry.[58] Some coins struck by Romans in the Christian era are made of what is probably calamine brass.[59]

Strabo writing in the 1st century BC (but quoting a now lost work of the 4th century BC historian Theopompus) mentions "drops of false silver" which when mixed with copper make brass. This may refer to small quantities of zinc that is a by-product of smelting sulfide ores.[60] Zinc in such remnants in smelting ovens was usually discarded as it was thought to be worthless.[61]

The Berne zinc tablet is a votive plaque dating to Roman Gaul made of an alloy that is mostly zinc.[62]

The Charaka Samhita, thought to have been written between 300 and 500 AD,[63] mentions a metal which, when oxidized, produces pushpanjan, thought to be zinc oxide.[64] Zinc mines at Zawar, near Udaipur in India, have been active since the Mauryan period (c.  322 and 187 BCE). The smelting of metallic zinc here, however, appears to have begun around the 12th century AD.[65][66] One estimate is that this location produced an estimated million tonnes of metallic zinc and zinc oxide from the 12th to 16th centuries.[21] Another estimate gives a total production of 60,000 tonnes of metallic zinc over this period.[65] The Rasaratna Samuccaya, written in approximately the 13th century AD, mentions two types of zinc-containing ores: one used for metal extraction and another used for medicinal purposes.[66]

Early studies and naming

Zinc was distinctly recognized as a metal under the designation of Yasada or Jasada in the medical Lexicon ascribed to the Hindu king Madanapala (of Taka dynasty) and written about the year 1374.[67] Smelting and extraction of impure zinc by reducing calamine with wool and other organic substances was accomplished in the 13th century in India.[12][68] The Chinese did not learn of the technique until the 17th century.[68]

Various alchemical symbols for the element zinc

Alchemists burned zinc metal in air and collected the resulting zinc oxide on a condenser. Some alchemists called this zinc oxide lana philosophica, Latin for "philosopher's wool", because it collected in wooly tufts, whereas others thought it looked like white snow and named it nix album.[69]

The name of the metal was probably first documented by Paracelsus, a Swiss-born German alchemist, who referred to the metal as "zincum" or "zinken" in his book Liber Mineralium II, in the 16th century.[68][70] The word is probably derived from the German zinke, and supposedly meant "tooth-like, pointed or jagged" (metallic zinc crystals have a needle-like appearance).[71] Zink could also imply "tin-like" because of its relation to German zinn meaning tin.[72] Yet another possibility is that the word is derived from the Persian word سنگ seng meaning stone.[73] The metal was also called Indian tin, tutanego, calamine, and spinter.[19]

German metallurgist Andreas Libavius received a quantity of what he called "calay" of Malabar from a cargo ship captured from the Portuguese in 1596.[74] Libavius described the properties of the sample, which may have been zinc. Zinc was regularly imported to Europe from the Orient in the 17th and early 18th centuries,[68] but was at times very expensive.[note 1]

Picture of an old man head (profile). The man has a long face, short hair and tall forehead.
Andreas Sigismund Marggraf is given credit for first isolating pure zinc

Isolation

Metallic zinc was isolated in India by 1300 AD,[75][76][77] much earlier than in the West. Before it was isolated in Europe, it was imported from India in about 1600 CE.[78] Postlewayt's Universal Dictionary, a contemporary source giving technological information in Europe, did not mention zinc before 1751 but the element was studied before then.[66][79]

Flemish metallurgist and alchemist P. M. de Respour reported that he had extracted metallic zinc from zinc oxide in 1668.[21] By the start of the 18th century, Étienne François Geoffroy described how zinc oxide condenses as yellow crystals on bars of iron placed above zinc ore that is being smelted.[21] In Britain, John Lane is said to have carried out experiments to smelt zinc, probably at Landore, prior to his bankruptcy in 1726.[80]

In 1738 in Great Britain, William Champion patented a process to extract zinc from calamine in a vertical retort-style smelter.[81] His technique resembled that used at Zawar zinc mines in Rajasthan, but no evidence suggests he visited the Orient.[78] Champion's process was used through 1851.[68]

German chemist Andreas Marggraf normally gets credit for discovering pure metallic zinc, even though Swedish chemist Anton von Swab had distilled zinc from calamine four years previously.[68] In his 1746 experiment, Marggraf heated a mixture of calamine and charcoal in a closed vessel without copper to obtain a metal.[61] This procedure became commercially practical by 1752.[82]

Later work

Painting of a middle-aged man sitting by the table, wearing a wig, black jacket, white shirt and white scarf.
Galvanization was named after Luigi Galvani.

William Champion's brother, John, patented a process in 1758 for calcining zinc sulfide into an oxide usable in the retort process.[19] Prior to this, only calamine could be used to produce zinc. In 1798, Johann Christian Ruberg improved on the smelting process by building the first horizontal retort smelter.[83] Jean-Jacques Daniel Dony built a different kind of horizontal zinc smelter in Belgium that processed even more zinc.[68] Italian doctor Luigi Galvani discovered in 1780 that connecting the spinal cord of a freshly dissected frog to an iron rail attached by a brass hook caused the frog's leg to twitch.[84] He incorrectly thought he had discovered an ability of nerves and muscles to create electricity and called the effect "animal electricity".[85] The galvanic cell and the process of galvanization were both named for Luigi Galvani, and his discoveries paved the way for electrical batteries, galvanization, and cathodic protection.[85]

Galvani's friend, Alessandro Volta, continued researching the effect and invented the Voltaic pile in 1800.[84] The basic unit of Volta's pile was a simplified galvanic cell, made of plates of copper and zinc separated by an electrolyte and connected by a conductor externally. The units were stacked in series to make the Voltaic cell, which produced electricity by directing electrons from the zinc to the copper and allowing the zinc to corrode.[84]

The non-magnetic character of zinc and its lack of color in solution delayed discovery of its importance to biochemistry and nutrition.[86] This changed in 1940 when carbonic anhydrase, an enzyme that scrubs carbon dioxide from blood, was shown to have zinc in its active site.[86] The digestive enzyme carboxypeptidase became the second known zinc-containing enzyme in 1955.[86]

Production

Mining and processing

Top zinc output countries 2014[22]
Rank Country Tonnes
1 China 5,000,000
2 Australia 1,500,000
3 Peru 1,300,000
4 India 820,000
5 United States 700,000
6 Mexico 700,000
World map revealing that about 40% of zinc is produced in China, 20% in Australia, 20% in Peru, and 5% in US, Canada and Kazakhstan each.
Percentage of zinc output in 2006 by countries[87]
World production trend

Zinc is the fourth most common metal in use, trailing only iron, aluminium, and copper with an annual production of about 13 million tonnes.[22] The world's largest zinc producer is Nyrstar, a merger of the Australian OZ Minerals and the Belgian Umicore.[88] About 70% of the world's zinc originates from mining, while the remaining 30% comes from recycling secondary zinc.[89] Commercially pure zinc is known as Special High Grade, often abbreviated SHG, and is 99.995% pure.[90]

Worldwide, 95% of new zinc is mined from sulfidic ore deposits, in which sphalerite (ZnS) is nearly always mixed with the sulfides of copper, lead and iron.[91] Zinc mines are scattered throughout the world, with the main areas being China, Australia, and Peru. China produced 38% of the global zinc output in 2014.[22]

Zinc metal is produced using extractive metallurgy.[92] The ore is finely ground, then put through froth flotation to separate minerals from gangue (on the property of hydrophobicity), to get a zinc sulfide ore concentrate[92] consisting of about 50% zinc, 32% sulfur, 13% iron, and 5% SiO
2
.[92]

Roasting converts the zinc sulfide concentrate to zinc oxide:[91]

2 ZnS + 3 O
2
→ 2 ZnO + 2 SO
2

The sulfur dioxide is used for the production of sulfuric acid, which is necessary for the leaching process. If deposits of zinc carbonate, zinc silicate, or zinc spinel (like the Skorpion Deposit in Namibia) are used for zinc production, the roasting can be omitted.[93]

For further processing two basic methods are used: pyrometallurgy or electrowinning. Pyrometallurgy reduces zinc oxide with carbon or carbon monoxide at 950 °C (1,740 °F) into the metal, which is distilled as zinc vapor to separate it from other metals, which are not volatile at those temperatures.[94] The zinc vapor is collected in a condenser.[91] The equations below describe this process:[91]

2 ZnO + C → 2 Zn + CO
2
ZnO + CO → Zn + CO
2

In electrowinning, zinc is leached from the ore concentrate by sulfuric acid:[95]

ZnO + H
2
SO
4
ZnSO
4
+ H
2
O

Finally, the zinc is reduced by electrolysis.[91]

2 ZnSO
4
+ 2 H
2
O
→ 2 Zn + 2 H
2
SO
4
+ O
2

The sulfuric acid is regenerated and recycled to the leaching step.

