این یک مقالهٔ خوب است. برای اطلاعات بیشتر اینجا را کلیک کنید.

هیدروژن

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو
فارسیEnglish

- → هیدروژنهلیم
-

H

Li
ظاهر
گاز بی‌رنگ با درخشش بنفش در حالت پلاسمایی


خط‌های طیفی هیدروژن
ویژگی‌های کلی
نام، نماد، عدد هیدروژن، H، ۱
تلفظ به انگلیسی ‎/ˈhdrn/‎[۱]
نام گروهی برای عناصر مشابه نافلزات
گروه، دوره، بلوک ۱۱, s
جرم اتمی استاندارد ۱٫۰۰۷۹۴ g·mol−۱
آرایش الکترونی 1s۱
الکترون به لایه ۱
ویژگی‌های فیزیکی
رنگ بی رنگ
حالت گاز
چگالی (0 °C, 101.325 kPa)
۰٫۰۸۹۸۸ g/L
چگالی مایع در نقطه ذوب ۰٫۰۷ (۰٫۰۷۶۳ جامد)[۲] g·cm−۳
چگالی مایع در نقطه جوش ۰٫۰۷۰۹۹ g·cm−۳
نقطه ذوب ۱۴٫۰۱ K, -۲۵۹٫۱۴ °C, -۴۳۴٫۴۵ °F
نقطه جوش ۲۰٫۲۸ K, -۲۵۲٫۸۷ °C, -۴۲۳٫۱۷ °F
نقطه سه‌گانه 13.8033 K (-259°C), ۷٫۰۴۲ kPa
نقطه بحرانی ۳۲٫۹۷ K, ۱٫۲۹۳ MPa
گرمای هم‌جوشی (H۲) ۰٫۱۱۷ kJ·mol−1
گرمای تبخیر (H۲) ۰٫۹۰۴ kJ·mol−1
ظرفیت گرمایی (H۲) ۲۸٫۸۳۶ J·mol−۱·K−۱
فشار بخار
فشار (پاسکال) ۱ ۱۰ ۱۰۰ ۱k ۱۰k ۱۰۰k
دما (کلوین) ۱۵ ۲۰
ویژگی‌های اتمی
وضعیت اکسید شدن ۱, -۱
(آمفوتر)
الکترونگاتیوی ۲٫۲۰ (مقیاس پاولینگ)
شعاع کووالانسی ۳۱±۵ pm
شعاع واندروالانسی ۱۲۰ pm
متفرقه
ساختار کریستالی دستگاه بلوری شش گوشه
مغناطیس دیامغناطیس[۳]
رسانایی گرمایی (300 K) ۰٫۱۸۰۵ W·m−1·K−1
سرعت صوت در گاز ۲۷ درجۀ سانتیگراد، برابر با ۱۳۱۰ m/s
عدد کاس ۱۳۳۳-۷۴-۰
پایدارترین ایزوتوپ‌ها
مقاله اصلی ایزوتوپ‌های هیدروژن
ایزوتوپ NA نیم‌عمر DM DE (MeV) DP
۱H ٪۹۹٫۹۸۵ ۱H ایزوتوپ پایدار است که ۰ نوترون دارد
۲H ٪۰٫۰۱۵ ۲H ایزوتوپ پایدار است که ۱ نوترون دارد
۳H trace ۱۲٫۳۲ y β− ۰٫۰۱۸۶۱ ۳He

هیدروژن یا آبزا (به انگلیسی: Hydrogen)، با نماد شیمیایی H نام یک عنصر شیمیایی در جدول تناوبی با عدد اتمی ۱ است.[۴] وزن اتمی این عنصر ۱٫۰۰۷۹۴ u است. هیدروژن سبک‌ترین عنصر در جهان است و بیش از دیگر عنصرها می‌توان آن را به صورت آزاد در طبیعت پیدا کرد. می‌توان گفت نزدیک به ۷۵٪ از جرم جهان از هیدروژن ساخته شده‌است.[۵] برخی جرم‌های آسمانی مانند کوتولهٔ سفید یا ستاره‌های نوترونی از حالت پلاسمای هیدروژن ساخته شده‌اند؛ ولی در طبیعت روی زمین به سختی می‌توان تک اتم هیدروژن را پیدا کرد.