When galvanised feedstock is fed to an electric arc furnace, the zinc is recovered from the dust by a number of processes, predominantly the Waelz process (90% as of 2014).[96]

Environmental impact

Refinement of sulfidic zinc ores produces large volumes of sulfur dioxide and cadmium vapor. Smelter slag and other residues contain significant quantities of metals. About 1.1 million tonnes of metallic zinc and 130 thousand tonnes of lead were mined and smelted in the Belgian towns of La Calamine and Plombières between 1806 and 1882.[97] The dumps of the past mining operations leach zinc and cadmium, and the sediments of the Geul River contain non-trivial amounts of metals.[97] About two thousand years ago, emissions of zinc from mining and smelting totaled 10 thousand tonnes a year. After increasing 10-fold from 1850, zinc emissions peaked at 3.4 million tonnes per year in the 1980s and declined to 2.7 million tonnes in the 1990s, although a 2005 study of the Arctic troposphere found that the concentrations there did not reflect the decline. Anthropogenic and natural emissions occur at a ratio of 20 to 1.[98]

Zinc in rivers flowing through industrial and mining areas can be as high as 20 ppm.[99] Effective sewage treatment greatly reduces this; treatment along the Rhine, for example, has decreased zinc levels to 50 ppb.[99] Concentrations of zinc as low as 2 ppm adversely affects the amount of oxygen that fish can carry in their blood.[100]

A panorama featuring a large industrial plant on a sea side, in front of mountains.
Historically responsible for high metal levels in the Derwent River,[101] the zinc works at Lutana is the largest exporter in Tasmania, generating 2.5% of the state's GDP, and producing more than 250,000 tonnes of zinc per year.[102]

Soils contaminated with zinc from mining, refining, or fertilizing with zinc-bearing sludge can contain several grams of zinc per kilogram of dry soil. Levels of zinc in excess of 500 ppm in soil interfere with the ability of plants to absorb other essential metals, such as iron and manganese. Zinc levels of 2000 ppm to 180,000 ppm (18%) have been recorded in some soil samples.[99]

Applications

Major applications of zinc include (numbers are given for the US)[103]

  1. Galvanizing (55%)
  2. Brass and bronze (16%)
  3. Other alloys (21%)
  4. Miscellaneous (8%)

Anti-corrosion and batteries

Merged elongated crystals of various shades of gray.
Hot-dip handrail galvanized crystalline surface

Zinc is most commonly used as an anti-corrosion agent,[104] and galvanization (coating of iron or steel) is the most familiar form. In 2009 in the United States, 55% or 893,000 tons of the zinc metal was used for galvanization.[103]

Zinc is more reactive than iron or steel and thus will attract almost all local oxidation until it completely corrodes away.[105] A protective surface layer of oxide and carbonate (Zn
5
(OH)
6
(CO
3
)
2
)
forms as the zinc corrodes.[106] This protection lasts even after the zinc layer is scratched but degrades through time as the zinc corrodes away.[106] The zinc is applied electrochemically or as molten zinc by hot-dip galvanizing or spraying. Galvanization is used on chain-link fencing, guard rails, suspension bridges, lightposts, metal roofs, heat exchangers, and car bodies.[18]

The relative reactivity of zinc and its ability to attract oxidation to itself makes it an efficient sacrificial anode in cathodic protection (CP). For example, cathodic protection of a buried pipeline can be achieved by connecting anodes made from zinc to the pipe.[106] Zinc acts as the anode (negative terminus) by slowly corroding away as it passes electric current to the steel pipeline.[106][note 2] Zinc is also used to cathodically protect metals that are exposed to sea water.[107] A zinc disc attached to a ship's iron rudder will slowly corrode while the rudder stays intact.[105] Similarly, a zinc plug attached to a propeller or the metal protective guard for the keel of the ship provides temporary protection.

With a standard electrode potential (SEP) of −0.76 volts, zinc is used as an anode material for batteries. (More reactive lithium (SEP −3.04 V) is used for anodes in lithium batteries ). Powdered zinc is used in this way in alkaline batteries and the case (which also serves as the anode) of zinc–carbon batteries is formed from sheet zinc.[108][109] Zinc is used as the anode or fuel of the zinc-air battery/fuel cell.[110][111][112] The zinc-cerium redox flow battery also relies on a zinc-based negative half-cell.[113]

Alloys

A widely used zinc alloy is brass, in which copper is alloyed with anywhere from 3% to 45% zinc, depending upon the type of brass.[106] Brass is generally more ductile and stronger than copper, and has superior corrosion resistance.[106] These properties make it useful in communication equipment, hardware, musical instruments, and water valves.[106]

A mosaica pattern composed of components having various shapes and shades of brown.
Cast brass microstructure at magnification 400x

Other widely used zinc alloys include nickel silver, typewriter metal, soft and aluminium solder, and commercial bronze.[12] Zinc is also used in contemporary pipe organs as a substitute for the traditional lead/tin alloy in pipes.[114] Alloys of 85–88% zinc, 4–10% copper, and 2–8% aluminium find limited use in certain types of machine bearings. Zinc is the primary metal in American one cent coins (pennies) since 1982.[115] The zinc core is coated with a thin layer of copper to give the appearance of a copper coin. In 1994, 33,200 tonnes (36,600 short tons) of zinc were used to produce 13.6 billion pennies in the United States.[116]

Alloys of zinc with small amounts of copper, aluminium, and magnesium are useful in die casting as well as spin casting, especially in the automotive, electrical, and hardware industries.[12] These alloys are marketed under the name Zamak.[117] An example of this is zinc aluminium. The low melting point together with the low viscosity of the alloy makes possible the production of small and intricate shapes. The low working temperature leads to rapid cooling of the cast products and fast production for assembly.[12][118] Another alloy, marketed under the brand name Prestal, contains 78% zinc and 22% aluminium, and is reported to be nearly as strong as steel but as malleable as plastic.[12][119] This superplasticity of the alloy allows it to be molded using die casts made of ceramics and cement.[12]

Similar alloys with the addition of a small amount of lead can be cold-rolled into sheets. An alloy of 96% zinc and 4% aluminium is used to make stamping dies for low production run applications for which ferrous metal dies would be too expensive.[120] For building facades, roofing, and other applications for sheet metal formed by deep drawing, roll forming, or bending, zinc alloys with titanium and copper are used.[121] Unalloyed zinc is too brittle for these manufacturing processes.[121]

As a dense, inexpensive, easily worked material, zinc is used as a lead replacement. In the wake of lead concerns, zinc appears in weights for various applications ranging from fishing[122] to tire balances and flywheels.[123]

Cadmium zinc telluride (CZT) is a semiconductive alloy that can be divided into an array of small sensing devices.[124] These devices are similar to an integrated circuit and can detect the energy of incoming gamma ray photons.[124] When behind an absorbing mask, the CZT sensor array can determine the direction of the rays.[124]

Other industrial uses

White powder on a glass plate
Zinc oxide is used as a white pigment in paints.

Roughly one quarter of all zinc output in the United States in 2009 was consumed in zinc compounds;[103] a variety of which are used industrially. Zinc oxide is widely used as a white pigment in paints and as a catalyst in the manufacture of rubber to disperse heat. Zinc oxide is used to protect rubber polymers and plastics from ultraviolet radiation (UV).[18] The semiconductor properties of zinc oxide make it useful in varistors and photocopying products.[125] The zinc zinc-oxide cycle is a two step thermochemical process based on zinc and zinc oxide for hydrogen production.[126]

Zinc chloride is often added to lumber as a fire retardant[127] and sometimes as a wood preservative.[128] It is used in the manufacture of other chemicals.[127] Zinc methyl (Zn(CH3)
2
) is used in a number of organic syntheses.[129] Zinc sulfide (ZnS) is used in luminescent pigments such as on the hands of clocks, X-ray and television screens, and luminous paints.[130] Crystals of ZnS are used in lasers that operate in the mid-infrared part of the spectrum.[131] Zinc sulfate is a chemical in dyes and pigments.[127] Zinc pyrithione is used in antifouling paints.[132]

Zinc powder is sometimes used as a propellant in model rockets.[133] When a compressed mixture of 70% zinc and 30% sulfur powder is ignited there is a violent chemical reaction.[133] This produces zinc sulfide, together with large amounts of hot gas, heat, and light.[133]

Zinc sheet metal is used to make zinc bars.[134]

64
Zn
, the most abundant isotope of zinc, is very susceptible to neutron activation, being transmuted into the highly radioactive 65
Zn
, which has a half-life of 244 days and produces intense gamma radiation. Because of this, zinc oxide used in nuclear reactors as an anti-corrosion agent is depleted of 64
Zn
before use, this is called depleted zinc oxide. For the same reason, zinc has been proposed as a salting material for nuclear weapons (cobalt is another, better-known salting material).[135] A jacket of isotopically enriched 64
Zn
would be irradiated by the intense high-energy neutron flux from an exploding thermonuclear weapon, forming a large amount of 65
Zn
significantly increasing the radioactivity of the weapon's fallout.[135] Such a weapon is not known to have ever been built, tested, or used.[135]

65
Zn
is used as a tracer to study how alloys that contain zinc wear out, or the path and the role of zinc in organisms.[136]

Zinc dithiocarbamate complexes are used as agricultural fungicides; these include Zineb, Metiram, Propineb and Ziram.[137] Zinc naphthenate is used as wood preservative.[138] Zinc in the form of ZDDP, is used as an anti-wear additive for metal parts in engine oil.[139]

Organic chemistry

Addition of diphenylzinc to an aldehyde

Organozinc chemistry is the science of compounds that contain carbon-zinc bonds, describing the physical properties, synthesis, and chemical reactions.Many organozinc compounds are important.[140][141][142][143] Among important applications are