ایزوتوپی از هیدروژن که بیشتر دیده می‌شود، پروتیوم نام دارد (بیشتر از نماد آن ۱H یاد می‌شود تا نام آن) این ایزوتوپ، یک پروتون دارد و نوترون ندارد و در ترکیب‌های یونی می‌تواند بار منفی (آنیون هیدرید با نماد -H) به خود بگیرد. همچنین بار مثبت آن نیز به صورت +H یافت می‌شود که در این صورت تنها از یک پروتون ساده ساخته شده‌است. البته در حقیقت بدست آوردن کاتیون هیدروژن در ترکیب‌های پیچیده تری ممکن می‌شود.

عنصر هیدروژن با بیشتر عنصرها می‌تواند ترکیب شود و می‌توان آن را در آب، تمامی ترکیب‌های آلی و موجودات زنده پیدا کرد. این عنصر در واکنش‌های اسید و قلیایی در بسیاری واکنش‌ها با داد و ستد پروتون میان مادهٔ حل شدنی و حلال نقش مهمی از خود نشان می‌دهد. هیدروژن به عنوان ساده ترین عنصر شناخته شده در دانش نظری بسیار کمک کار بوده‌است، برای نمونه از آن در حل معادلهٔ شرودینگر یا در مطالعهٔ انرژی و پیوند و در نهایت پیشرفت دانش مکانیک کوانتوم نقش کلیدی داشته‌است.

گاز هیدروژن (با نماد H۲) نخستین بار در سدهٔ ۱۸ میلادی به صورت آزمایشگاهی از واکنش اسیدهای قوی با فلزهایی مانند روی بدست آمد (۱۷۶۶ تا ۱۷۸۱). هنری کاوندیش نخستین کسی بود که دریافت گاز هیدروژن برای خود، یک مادهٔ جداگانه‌است.[۶] و از سوختن آن آب پدید می‌آید. دلیل نامگذاری هیدروژن هم همین ویژگی آن است به معنی آب‌ساز در زبان یونانی. در شرایط استاندارد دما و فشار هیدروژن عنصری است بی‌رنگ، بی‌بو، بی‌مزه، نافلز، غیرسمّی یک ظرفیتی، گازی دو اتمی، بسیار آتش‌گیر و با فرمول شیمیایی H۲.

در صنعت برای تولید هیدروژن از گاز طبیعی بهره می‌برند و کمتر به الکترولیز آب روی می‌آورند.[۷] بیشتر هیدروژن تولیدی در نزدیکی محل تولید، در فرایند سوخت سنگواره‌ای (مانند کراکینگ) و تولید آمونیاک برای ساخت کود شیمیایی، مورد بهره‌برداری قرار می‌گیرد. امروزه دانشمندان در تلاش اند تا جلبک‌های سبز را در تولید هیدروژن بکار ببندند.

در دانش فلزشناسی، تردی هیدروژنی بسیاری فلزها مورد بررسی است[۸] تا با کمک آن در طراحی لوله‌ها و مخزن‌ها دگرگونی‌هایی پدید آورند.[۹]

ویژگی‌ها[ویرایش]

سوختن[ویرایش]

A black cup-like object hanging by its bottom with blue glow coming out of its opening.
موتور اصلی شاتل فضایی که در آن، هیدروژن و اکسیژن به طور کامل می‌سوزند و شعله نا مریی تولید می‌کنند چون نور مریی تولید نمی‌شود.

گاز هیدروژن (دی‌هیدروژن یا مولکول هیدروژن)[۱۰] بسیار آتش‌گیر است و می‌تواند در هوا و در بازهٔ گسترده‌ای از غلظت، میان ۴٪ تا ۷۵٪ حجمی، بسوزد.[۱۱] آنتالپی استاندارد سوختن برای هیدروژن ۲۸۶ کیلوژول بر مول است:[۱۲]

2 H۲(g) + O۲(g) → 2 H۲O(l) + 572 kJ (286 kJ/mol)

اگر هیدروژن با هوا آمیخته شود و غلظت آن میان ۴ تا ۷۴ درصد باشد یا آمیزه‌ای از هیدروژن و کلر با درصد ۵ تا ۹۵ درصد می‌تواند ماده‌ای انفجاری را پدید آورد. این آمیزه‌های گازی با یک جرقه، کمی گرما یا نور خورشید بی درنگ منفجر می‌شود. دمای خودآتشگیری هیدروژن، دمایی که هیدروژن در آن خود به خود در هوا آتش می‌گیرد، ۵۰۰ درجهٔ سانتیگراد یا ۹۳۲ فارنهایت است.[۱۳] از شعلهٔ سوختن هیدروژن-اکسیژن خالص پرتوهای فرابنفش تابیده می‌شود که برای چشم ناپیدایند. مانند شعله‌ای که در موتور اصلی شاتل فضایی در اثر سوختن هیدروژن-اکسیژن پدید می‌آید. برای ردیابی نشتی در هیدروژن در حال سوختن نیاز به ابزارهای ردیابی شعله داریم، چنین نشتی‌هایی می‌توانند بسیار خطرناک باشند. فاجعهٔ آتش‌گیری کشتی هوایی هیندنبرگ و سقوط آن یک نمونهٔ مصیبت‌بار از سوختن هیدروژن است دلیل این آتش‌سوزی مورد بررسی است اما شعله و آتشی که از بیرون دیده شد به دلیل سوختن دیگر مواد روی این کشتی هوایی بود.[۱۴] چون هیدروژن سبک است و در هوا شناور می‌شود شعلهٔ آتش هیدروژن خیلی زود بالا رفت و نسبت به سوخت‌های هیدروکربنی خرابی کمتری به بار آورد. دو-سوم سرنشینان این فضاپیما از آتش‌سوزی جان سالم به در بردند. بیشتر کشته‌ها به دلیل سقوط یا آتش‌گیری سوخت دیزل بود.[۱۵]

H۲ می‌تواند با هر عنصر اکسید شده‌ای وارد واکنش شود همچنین می‌تواند در دمای اتاق به صورت خود به خودی و البته خطرآفرین با کلر و فلوئور واکنش دهد و هالیدهای هیدروژن، هیدروژن کلرید و هیدروژن فلوئورید را پدید آورد. این هالیدها خود اسیدهای خطرناکی اند.[۱۶]

تراز انرژی الکترونی[ویرایش]

Drawing of a light-gray large sphere with a cut off quarter and a black small sphere and numbers 1.7x10−5 illustrating their relative diameters.
نگاره‌ای از اتم هیدروژن که در آن بزرگی پروتون مرکزی و قطر اتم، هر دو نشان داده شده‌است. قطر اتم تقریباً دو برابر شعاع بدست آمده توسط مدل بور است. (مقیاس این نگاره دقیق نیست)

تراز انرژی الکترون در اتم هیدروژن در پایین ترین سطح خود یا حالت صفر، ۱۳٫۶- الکترون‌ولت است؛ که برابر است با یک فوتون فرابنفش با طول موجی نزدیک به ۹۲ نانومتر.[۱۷]

تراز انرژی هیدروژن را می‌توان با کمک مدل اتمی بور، نزدیک به دقیق بدست آورد. در مدل بور فرض بر این است که الکترون‌ها در اتم مانند زمین که به گِرد خورشید می‌گردد، به گِرد پروتون (هستهٔ اتم) می‌چرخند. البته نیروی الکترومغناطیسی میان الکترون‌ها و پروتون‌ها ربایش پدید می‌آورد مانند سیاره‌ها که به خاطر نیروی گرانش سوی ستاره‌ها رباییده می‌شوند. در دوران آغازین مکانیک کوانتوم، چنین انگار شده بود که تکانهٔ زاویه‌ای کمیتی گسسته‌است درنتیجه الکترون در مدل بور اجازه داشت در فاصله‌های مشخصی از پروتون جای گیرد و درنتیجه انرژی آن هم با مقدارهای مشخصی برابر می‌شد.[۱۸]

برای دریافت توضیح دقیق تری دربارهٔ اتم هیدروژن باید به رفتار آن در مکانیک کوانتوم نگاه کرد. با توجه به معادلهٔ شرودینگر و فرمول انتگرالی فاینمن می‌توان رفتار احتمالاتی الکترون به گِرد پروتون را محاسبه کرد.[۱۹] برپایهٔ مکانیک کوانتوم، الکترون در یک اتم هیدروژن در حالت تراز صفر، هیچگونه تکانهٔ زاویه‌ای ندارد، تفاوت میان همانندسازی گردش الکترون‌ها به منظومهٔ خورشیدی و آنچه در عمل رخ می‌دهد اینجا است.