  • The Frankland-Duppa Reaction in which an oxalate ester (ROCOCOOR) reacts with an alkyl halide R'X, zinc and hydrochloric acid to form the α-hydroxycarboxylic esters RR'COHCOOR[144]
  • The Reformatskii reaction in which α-halo-esters and aldehydes are converted to β-hydroxy-esters
  • The Simmons–Smith reaction in which the carbenoid (iodomethyl)zinc iodide reacts with alkene(or alkyne) and converts them to cyclopropane
  • The Addition reaction of organozinc compounds to form carbonyl compounds
  • The Barbier reaction (1899), which is the zinc equivalent of the magnesium Grignard reaction and is the better of the two. In presence of water, formation of the organomagnesium halide will fail, whereas the Barbier reaction can take place in water.
  • On the downside, organozincs are much less nucleophilic than Grignards, and they are expensive and difficult to handle. Commercially available diorganozinc compounds are dimethylzinc, diethylzinc and diphenylzinc. In one study,[145][146] the active organozinc compound is obtained from much cheaper organobromine precursors
  • The Negishi coupling is also an important reaction for the formation of new carbon-carbon bonds between unsaturated carbon atoms in alkenes, arenes and alkynes. The catalysts are nickel and palladium. A key step in the catalytic cycle is a transmetalation in which a zinc halide exchanges its organic substituent for another halogen with the palladium (nickel) metal center.
  • The Fukuyama coupling is another coupling reaction, but it uses a thioester as reactant and produces a ketone.

Zinc has found many applications as a catalyst in organic synthesis including asymmetric synthesis, being cheap and easily available alternative to precious metal complexes. The results (yield and enantiomeric excess) obtained with chiral zinc catalysts are comparable to those achieved with palladium, ruthenium, iridium and others, and zinc becomes a metal catalyst of choice.[147]

Dietary supplement

GNC zinc 50 mg tablets. The amount exceeds what is deemed the safe upper limit in the United States (40 mg) and European Union (25 mg)
Skeletal chemical formula of a planar compound featuring a Zn atom in the center, symmetrically bonded to four oxygens. Those oxygens are further connected to linear COH chains.
Zinc gluconate is one compound used for the delivery of zinc as a dietary supplement.

In most single-tablet, over-the-counter, daily vitamin and mineral supplements, zinc is included in such forms as zinc oxide, zinc acetate, or zinc gluconate.[148] Zinc is generally considered to be an antioxidant. However, it is redox inert and thus can serve such a function only indirectly.[149] Generally, zinc supplement is recommended where there is high risk of zinc deficiency (such as low and middle income countries) as a preventive measure.[150]

Zinc deficiency has been associated with major depressive disorder (MDD), and zinc supplements may be an effective treatment.[151]

Zinc serves as a simple, inexpensive, and critical tool for treating diarrheal episodes among children in the developing world. Zinc becomes depleted in the body during diarrhea, but recent studies suggest that replenishing zinc with a 10- to 14-day course of treatment can reduce the duration and severity of diarrheal episodes and may also prevent future episodes for as long as three months.[152]

A Cochrane review stated that people taking zinc supplement may be less likely to progress to age-related macular degeneration.[153]

Zinc supplement is an effective treatment for acrodermatitis enteropathica, a genetic disorder affecting zinc absorption that was previously fatal to affected infants.[57]

Gastroenteritis is strongly attenuated by ingestion of zinc, possibly by direct antimicrobial action of the ions in the gastrointestinal tract, or by the absorption of the zinc and re-release from immune cells (all granulocytes secrete zinc), or both.[154][155]

In 2011, researchers reported that adding large amounts of zinc to a urine sample masked detection of drugs. The researchers did not test whether orally consuming a zinc dietary supplement could have the same effect.[156]

Zinc is a negative allosteric modulator of the GABAA receptor.[157]

Common cold

Zinc supplements (frequently zinc acetate or zinc gluconate lozenges) are a group of dietary supplements that are commonly used for the treatment of the common cold.[158] The use of zinc supplements at doses in excess of 75 mg/day within 24 hours of the onset of symptoms has been shown to reduce the duration of cold symptoms by about 1 day.[158][159] Due to a lack of data, there is insufficient evidence to determine whether the preventative use of zinc supplements reduces the likelihood of contracting a cold.[159] Adverse effects with zinc supplements by mouth include bad taste and nausea.[158][159] The intranasal use of zinc-containing nasal sprays has been associated with the loss of the sense of smell;[158] consequently, in June 2009, the United States Food and Drug Administration (USFDA) warned consumers to stop using intranasal zinc products.[158]

The human rhinovirus – the most common viral pathogen in humans – is the predominant cause of the common cold.[160] The hypothesized mechanism of action by which zinc reduces the severity and/or duration of cold symptoms is the suppression of nasal inflammation and the direct inhibition of rhinoviral receptor binding and rhinoviral replication in the nasal mucosa.[158]

Topical use

Topical preparations of zinc include those used on the skin, often in the form of zinc oxide. Zinc preparations can protect against sunburn in the summer and windburn in the winter.[57] Applied thinly to a baby's diaper area (perineum) with each diaper change, it can protect against diaper rash.[57]

Chelated zinc is used in toothpastes and mouthwashes to prevent bad breath.[161]

Zinc pyrithione is widely included in shampoos to prevent dandruff.[162]

Biological role

Zinc is an essential trace element for humans[163][164][165] and other animals,[166] for plants[98] and for microorganisms.[167] Zinc is required for the function of over 300 enzymes and 1000 transcription factors,[165] and is stored and transferred in metallothioneins.[168][169] It is the second most abundant trace metal in humans after iron and it is the only metal which appears in all enzyme classes.[98][165]

In proteins, zinc ions are often coordinated to the amino acid side chains of aspartic acid, glutamic acid, cysteine and histidine. The theoretical and computational description of this zinc binding in proteins (as well as that of other transition metals) is difficult.[170]

Roughly 2–4 grams of zinc[171] are distributed throughout the human body. Most zinc is in the brain, muscle, bones, kidney, and liver, with the highest concentrations in the prostate and parts of the eye.[172] Semen is particularly rich in zinc, a key factor in prostate gland function and reproductive organ growth.[173]

Zinc homeostasis of the body is mainly controlled by the intestine. Here, ZIP4 and especially TRPM7 were linked to intestinal zinc uptake essential for postnatal survival.[174][175]

In humans, the biological roles of zinc are ubiquitous.[9][164] It interacts with "a wide range of organic ligands",[9] and has roles in the metabolism of RNA and DNA, signal transduction, and gene expression. It also regulates apoptosis. A 2006 study estimated that about 10% of human proteins (2800) potentially bind zinc, in addition to hundreds more that transport and traffic zinc; a similar in silico study in the plant Arabidopsis thaliana found 2367 zinc-related proteins.[98]

In the brain, zinc is stored in specific synaptic vesicles by glutamatergic neurons and can modulate neuronal excitability.[164][165][176] It plays a key role in synaptic plasticity and so in learning.[164][177] Zinc homeostasis also plays a critical role in the functional regulation of the central nervous system.[164][176][165] Dysregulation of zinc homeostasis in the central nervous system that results in excessive synaptic zinc concentrations is believed to induce neurotoxicity through mitochondrial oxidative stress (e.g., by disrupting certain enzymes involved in the electron transport chain, including complex I, complex III, and α-ketoglutarate dehydrogenase), the dysregulation of calcium homeostasis, glutamatergic neuronal excitotoxicity, and interference with intraneuronal signal transduction.[164][178] L- and D-histidine facilitate brain zinc uptake.[179] SLC30A3 is the primary zinc transporter involved in cerebral zinc homeostasis.[164]

Enzymes

Interconnected stripes, mostly of yellow and blue color with a few red segments.
Ribbon diagram of human carbonic anhydrase II, with zinc atom visible in the center
A twisted band, with one side painted blue and another gray. Its two ends are connected through some chemical species to a green atom (zinc).
Zinc fingers help read DNA sequences.

Zinc is an efficient Lewis acid, making it a useful catalytic agent in hydroxylation and other enzymatic reactions.[180] The metal also has a flexible coordination geometry, which allows proteins using it to rapidly shift conformations to perform biological reactions.[181] Two examples of zinc-containing enzymes are carbonic anhydrase and carboxypeptidase, which are vital to the processes of carbon dioxide (CO
2
) regulation and digestion of proteins, respectively.[182]

In vertebrate blood, carbonic anhydrase converts CO
2
into bicarbonate and the same enzyme transforms the bicarbonate back into CO
2
for exhalation through the lungs.[183] Without this enzyme, this conversion would occur about one million times slower[184] at the normal blood pH of 7 or would require a pH of 10 or more.[185] The non-related β-carbonic anhydrase is required in plants for leaf formation, the synthesis of indole acetic acid (auxin) and alcoholic fermentation.[186]

Carboxypeptidase cleaves peptide linkages during digestion of proteins. A coordinate covalent bond is formed between the terminal peptide and a C=O group attached to zinc, which gives the carbon a positive charge. This helps to create a hydrophobic pocket on the enzyme near the zinc, which attracts the non-polar part of the protein being digested.[182]

Signalling

Zinc has been recognized as a messenger, able to activate signalling pathways. Many of these pathways provide the driving force in aberrant cancer growth. They can be targeted through ZIP transporters.[187]

Other proteins

Zinc serves a purely structural role in zinc fingers, twists and clusters.[188] Zinc fingers form parts of some transcription factors, which are proteins that recognize DNA base sequences during the replication and transcription of DNA. Each of the nine or ten Zn2+
ions in a zinc finger helps maintain the finger's structure by coordinately binding to four amino acids in the transcription factor.[184] The transcription factor wraps around the DNA helix and uses its fingers to accurately bind to the DNA sequence.