ساختار مولکولی[ویرایش]

Two bright circles on dark background, both contain numerous thin black lines inside.
نخستین نشانه‌های دیده شده در هیدروژن مایع در اتاقک حباب در بواترن

دو اسپین متفاوت برای همپارهای مولکول دو اتمی هیدروژن وجود دارد که در آن، تفاوت در اسپین هسته‌ها نسبت به یکدیگر است.[۲۰] در ساختار راست‌هیدروژن (اورتوهیدروژن) اسپین دو پروتون هم‌سو است و با عدد کوانتومی اسپین مولکول ۱ (½+½) یک حالت سه‌گانه می‌سازد. در پاراهیدروژن اسپین‌ها ناهم‌سو است درنتیجه با عدد کوانتومی اسپین ۰ (½–½) یک یگانه را می‌سازد. در دما و فشار استاندارد، ساختار ۲۵٪ از گاز هیدروژن به صورت پارا و ۷۵٪ آن به صورت راست یا اورتو است که به آن «ساختار معمولی» هم گفته می‌شود.[۲۱] نسبت تعادلی هیدروژن پارا به راست (اورتو) به دمای آن بستگی دارد اما چون ساختار راست یک حالت برانگیخته است و تراز انرژی بالاتری نسبت به پارا دارد، ناپایدار است و نمی‌توان آن را پالایید. در دمای بسیار پایین می‌توان گفت حالت تعادل تنها از پارا ساخته شده‌است. ویژگی‌های گرمایی پاراهیدروژن پالاییده در حالت‌های گازی و مایع، با ساختار معمولی بسیار متفاوت است و این از آنجا است که ظرفیت گرمایی گردشی آن‌ها متفاوت است.[۲۲] تفاوت‌های پارا و راست در مولکول‌های دیگری که هیدروژن دارند یا در گروه‌های عاملی نیز دیده می‌شود. برای نمونه آب و متیلن چنین اند اما این تفاوت در ویژگی‌های گرمایی آن‌ها بسیار ناچیز است.[۲۳] برای نمونه نقطهٔ ذوب و جوش پاراهیدروژن ۰٫۱ کلوین از هیدروژن راست (اورتو) پایین‌تر است.

با افزایش دما، تغییر ویژگی‌های هیدروژن از پارا به راست (اورتو) افزایش می‌یابد و پس از اندکی H۲ فشرده سرشار از ساختار پُرانرژی اورتو می‌شود، ساختاری که با کندی بسیار به ساختار پارا باز می‌گردد.[۲۴] نسبت اورتو/پارا در هیدروژن فشرده، نکتهٔ کلیدی در آماده‌سازی و ذخیرهٔ هیدروژن مایع است که باید آن را در نظر داشت. فرایند دگرگونی هیدروژن از راست (اورتو) به پارا گرمازا است و آنقدر گرما تولید می‌کند که باعث بخار شدن بخشی از هیدروژن مایع شود. در این فرایند از آسان‌گرهایی مانند زغال فعال، اکسید آهن(III)، آزبست پلاتینی، برخی فلزهای کمیاب، ترکیب‌های اورانیوم، اکسید کروم(III) و برخی ترکیب‌های نیکل کمک گرفته می‌شود.[۲۵] این آسان‌گرها هنگام خنک سازی هیدروژن افزوده می‌شوند.[۲۶]

حالت‌های گوناگون[ویرایش]

هیدروژن در فاز فلزی، یک ماده تباهیده است، در این فاز، هیدروژن به شکل یک رسانای الکتریکی رفتار می‌کند. این فاز به صورت نظری در سال ۱۹۳۵ پیشبینی شد[۲۷] اما هنوز به روشنی دیده نشده است و همچنان این احتمال وجود دارد که فازهای جدیدی از هیدروژن جامد، در شرایط استاتیک، پیدا شود.[۲۸][۲۹]

ترکیب‌ها[ویرایش]

نگاه کنید به: رده:ترکیب‌های هیدروژن

کووالانت و ترکیب‌های آلی[ویرایش]

هیدروژن از سبک ترین گازها است و می‌تواند با بیشتر عنصرها وارد واکنش شود در حالی که در حالت مولکولی، H۲ در شرایط استاندارد چندان واکنش پذیر نیست. هیدروژن الکترونگاتیوی ۲٫۲ دارد و می‌تواند با عنصرهایی که الکترونگاتیوی بیشتری دارند مانند هالوژن‌ها (مانند F، Ca، Br و I) یا اکسیژن وارد واکنش شود. در تمامی این واکنش‌ها هیدروژن بار مثبت به خود می‌گیرد.[۳۰] هیدروژن در ترکیب با فلوئور، اکسیژن یا نیتروژن پیوندی غیرکووالانسی با توانمندی میانگین به نام پیوند هیدروژنی برقرار می‌کند. این پیوند در پایداری بسیاری از مولکول‌های زیستی نقش اساسی دارد.[۳۱][۳۲] همچنین هیدروژن این توان را دارد که با عنصرهایی با الکترونگاتیوی کمتر مانند فلزها و شبه‌فلزها وارد واکنش شود. در این صورت هیدروژن بار منفی به خود می‌گیرد. این گونه ترکیب‌ها بیشتر با نام هیدرید شناخته می‌شوند.[۳۳]

هیدروژن می‌تواند رشته‌های ترکیب‌های گسترده‌ای را با کربن پدید آورد. این ترکیب‌ها، هیدروکربن نام دارند. بیش از این، رشته ترکیب‌های هیدروژن با ناجوراتم‌ها هم وجود دارد که از هیدروکربن‌ها هم گسترده‌تر است و به دلیل ارتباطی که میان آن‌ها و اندام‌های زنده وجود دارد به آن‌ها ترکیب‌های آلی گفته می‌شود.[۳۴] و دانش بررسی ویژگی‌های چنین ترکیب‌هایی شیمی آلی نام دارد.[۳۵] و چنان که این بررسی در زمینهٔ سازوکار اندامک‌های زنده باشد زیست‌شیمی خوانده می‌شود.[۳۶] البته تعریف دیگری هم وجود دارد: برخی بر این باور اند که هر ترکیبی که کربن داشته باشد ترکیب آلی نام دارد، هرچند، بیشتر این ترکیب‌های کربنی دارای هیدروژن اند.[۳۴] امروزه میلیون‌ها هیدروکربن در جهان شناخته شده‌است که برای ساخت بسیاری از آن‌ها از فرایندهای پیچیده‌ای بهره برده شده‌است.

هیدریدها[ویرایش]

بیشتر ترکیب‌های هیدروژن، هیدرید نام دارند. عبارت هیدرید نشان می‌دهد که در آن ترکیب اتم هیدروژن بار منفی یا آنیون به خود گرفته و به صورت -H نمایش داده می‌شود. این حالت زمانی پیش می‌آید که هیدروژن با عنصرهایی که دوست دارند الکترون از دست دهند، ترکیب شود. این مطلب نخستین بار توسط گیلبرت لوویس در سال ۱۹۱۶ برای هیدریدهای گروه یک و دو پیشنهاد شد؛ پس از آن مورئر، در سال ۱۹۲۰ با کمک الکترولیز لیتیم هیدرید مذاب، درستی این پدیده را نشان داد. همچنین مقدار هیدروژن در آنُد با کمک معادلات استوکیومتری قابل شمارش بود.[۳۷] برای هیدرید عنصرهایی غیر از فلزهای گروه یک و دو، با در نظر گرفتن الکترون‌دوستی پایین هیدروژن، وضعیت کمی متفاوت است. همچنین ترکیب BeH۲ در گروه دو، یک پلیمری و استثنا است. در لیتیم آلومینیوم هیدرید، آنیون AlH
۴
مرکزهای هیدریدی را با خود می‌برد در حالی که به سختی با Al(III) در پیوند اند.