In blood plasma, zinc is bound to and transported by albumin (60%, low-affinity) and transferrin (10%).[171] Because transferrin also transports iron, excessive iron reduces zinc absorption, and vice versa. A similar antagonism exists with copper.[189] The concentration of zinc in blood plasma stays relatively constant regardless of zinc intake.[180] Cells in the salivary gland, prostate, immune system, and intestine use zinc signaling to communicate with other cells.[190]

Zinc may be held in metallothionein reserves within microorganisms or in the intestines or liver of animals.[191] Metallothionein in intestinal cells is capable of adjusting absorption of zinc by 15–40%.[192] However, inadequate or excessive zinc intake can be harmful; excess zinc particularly impairs copper absorption because metallothionein absorbs both metals.[193]

The human dopamine transporter contains a high affinity extracellular zinc binding site which, upon zinc binding, inhibits dopamine reuptake and amplifies amphetamine-induced dopamine efflux in vitro.[194][195][196] The human serotonin transporter and norepinephrine transporter do not contain zinc binding sites.[196] Some EF-hand calcium binding proteins such as S100 or NCS-1 are also able to bind zinc ions.[197]

Nutrition

Dietary recommendations

The U.S. Institute of Medicine (IOM) updated Estimated Average Requirements (EARs) and Recommended Dietary Allowances (RDAs) for zinc in 2001. The current EARs for zinc for women and men ages 14 and up is 6.8 and 9.4 mg/day, respectively. The RDAs are 8 and 11 mg/day. RDAs are higher than EARs so as to identify amounts that will cover people with higher than average requirements. RDA for pregnancy is 11 mg/day. RDA for lactation is 12 mg/day. For infants up to 12 months the RDA is 3 mg/day. For children ages 1–13 years the RDA increases with age from 3 to 8 mg/day. As for safety, the IOM sets Tolerable upper intake levels (ULs) for vitamins and minerals when evidence is sufficient. In the case of zinc the adult UL is 40 mg/day (lower for children). Collectively the EARs, RDAs, AIs and ULs are referred to as Dietary Reference Intakes (DRIs).[180]

The European Food Safety Authority (EFSA) refers to the collective set of information as Dietary Reference Values, with Population Reference Intake (PRI) instead of RDA, and Average Requirement instead of EAR. AI and UL are defined the same as in United States. For people ages 18 and older the PRI calculations are complex, as the EFSA has set higher and higher values as the phytate content of the diet increases. For women, PRIs increase from 7.5 to 12.7 mg/day as phytate intake increases from 300 to 1200 mg/day; for men the range is 9.4 to 16.3 mg/day. These PRIs are higher than the U.S. RDAs.[198] The EFSA reviewed the same safety question and set its UL at 25 mg/day, which is much lower than the U.S. value.[199]

For U.S. food and dietary supplement labeling purposes the amount in a serving is expressed as a percent of Daily Value (%DV). For zinc labeling purposes 100% of the Daily Value was 15 mg, but on May 27, 2016 it was revised to 11 mg.[200] A table of the old and new adult Daily Values is provided at Reference Daily Intake. Food and supplement companies have until January 1, 2020 to comply with the change.[201]

Dietary intake

Several plates full of various cereals, fruits and vegetables on a table.
Foods and spices containing zinc

Animal products such as meat, fish, shellfish, fowl, eggs, and dairy contain zinc. The concentration of zinc in plants varies with the level in the soil. With adequate zinc in the soil, the food plants that contain the most zinc are wheat (germ and bran) and various seeds, including sesame, poppy, alfalfa, celery, and mustard.[202] Zinc is also found in beans, nuts, almonds, whole grains, pumpkin seeds, sunflower seeds, and blackcurrant.[203] Plant phytates are particularly found in pulses and cereals and interfere with zinc absorption.

Other sources include fortified food and dietary supplements in various forms. A 1998 review concluded that zinc oxide, one of the most common supplements in the United States, and zinc carbonate are nearly insoluble and poorly absorbed in the body.[204] This review cited studies that found lower plasma zinc concentrations in the subjects who consumed zinc oxide and zinc carbonate than in those who took zinc acetate and sulfate salts.[204] For fortification, however, a 2003 review recommended cereals (containing zinc oxide) as a cheap, stable source that is as easily absorbed as the more expensive forms.[205] A 2005 study found that various compounds of zinc, including oxide and sulfate, did not show statistically significant differences in absorption when added as fortificants to maize tortillas.[206]

Deficiency

Nearly two billion people in the developing world are deficient in zinc. Groups at risk include children in developing countries and elderly with chronic illnesses.[10] In children, it causes an increase in infection and diarrhea and contributes to the death of about 800,000 children worldwide per year.[9] The World Health Organization advocates zinc supplementation for severe malnutrition and diarrhea.[207] Zinc supplements help prevent disease and reduce mortality, especially among children with low birth weight or stunted growth.[207] However, zinc supplements should not be administered alone, because many in the developing world have several deficiencies, and zinc interacts with other micronutrients.[208] While zinc deficiency is usually due to insufficient dietary intake, it can be associated with malabsorption, acrodermatitis enteropathica, chronic liver disease, chronic renal disease, sickle cell disease, diabetes, malignancy, and other chronic illnesses.[10]

In the United States, a federal survey of food consumption determined that for women and men over the age of 19, average consumption was 9.7 and 14.2 mg/day, respectively. For women, 17% consumed less than the EAR, for men 11%. The percentages below EAR increased with age.[209] The most recent published update of the survey (NHANES 2013–2014) reported lower averages – 9.3 and 13.2 mg/day – again with intake decreasing with age.[210]

Symptoms of mild zinc deficiency are diverse.[180] Clinical outcomes include depressed growth, diarrhea, impotence and delayed sexual maturation, alopecia, eye and skin lesions, impaired appetite, altered cognition, impaired immune functions, defects in carbohydrate utilization, and reproductive teratogenesis.[180] Zinc deficiency depresses immunity,[211] but excessive zinc does also.[171]

Despite some concerns,[212] western vegetarians and vegans do not suffer any more from overt zinc deficiency than meat-eaters.[213] Major plant sources of zinc include cooked dried beans, sea vegetables, fortified cereals, soy foods, nuts, peas, and seeds.[212] However, phytates in many whole-grains and fibers may interfere with zinc absorption and marginal zinc intake has poorly understood effects. The zinc chelator phytate, found in seeds and cereal bran, can contribute to zinc malabsorption.[10] Some evidence suggests that more than the US RDA (8 mg/day for adult women; 11 mg/day for adult men) may be needed in those whose diet is high in phytates, such as some vegetarians.[212] The European Food Safety Authority (EFSA) guidelines attempt to compensate for this by recommending higher zinc intake when dietary phytate intake is greater.[198] These considerations must be balanced against the paucity of adequate zinc biomarkers, and the most widely used indicator, plasma zinc, has poor sensitivity and specificity.[214]

Soil remediation

Species of Calluna, Erica and Vaccinium can grow in zinc-metalliferous soils, because translocation of toxic ions is prevented by the action of ericoid mycorrhizal fungi.[215]

Agriculture

Zinc deficiency appears to be the most common micronutrient deficiency in crop plants; it is particularly common in high-pH soils.[216] Zinc-deficient soil is cultivated in the cropland of about half of Turkey and India, a third of China, and most of Western Australia. Substantial responses to zinc fertilization have been reported in these areas.[98] Plants that grow in soils that are zinc-deficient are more susceptible to disease. Zinc is added to the soil primarily through the weathering of rocks, but humans have added zinc through fossil fuel combustion, mine waste, phosphate fertilizers, pesticide (zinc phosphide), limestone, manure, sewage sludge, and particles from galvanized surfaces. Excess zinc is toxic to plants, although zinc toxicity is far less widespread.[98]

Precautions

Toxicity

Although zinc is an essential requirement for good health, excess zinc can be harmful. Excessive absorption of zinc suppresses copper and iron absorption.[193] The free zinc ion in solution is highly toxic to plants, invertebrates, and even vertebrate fish.[217] The Free Ion Activity Model is well-established in the literature, and shows that just micromolar amounts of the free ion kills some organisms. A recent example showed 6 micromolar killing 93% of all Daphnia in water.[218]

The free zinc ion is a powerful Lewis acid up to the point of being corrosive. Stomach acid contains hydrochloric acid, in which metallic zinc dissolves readily to give corrosive zinc chloride. Swallowing a post-1982 American one cent piece (97.5% zinc) can cause damage to the stomach lining through the high solubility of the zinc ion in the acidic stomach.[219]

Evidence shows that people taking 100–300 mg of zinc daily may suffer induced copper deficiency. A 2007 trial observed that elderly men taking 80 mg daily were hospitalized for urinary complications more often than those taking a placebo.[220] Levels of 100–300 mg may interfere with the utilization of copper and iron or adversely affect cholesterol.[193] Zinc in excess of 500 ppm in soil interferes with the plant absorption of other essential metals, such as iron and manganese.[99] A condition called the zinc shakes or "zinc chills" can be induced by inhalation of zinc fumes while brazing or welding galvanized materials.[130] Zinc is a common ingredient of denture cream which may contain between 17 and 38 mg of zinc per gram. Disability and even deaths from excessive use of these products have been claimed.[221]

The U.S. Food and Drug Administration (FDA) states that zinc damages nerve receptors in the nose, causing anosmia. Reports of anosmia were also observed in the 1930s when zinc preparations were used in a failed attempt to prevent polio infections.[222] On June 16, 2009, the FDA ordered removal of zinc-based intranasal cold products from store shelves. The FDA said the loss of smell can be life-threatening because people with impaired smell cannot detect leaking gas or smoke, and cannot tell if food has spoiled before they eat it.[223]

Recent research suggests that the topical antimicrobial zinc pyrithione is a potent heat shock response inducer that may impair genomic integrity with induction of PARP-dependent energy crisis in cultured human keratinocytes and melanocytes.[224]

Poisoning

In 1982, the US Mint began minting pennies coated in copper but containing primarily zinc. Zinc pennies pose a risk of zinc toxicosis, which can be fatal. One reported case of chronic ingestion of 425 pennies (over 1 kg of zinc) resulted in death due to gastrointestinal bacterial and fungal sepsis. Another patient who ingested 12 grams of zinc showed only lethargy and ataxia (gross lack of coordination of muscle movements).[225] Several other cases have been reported of humans suffering zinc intoxication by the ingestion of zinc coins.[226][227]

Pennies and other small coins are sometimes ingested by dogs, requiring veterinary removal of the foreign objects. The zinc content of some coins can cause zinc toxicity, commonly fatal in dogs through severe hemolytic anemia and liver or kidney damage; vomiting and diarrhea are possible symptoms.[228] Zinc is highly toxic in parrots and poisoning can often be fatal.[229] The consumption of fruit juices stored in galvanized cans has resulted in mass parrot poisonings with zinc.[57]

See also

Notes

  1. ^ An East India Company ship carrying a cargo of nearly pure zinc metal from the Orient sank off the coast Sweden in 1745.(Emsley 2001, p. 502)
  2. ^ Electric current will naturally flow between zinc and steel but in some circumstances inert anodes are used with an external DC source.

References

  1. ^ Meija, Juris; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry. 88 (3): 265–91. doi:10.1515/pac-2015-0305.
  2. ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.
  3. ^ Thornton, C. P. (2007). Of brass and bronze in prehistoric Southwest Asia (PDF). Papers and Lectures Online. Archetype Publications. ISBN 978-1-904982-19-7. Archived (PDF) from the original on September 24, 2015.
  4. ^ a b Greenwood 1997, p. 1201
  5. ^ a b Craddock, Paul T. (1978). "The composition of copper alloys used by the Greek, Etruscan and Roman civilizations. The origins and early use of brass". Journal of Archaeological Science. 5 (1): 1–16. doi:10.1016/0305-4403(78)90015-8.
  6. ^ "Royal Society Of Chemistry". Archived from the original on July 11, 2017.
  7. ^ "India Was the First to Smelt Zinc by Distillation Process". Infinityfoundation.com. Archived from the original on May 16, 2016. Retrieved April 25, 2014.
  8. ^ Kharakwal, J. S. & Gurjar, L. K. (December 1, 2006). "Zinc and Brass in Archaeological Perspective". Ancient Asia. 1: 139–159. doi:10.5334/aa.06112.
  9. ^ a b c d e Hambidge, K. M. & Krebs, N. F. (2007). "Zinc deficiency: a special challenge". J. Nutr. 137 (4): 1101–5. doi:10.1093/jn/137.4.1101. PMID 17374687.
  10. ^ a b c d Prasad, AS (2003). "Zinc deficiency : Has been known of for 40 years but ignored by global health organisations". British Medical Journal. 326 (7386): 409–410. doi:10.1136/bmj.326.7386.409. PMC 1125304. PMID 12595353.
  11. ^ Maret, Wolfgang (2013). "Chapter 14 Zinc and the Zinc Proteome". In Banci, Lucia (ed.). Metallomics and the Cell. Metal Ions in Life Sciences. 12. Springer. pp. 479–501. doi:10.1007/978-94-007-5561-1_14. ISBN 978-94-007-5561-1. PMID 23595681.
  12. ^ a b c d e f g h i j CRC 2006, p. 4–41
  13. ^ a b Heiserman 1992, p. 123
  14. ^ Wells A.F. (1984) Structural Inorganic Chemistry 5th edition p 1277 Oxford Science Publications ISBN 0-19-855370-6
  15. ^ Scoffern, John (1861). The Useful Metals and Their Alloys. Houlston and Wright. pp. 591–603. Retrieved April 6, 2009.
  16. ^ a b "Zinc Metal Properties". American Galvanizers Association. 2008. Archived from the original on March 28, 2015. Retrieved April 7, 2015.
  17. ^ Ingalls, Walter Renton (1902). Production and Properties of Zinc: A Treatise on the Occurrence and Distribution of Zinc Ore, the Commercial and Technical Conditions Affecting the Production of the Spelter, Its Chemical and Physical Properties and Uses in the Arts, Together with a Historical and Statistical Review of the Industry. The Engineering and Mining Journal. pp. 142–6.
  18. ^ a b c Emsley 2001, p. 503
  19. ^ a b c d e Lehto 1968, p. 822
  20. ^ a b c Greenwood 1997, p. 1202
  21. ^ a b c d Emsley 2001, p. 502
  22. ^ a b c d Tolcin, A. C. (2015). "Mineral Commodity Summaries 2015: Zinc" (PDF). United States Geological Survey. Archived (PDF) from the original on May 25, 2015. Retrieved May 27, 2015.
  23. ^ Erickson, R. L. (1973). "Crustal Abundance of Elements, and Mineral Reserves and Resources". U.S. Geological Survey Professional Paper 820: 21–25.
  24. ^ "Country Partnership Strategy—Iran: 2011–12". ECO Trade and development bank. Archived from the original on October 26, 2011. Retrieved June 6, 2011.CS1 maint: BOT: original-url status unknown (link)
  25. ^ "IRAN – a growing market with enormous potential". IMRG. July 5, 2010. Archived from the original on February 17, 2013. Retrieved March 3, 2010.
  26. ^ Tolcin, A. C. (2009). "Mineral Commodity Summaries 2009: Zinc" (PDF). United States Geological Survey. Archived (PDF) from the original on July 2, 2016. Retrieved August 4, 2016.
  27. ^ Gordon, R. B.; Bertram, M.; Graedel, T. E. (2006). "Metal stocks and sustainability". Proceedings of the National Academy of Sciences. 103 (5): 1209–14. Bibcode:2006PNAS..103.1209G. doi:10.1073/pnas.0509498103. PMC 1360560. PMID 16432205.
  28. ^ Gerst, Michael (2008). "In-Use Stocks of Metals: Status and Implications". Environmental Science and Technology. 42 (19): 7038–45. Bibcode:2008EnST...42.7038G. doi:10.1021/es800420p. PMID 18939524.
  29. ^ Meylan, Gregoire (2016). "The anthropogenic cycle of zinc: Status quo and perspectives". Resources, Conservation and Recycling. 123: 1–10. doi:10.1016/j.resconrec.2016.01.006.
  30. ^ a b c d e f NNDC contributors (2008). Alejandro A. Sonzogni (Database Manager) (ed.). "Chart of Nuclides". Upton (NY): National Nuclear Data Center, Brookhaven National Laboratory. Archived from the original on May 22, 2008. Retrieved September 13, 2008.
  31. ^ a b c Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
  32. ^ CRC 2006, p. 11–70
  33. ^ Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  34. ^ CRC 2006, pp. 8–29
  35. ^ Porter, Frank C. (1994). Corrosion Resistance of Zinc and Zinc Alloys. CRC Press. p. 121. ISBN 978-0-8247-9213-8.
  36. ^ a b c d e f g h Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1985). "Zink". Lehrbuch der Anorganischen Chemie (in German) (91–100 ed.). Walter de Gruyter. pp. 1034–1041. ISBN 978-3-11-007511-3.
  37. ^ Hinds, John Iredelle Dillard (1908). Inorganic Chemistry: With the Elements of Physical and Theoretical Chemistry (2nd ed.). New York: John Wiley & Sons. pp. 506–508.
  38. ^ Ritchie, Rob (2004). Chemistry (2nd ed.). Letts and Lonsdale. p. 71. ISBN 978-1-84315-438-9.
  39. ^ Burgess, John (1978). Metal ions in solution. New York: Ellis Horwood. p. 147. ISBN 978-0-470-26293-1.
  40. ^ Brady, James E.; Humiston, Gerard E.; Heikkinen, Henry (1983). General Chemistry: Principles and Structure (3rd ed.). John Wiley & Sons. p. 671. ISBN 978-0-471-86739-5.
  41. ^ Kaupp M.; Dolg M.; Stoll H.; Von Schnering H. G. (1994). "Oxidation state +IV in group 12 chemistry. Ab initio study of zinc(IV), cadmium(IV), and mercury(IV) fluorides". Inorganic Chemistry. 33 (10): 2122–2131. doi:10.1021/ic00088a012.
  42. ^ a b Greenwood 1997, p. 1206
  43. ^ CRC 2006, pp. 12–11–12
  44. ^ Housecroft, C. E.; Sharpe, A. G. (2008). Inorganic Chemistry (3rd ed.). Prentice Hall. p. 739–741, 843. ISBN 978-0-13-175553-6.
  45. ^ "Zinc Sulfide". American Elements. Archived from the original on July 17, 2012. Retrieved February 3, 2009.
  46. ^ Grolier contributors (1994). Academic American Encyclopedia. Danbury, Connecticut: Grolier Inc. p. 202. ISBN 978-0-7172-2053-3.
  47. ^ "Zinc Phosphide". American Elements. Archived from the original on July 17, 2012. Retrieved February 3, 2009.
  48. ^ Shulzhenko, A. A.; Ignatyeva, I. Yu.; Osipov, A. S.; Smirnova, T. I. (2000). "Peculiarities of interaction in the Zn–C system under high pressures and temperatures". Diamond and Related Materials. 9 (2): 129–133. Bibcode:2000DRM.....9..129S. doi:10.1016/S0925-9635(99)00231-9.
  49. ^ Greenwood 1997, p. 1211
  50. ^ Rasmussen, J. K.; Heilmann, S. M. (1990). "In situ Cyanosilylation of Carbonyl Compounds: O-Trimethylsilyl-4-Methoxymandelonitrile". Organic Syntheses, Collected Volume. 7: 521. Archived from the original on September 30, 2007.
  51. ^ Perry, D. L. (1995). Handbook of Inorganic Compounds. CRC Press. pp. 448–458. ISBN 978-0-8493-8671-8.
  52. ^ Frankland, E. (1850). "On the isolation of the organic radicals". Quarterly Journal of the Chemical Society. 2 (3): 263. doi:10.1039/QJ8500200263.
  53. ^ Lide, David (1998). CRC- Handbook of Chemistry and Physics. CRC press. pp. Section 8 Page 1. ISBN 978-0-8493-0479-8.
  54. ^ Weeks 1933, p. 20
  55. ^ "World's oldest pills treated sore eyes". New Scientist. January 7, 2013. Archived from the original on January 22, 2013. Retrieved February 5, 2013.
  56. ^ Giachi, Gianna; Pallecchi, Pasquino; Romualdi, Antonella; Ribechini, Erika; Lucejko, Jeannette Jacqueline; Colombini, Maria Perla; Mariotti Lippi, Marta (2013). "Ingredients of a 2,000-y-old medicine revealed by chemical, mineralogical, and botanical investigations". Proceedings of the National Academy of Sciences. 110 (4): 1193–1196. Bibcode:2013PNAS..110.1193G. doi:10.1073/pnas.1216776110. PMC 3557061. PMID 23297212.
  57. ^ a b c d e f Emsley 2001, p. 501
  58. ^ "How is zinc made?". How Products are Made. The Gale Group. 2002. Archived from the original on April 11, 2006. Retrieved February 21, 2009.CS1 maint: BOT: original-url status unknown (link)
  59. ^ Chambers 1901, p. 799
  60. ^ Craddock, P. T. (1998). "Zinc in classical antiquity". In Craddock, P.T. (ed.). 2000 years of zinc and brass (rev. ed.). London: British Museum. pp. 3–5. ISBN 978-0-86159-124-4.
  61. ^ a b Weeks 1933, p. 21
  62. ^ Rehren, Th. (1996). S. Demirci; et al. (eds.). A Roman zinc tablet from Bern, Switzerland: Reconstruction of the Manufacture. Archaeometry 94. The Proceedings of the 29th International Symposium on Archaeometry. pp. 35–45.
  63. ^ Meulenbeld, G. J. (1999). A History of Indian Medical Literature. IA. Groningen: Forsten. pp. 130–141. OCLC 165833440.
  64. ^ Craddock, P. T.; et al. (1998). "Zinc in India". 2000 years of zinc and brass (rev. ed.). London: British Museum. p. 27. ISBN 978-0-86159-124-4.
  65. ^ a b p. 46, Ancient mining and metallurgy in Rajasthan, S. M. Gandhi, chapter 2 in Crustal Evolution and Metallogeny in the Northwestern Indian Shield: A Festschrift for Asoke Mookherjee, M. Deb, ed., Alpha Science Int'l Ltd., 2000, ISBN 1-84265-001-7.
  66. ^ a b c Craddock, P. T.; Gurjar L. K.; Hegde K. T. M. (1983). "Zinc production in medieval India". World Archaeology. 15 (2): 211–217. doi:10.1080/00438243.1983.9979899. JSTOR 124653.
  67. ^ Ray, Prafulla Chandra (1903). A History of Hindu Chemistry from the Earliest Times to the Middle of the Sixteenth Century, A.D.: With Sanskrit Texts, Variants, Translation and Illustrations. 1 (2nd ed.). The Bengal Chemical & Pharmaceutical Works, Ltd. pp. 157–158. (public domain text)
  68. ^ a b c d e f g Habashi, Fathi. "Discovering the 8th Metal" (PDF). International Zinc Association (IZA). Archived from the original (PDF) on March 4, 2009. Retrieved December 13, 2008.
  69. ^ Arny, Henry Vinecome (1917). Principles of Pharmacy (2nd ed.). W. B. Saunders company. p. 483.
  70. ^ Hoover, Herbert Clark (2003). Georgius Agricola de Re Metallica. Kessinger Publishing. p. 409. ISBN 978-0-7661-3197-2.
  71. ^ Gerhartz, Wolfgang; et al. (1996). Ullmann's Encyclopedia of Industrial Chemistry (5th ed.). VHC. p. 509. ISBN 978-3-527-20100-6.
  72. ^ Skeat, W. W (2005). Concise Etymological Dictionary of the English Language. Cosimo, Inc. p. 622. ISBN 978-1-59605-092-1.
  73. ^ Fathi Habashi (1997). Handbook of Extractive Metallurgy. Wiley-VHC. p. 642. ISBN 978-3-527-28792-5.
  74. ^ Lach, Donald F. (1994). "Technology and the Natural Sciences". Asia in the Making of Europe. University of Chicago Press. p. 426. ISBN 978-0-226-46734-4.
  75. ^ Vaughan, L Brent (1897). "Zincography". The Junior Encyclopedia Britannica A Reference Library of General Knowledge Volume III P-Z. Chicago: E. G. Melven & Company.
  76. ^ Castellani, Michael. "Transition Metal Elements" (PDF). Archived (PDF) from the original on October 10, 2014. Retrieved October 14, 2014.
  77. ^ Habib, Irfan (2011). Chatopadhyaya, D. P. (ed.). Economic History of Medieval India, 1200–1500. New Delhi: Pearson Longman. p. 86. ISBN 978-81-317-2791-1. Archived from the original on April 14, 2016.
  78. ^ a b Jenkins, Rhys (1945). "The Zinc Industry in England: the early years up to 1850". Transactions of the Newcomen Society. 25: 41–52. doi:10.1179/tns.1945.006.
  79. ^ Willies, Lynn; Craddock, P. T.; Gurjar, L. J.; Hegde, K. T. M. (1984). "Ancient Lead and Zinc Mining in Rajasthan, India". World Archaeology. 16 (2, Mines and Quarries): 222–233. doi:10.1080/00438243.1984.9979929. JSTOR 124574.
  80. ^ Roberts, R. O. (1951). "Dr John Lane and the foundation of the non-ferrous metal industry in the Swansea valley". Gower. Gower Society (4): 19.
  81. ^ Comyns, Alan E. (2007). Encyclopedic Dictionary of Named Processes in Chemical Technology (3rd ed.). CRC Press. p. 71. ISBN 978-0-8493-9163-7.
  82. ^ Heiserman 1992, p. 122
  83. ^ Gray, Leon (2005). Zinc. Marshall Cavendish. p. 8. ISBN 978-0-7614-1922-8.
  84. ^ a b c Warren, Neville G. (2000). Excel Preliminary Physics. Pascal Press. p. 47. ISBN 978-1-74020-085-1.
  85. ^ a b "Galvanic Cell". The New International Encyclopaedia. Dodd, Mead and Company. 1903. p. 80.
  86. ^ a b c Cotton 1999, p. 626
  87. ^ Jasinski, Stephen M. "Mineral Commodity Summaries 2007: Zinc" (PDF). United States Geological Survey. Archived (PDF) from the original on December 17, 2008. Retrieved November 25, 2008.
  88. ^ Attwood, James (February 13, 2006). "Zinifex, Umicore Combine to Form Top Zinc Maker". Wall Street Journal. Archived from the original on January 26, 2017.
  89. ^ "Zinc Recycling". International Zinc Association. Archived from the original on October 21, 2011. Retrieved November 28, 2008.CS1 maint: BOT: original-url status unknown (link)
  90. ^ "Special High Grade Zinc (SHG) 99.995%" (PDF). Nyrstar. 2008. Archived from the original (PDF) on March 4, 2009. Retrieved December 1, 2008.
  91. ^ a b c d e Porter, Frank C. (1991). Zinc Handbook. CRC Press. ISBN 978-0-8247-8340-2.
  92. ^ a b c Rosenqvist, Terkel (1922). Principles of Extractive Metallurgy (2nd ed.). Tapir Academic Press. pp. 7, 16, 186. ISBN 978-82-519-1922-7.
  93. ^ Borg, Gregor; Kärner, Katrin; Buxton, Mike; Armstrong, Richard; van der Merwe, Schalk W. (2003). "Geology of the Skorpion Supergene Zinc Deposit, Southern Namibia". Economic Geology. 98 (4): 749. doi:10.2113/98.4.749.
  94. ^ Bodsworth, Colin (1994). The Extraction and Refining of Metals. CRC Press. p. 148. ISBN 978-0-8493-4433-6.
  95. ^ Gupta, C. K.; Mukherjee, T. K. (1990). Hydrometallurgy in Extraction Processes. CRC Press. p. 62. ISBN 978-0-8493-6804-2.
  96. ^ Antrekowitsch, Jürgen; Steinlechner, Stefan; Unger, Alois; Rösler, Gernot; Pichler, Christoph; Rumpold, Rene (2014), "9. Zinc and Residue Recycling", in Worrell, Ernst; Reuter, Markus (eds.), Handbook of Recycling: State-of-the-art for Practitioners, Analysts, and Scientists
  97. ^ a b Kucha, H.; Martens, A.; Ottenburgs, R.; De Vos, W.; Viaene, W. (1996). "Primary minerals of Zn-Pb mining and metallurgical dumps and their environmental behavior at Plombières, Belgium". Environmental Geology. 27 (1): 1–15. Bibcode:1996EnGeo..27....1K. doi:10.1007/BF00770598.
  98. ^ a b c d e f Broadley, M. R.; White, P. J.; Hammond, J. P.; Zelko I.; Lux A. (2007). "Zinc in plants". New Phytologist. 173 (4): 677–702. doi:10.1111/j.1469-8137.2007.01996.x. PMID 17286818.
  99. ^ a b c d Emsley 2001, p. 504
  100. ^ Heath, Alan G. (1995). Water pollution and fish physiology. Boca Raton, Florida: CRC Press. p. 57. ISBN 978-0-87371-632-1.
  101. ^ "Derwent Estuary – Water Quality Improvement Plan for Heavy Metals". Derwent Estuary Program. June 2007. Archived from the original on March 21, 2012. Retrieved July 11, 2009.CS1 maint: BOT: original-url status unknown (link)
  102. ^ "The Zinc Works". TChange. Archived from the original on April 27, 2009. Retrieved July 11, 2009.
  103. ^ a b c "Zinc: World Mine Production (zinc content of concentrate) by Country" (PDF). 2009 Minerals Yearbook: Zinc. Washington, D.C.: United States Geological Survey. February 2010. Archived (PDF) from the original on June 8, 2011. Retrieved June 6, 2001.
  104. ^ Greenwood 1997, p. 1203
  105. ^ a b Stwertka 1998, p. 99
  106. ^ a b c d e f g Lehto 1968, p. 829
  107. ^ Bounoughaz, M.; Salhi, E.; Benzine, K.; Ghali E.; Dalard F. (2003). "A comparative study of the electrochemical behaviour of Algerian zinc and a zinc from a commercial sacrificial anode". Journal of Materials Science. 38 (6): 1139–1145. Bibcode:2003JMatS..38.1139B. doi:10.1023/A:1022824813564.
  108. ^ Besenhard, Jürgen O. (1999). Handbook of Battery Materials. Wiley-VCH. Bibcode:1999hbm..book.....B. ISBN 978-3-527-29469-5.
  109. ^ Wiaux, J.-P.; Waefler, J. -P. (1995). "Recycling zinc batteries: an economical challenge in consumer waste management". Journal of Power Sources. 57 (1–2): 61–65. Bibcode:1995JPS....57...61W. doi:10.1016/0378-7753(95)02242-2.
  110. ^ Culter, T. (1996). A design guide for rechargeable zinc-air battery technology. Southcon/96. Conference Record. p. 616. doi:10.1109/SOUTHC.1996.535134. ISBN 978-0-7803-3268-3.
  111. ^ Whartman, Jonathan; Brown, Ian. "Zinc Air Battery-Battery Hybrid for Powering Electric Scooters and Electric Buses" (PDF). The 15th International Electric Vehicle Symposium. Archived from the original on March 12, 2006. Retrieved October 8, 2008.CS1 maint: BOT: original-url status unknown (link)
  112. ^ Cooper, J. F.; Fleming, D.; Hargrove, D.; Koopman, R.; Peterman, K (1995). "A refuelable zinc/air battery for fleet electric vehicle propulsion". NASA Sti/Recon Technical Report N. Society of Automotive Engineers future transportation technology conference and exposition. 96: 11394. Bibcode:1995STIN...9611394C. OSTI 82465.
  113. ^ Xie, Z.; Liu, Q.; Chang, Z.; Zhang, X. (2013). "The developments and challenges of cerium half-cell in zinc–cerium redox flow battery for energy storage". Electrochimica Acta. 90: 695–704. doi:10.1016/j.electacta.2012.12.066.
  114. ^ Bush, Douglas Earl; Kassel, Richard (2006). The Organ: An Encyclopedia. Routledge. p. 679. ISBN 978-0-415-94174-7.
  115. ^ "Coin Specifications". United States Mint. Archived from the original on February 18, 2015. Retrieved October 8, 2008.
  116. ^ Jasinski, Stephen M. "Mineral Yearbook 1994: Zinc" (PDF). United States Geological Survey. Archived (PDF) from the original on October 29, 2008. Retrieved November 13, 2008.
  117. ^ Eastern Alloys contributors. "Diecasting Alloys". Maybrook, NY: Eastern Alloys. Archived from the original on December 25, 2008. Retrieved January 19, 2009.
  118. ^ Apelian, D.; Paliwal, M.; Herrschaft, D. C. (1981). "Casting with Zinc Alloys". Journal of Metals. 33 (11): 12–19. Bibcode:1981JOM....33k..12A. doi:10.1007/bf03339527.
  119. ^ Davies, Geoff (2003). Materials for automobile bodies. Butterworth-Heinemann. p. 157. ISBN 978-0-7506-5692-4.
  120. ^ Samans, Carl Hubert (1949). Engineering Metals and Their Alloys. Macmillan Co.
  121. ^ a b Porter, Frank (1994). "Wrought Zinc". Corrosion Resistance of Zinc and Zinc Alloys. CRC Press. pp. 6–7. ISBN 978-0-8247-9213-8.
  122. ^ McClane, Albert Jules & Gardner, Keith (1987). The Complete book of fishing: a guide to freshwater, saltwater & big-game fishing. Gallery Books. ISBN 978-0-8317-1565-6. Archived from the original on November 15, 2012. Retrieved June 26, 2012.
  123. ^ "Cast flywheel on old Magturbo trainer has been recalled since July 2000". Minoura. Archived from the original on March 23, 2013.CS1 maint: BOT: original-url status unknown (link)
  124. ^ a b c Katz, Johnathan I. (2002). The Biggest Bangs. Oxford University Press. p. 18. ISBN 978-0-19-514570-0.
  125. ^ Zhang, Xiaoge Gregory (1996). Corrosion and Electrochemistry of Zinc. Springer. p. 93. ISBN 978-0-306-45334-2.
  126. ^ Weimer, Al (May 17, 2006). "Development of Solar-powered Thermochemical Production of Hydrogen from Water" (PDF). U.S. Department of Energy. Archived (PDF) from the original on February 5, 2009. Retrieved January 10, 2009.
  127. ^ a b c Heiserman 1992, p. 124
  128. ^ Blew, Joseph Oscar (1953). "Wood preservatives" (PDF). Department of Agriculture, Forest Service, Forest Products Laboratory. hdl:1957/816. Archived (PDF) from the original on January 14, 2012.
  129. ^ Frankland, Edward (1849). "Notiz über eine neue Reihe organischer Körper, welche Metalle, Phosphor u. s. w. enthalten". Liebig's Annalen der Chemie und Pharmacie (in German). 71 (2): 213–216. doi:10.1002/jlac.18490710206.
  130. ^ a b CRC 2006, p. 4-42
  131. ^ Paschotta, Rüdiger (2008). Encyclopedia of Laser Physics and Technology. Wiley-VCH. p. 798. ISBN 978-3-527-40828-3.
  132. ^ Konstantinou, I. K.; Albanis, T. A. (2004). "Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review". Environment International. 30 (2): 235–248. doi:10.1016/S0160-4120(03)00176-4. PMID 14749112.
  133. ^ a b c Boudreaux, Kevin A. "Zinc + Sulfur". Angelo State University. Archived from the original on December 2, 2008. Retrieved October 8, 2008.
  134. ^ "Technical Information". Zinc Counters. 2008. Archived from the original on November 21, 2008. Retrieved November 29, 2008.
  135. ^ a b c Win, David Tin; Masum, Al (2003). "Weapons of Mass Destruction" (PDF). Assumption University Journal of Technology. Assumption University. 6 (4): 199. Archived (PDF) from the original on March 26, 2009. Retrieved April 6, 2009.
  136. ^ David E. Newton (1999). Chemical Elements: From Carbon to Krypton. U. X. L. /Gale. ISBN 978-0-7876-2846-8. Archived from the original on July 10, 2008. Retrieved April 6, 2009.
  137. ^ Ullmann's Agrochemicals. Wiley-Vch (COR). 2007. pp. 591–592. ISBN 978-3-527-31604-5.
  138. ^ Walker, J. C. F. (2006). Primary Wood Processing: Principles and Practice. Springer. p. 317. ISBN 978-1-4020-4392-5.
  139. ^ "ZDDP Engine Oil – The Zinc Factor". Mustang Monthly. Archived from the original on September 12, 2009. Retrieved September 19, 2009.
  140. ^ Overman, Larry E.; Carpenter, Nancy E. (2005). The Allylic Trihaloacetimidate Rearrangement. Organic Reactions. 66. pp. 1–107. doi:10.1002/0471264180.or066.01. ISBN 978-0-471-26418-7.
  141. ^ Rappoport, Zvi; Marek, Ilan (December 17, 2007). The Chemistry of Organozinc Compounds: R-Zn. ISBN 978-0-470-09337-5. Archived from the original on April 14, 2016.
  142. ^ Knochel, Paul; Jones, Philip (1999). Organozinc reagents: A practical approach. ISBN 978-0-19-850121-3. Archived from the original on April 14, 2016.
  143. ^ Herrmann, Wolfgang A. (January 2002). Synthetic Methods of Organometallic and Inorganic Chemistry: Catalysis. ISBN 978-3-13-103061-0. Archived from the original on April 14, 2016.
  144. ^ E. Frankland, Ann. 126, 109 (1863); E. Frankland, B. F. Duppa, Ann. 135, 25 (1865)
  145. ^ Kim, Jeung Gon; Walsh, Patrick J. (2006). "From Aryl Bromides to Enantioenriched Benzylic Alcohols in a Single Flask: Catalytic Asymmetric Arylation of Aldehydes". Angewandte Chemie International Edition. 45 (25): 4175–4178. doi:10.1002/anie.200600741. PMID 16721894.
  146. ^ In this one-pot reaction bromobenzene is converted to phenyllithium by reaction with 4 equivalents of n-butyllithium, then transmetalation with zinc chloride forms diphenylzinc that continues to react in an asymmetric reaction first with the MIB ligand and then with 2-naphthylaldehyde to the alcohol. In this reaction formation of diphenylzinc is accompanied by that of lithium chloride, which if unchecked, catalyses the reaction without MIB involvement to the racemic alcohol. The salt is effectively removed by chelation with tetraethylethylene diamine (TEEDA) resulting in an enantiomeric excess of 92%.
  147. ^ Łowicki, Daniel; Baś, Sebastian; Mlynarski, Jacek (2015). "Chiral zinc catalysts for asymmetric synthesis". Tetrahedron. 71 (9): 1339–1394. doi:10.1016/j.tet.2014.12.022.
  148. ^ DiSilvestro, Robert A. (2004). Handbook of Minerals as Nutritional Supplements. CRC Press. pp. 135, 155. ISBN 978-0-8493-1652-4.
  149. ^ Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life. Wolfgang Maret 2013
  150. ^ Mayo-Wilson, E; Junior, JA; Imdad, A; Dean, S; Chan, XH; Chan, ES; Jaswal, A; Bhutta, ZA (May 15, 2014). "Zinc supplementation for preventing mortality, morbidity, and growth failure in children aged 6 months to 12 years of age". The Cochrane Database of Systematic Reviews (5): CD009384. doi:10.1002/14651858.CD009384.pub2. PMID 24826920.
  151. ^ Swardfager W, Herrmann N, McIntyre RS, Mazereeuw G, Goldberger K, Cha DS, Schwartz Y, Lanctôt KL (June 2013). "Potential roles of zinc in the pathophysiology and treatment of major depressive disorder". Neurosci. Biobehav. Rev. 37 (5): 911–929. doi:10.1016/j.neubiorev.2013.03.018. PMID 23567517.
  152. ^ Bhutta, Z. A.; Bird, S. M.; Black, R. E.; Brown, K. H.; Gardner, J. M.; Hidayat, A.; Khatun, F.; Martorell, R.; et al. (2000). "Therapeutic effects of oral zinc in acute and persistent diarrhea in children in developing countries: pooled analysis of randomized controlled trials". The American Journal of Clinical Nutrition. 72 (6): 1516–22. doi:10.1093/ajcn/72.6.1516. PMID 11101480.
  153. ^ Evans JR, Lawrenson JG (2017). "Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration". Cochrane Database Syst Rev. 7: CD000254. doi:10.1002/14651858.CD000254.pub4. PMC 6483465. PMID 28756618.
  154. ^ Aydemir, T. B.; Blanchard, R. K.; Cousins, R. J. (2006). "Zinc supplementation of young men alters metallothionein, zinc transporter, and cytokine gene expression in leukocyte populations". PNAS. 103 (6): 1699–704. Bibcode:2006PNAS..103.1699A. doi:10.1073/pnas.0510407103. PMC 1413653. PMID 16434472.
  155. ^ Valko, M.; Morris, H.; Cronin, M. T. D. (2005). "Metals, Toxicity and Oxidative stress" (PDF). Current Medicinal Chemistry. 12 (10): 1161–208. doi:10.2174/0929867053764635. PMID 15892631. Archived from the original (PDF) on August 8, 2017.
  156. ^ Venkatratnam, Abhishek; Nathan Lents (July 1, 2011). "Zinc Reduces the Detection of Cocaine, Methamphetamine, and THC by ELISA Urine Testing". Journal of Analytical Toxicology. 35 (6): 333–340. doi:10.1093/anatox/35.6.333. PMID 21740689.
  157. ^ Hosie AM, Dunne EL, Harvey RJ, Smart TG (2003). "Zinc-mediated inhibition of GABA(A) receptors: discrete binding sites underlie subtype specificity". Nat. Neurosci. 6 (4): 362–9. doi:10.1038/nn1030. PMID 12640458.
  158. ^ a b c d e f "Zinc – Fact Sheet for Health Professionals". Office of Dietary Supplements, US National Institutes of Health. February 11, 2016. Retrieved January 7, 2018.
  159. ^ a b c Singh M, Das RR (June 2013). "Zinc for the common cold". The Cochrane Database of Systematic Reviews (6): CD001364. doi:10.1002/14651858.CD001364.pub4. PMID 23775705. (Retracted, see doi:10.1002/14651858.cd001364.pub5. If this is an intentional citation to a retracted paper, please replace {{Retracted}} with {{Retracted|intentional=yes}}.)
  160. ^ "Common Cold and Runny Nose". United States Centers for Disease Control and Prevention. September 26, 2017. Retrieved January 7, 2018.
  161. ^ Roldán, S.; Winkel, E. G.; Herrera, D.; Sanz, M.; Van Winkelhoff, A. J. (2003). "The effects of a new mouthrinse containing chlorhexidine, cetylpyridinium chloride and zinc lactate on the microflora of oral halitosis patients: a dual-centre, double-blind placebo-controlled study". Journal of Clinical Periodontology. 30 (5): 427–434. doi:10.1034/j.1600-051X.2003.20004.x. PMID 12716335.
  162. ^ Marks, R.; Pearse, A. D.; Walker, A. P. (1985). "The effects of a shampoo containing zinc pyrithione on the control of dandruff". British Journal of Dermatology. 112 (4): 415–422. doi:10.1111/j.1365-2133.1985.tb02314.x. PMID 3158327.
  163. ^ Maret, Wolfgang (2013). "Chapter 12. Zinc and Human Disease". In Astrid Sigel; Helmut Sigel; Roland K. O. Sigel (eds.). Interrelations between Essential Metal Ions and Human Diseases. Metal Ions in Life Sciences. 13. Springer. pp. 389–414. doi:10.1007/978-94-007-7500-8_12. ISBN 978-94-007-7499-5. PMID 24470098.
  164. ^ a b c d e f g Prakash A, Bharti K, Majeed AB (April 2015). "Zinc: indications in brain disorders". Fundam Clin Pharmacol. 29 (2): 131–149. doi:10.1111/fcp.12110. PMID 25659970.
  165. ^ a b c d e Cherasse Y, Urade Y (November 2017). "Dietary Zinc Acts as a Sleep Modulator". International Journal of Molecular Sciences. 18 (11): 2334. doi:10.3390/ijms18112334. PMC 5713303. PMID 29113075. Zinc is the second most abundant trace metal in the human body, and is essential for many biological processes.  ... The trace metal zinc is an essential cofactor for more than 300 enzymes and 1000 transcription factors [16]. ... In the central nervous system, zinc is the second most abundant trace metal and is involved in many processes. In addition to its role in enzymatic activity, it also plays a major role in cell signaling and modulation of neuronal activity.
  166. ^ Prasad A. S. (2008). "Zinc in Human Health: Effect of Zinc on Immune Cells". Mol. Med. 14 (5–6): 353–7. doi:10.2119/2008-00033.Prasad. PMC 2277319. PMID 18385818.
  167. ^ Zinc's role in microorganisms is particularly reviewed in: Sugarman B (1983). "Zinc and infection". Reviews of Infectious Diseases. 5 (1): 137–47. doi:10.1093/clinids/5.1.137. PMID 6338570.
  168. ^ Cotton 1999, pp. 625–629
  169. ^ Plum, Laura; Rink, Lothar; Haase, Hajo (2010). "The Essential Toxin: Impact of Zinc on Human Health". Int J Environ Res Public Health. 7 (4): 1342–1365. doi:10.3390/ijerph7041342. PMC 2872358. PMID 20617034.