هیدریدها تقریباً با همهٔ عنصرهای گروه اصلی ساخته می‌شوند ولی شمار و آمیزش آن‌ها متفاوت است. برای نمونه بیش از ۱۰۰ هیدرید بور دوتایی شناخته شده‌است درحالی که تنها یک هیدرید آلومینیم دوتایی داریم[۳۸] و هیدرید ایندیم دوتایی هنوز شناخته نشده‌است هرچند که ترکیب‌های پیچیده‌تر وجود دارند.[۳۹]

در شیمی معدنی، هیدریدها به عنوان یک پل لیگاندی یا لیگاند واسطه هم کاربرد دارند؛ به این ترتیب که میان دو مرکز فلزی در ترکیب‌های کمپلس ارتباط برقرار می‌کنند. این کاربرد هیبرید بیشتر در میان عنصرهای گروه ۱۳ بویژه در هیدریدهای بور، کمپلکس‌های آلومینیم و کربوران‌های خوشه‌دار دیده می‌شود.[۴۰]

پروتون‌ها و اسیدها[ویرایش]

آگاهی بیشتر در واکنش اسید و باز

هیدروژن با اکسید شدن الکترون خود را از دست می‌دهد درنتیجه H+ بدست می‌آید که تنها دارای یک هسته‌است که خود آن هسته تنها یک پروتون دارد. به همین دلیل H+ را پروتون نیز می‌نامند. این ویژگی در بحث واکنش‌های اسیدها در خور توجه‌است. برپایهٔ نظریهٔ اسید و باز برونستد-لاری اسیدها دهندهٔ پروتون و قلیاها گیرندهٔ پروتون اند.

پروتون یا H+ را نمی‌توان به صورت تکی در یک محلول یا بلور یونی پیدا کرد، این به دلیل ربایش بسیار بالای آن به الکترون اتم‌ها یا مولکول‌های دیگر است. مگر در دماهای بسیار بالای مرتبط با حالت پلاسما. چنین پروتون‌هایی را نمی‌توان از ابر الکترونی اتم یا مولکول جدا کرد بلکه چسبیده به آن‌ها باقی می‌ماند. البته گاهی از عبارت «پروتون» برای اشاره به هیدروژن با بار مثبت یا کاتیون که در پیوند با دیگر مواد است هم استفاده می‌شود.

ایزوتوپ‌ها[ویرایش]

پروتیوم، معمولی‌ترین ایزوتوپ هیدروژن فاقد نوترون است گرچه دو ایزوتوپ دیگر به نام دوتریوم دارای یک نوترون و تریتیوم رادیو اکتیو دارای دو نوترون، وجود دارند. دو ایزوتوپ پایدار هیدروژن پروتیوم(H-1) و دیتریوم(D، H-۲) هستند. دیتریوم شامل ۰٫۰۱۸۴-۰٫۰۰۸۲٪ درصد کل هیدروژن است (آیوپاک)؛ نسبتهای دیتریوم به پروتیوم با توجه به استاندارد مرجع آب VSMOW اعلام می‌گردد. تریتیوم(T یا H-3)، یک ایزوتوپ پرتوزا (رادیواکتیو) دارای یک پرتون و دو نوترون است. هیدروژن تنها عنصری است که ایزوتوپ‌های آن اسمی مختلفی دارند.[۴۱]

پیشینه[ویرایش]

شناسایی هیدروژن و دست‌آوردهای پس از آن[ویرایش]

در سال ۱۶۷۱، رابرت بویل دریافت و توضیح داد که از واکنش میان آهن و یک اسید رقیق باعث تولید گاز هیدروژن می‌شود.[۴۲][۴۳] پس از او در سال ۱۷۶۶ هنری کاوندیش نخستین کسی بود که گاز هیدروژن را به عنوان یک مادهٔ جداگانه شناخت. ماده‌ای که نتیجهٔ واکنش شیمیایی میان فلز و اسید بوده و البته آتش‌گیر نیز بوده‌است برای همین وی نام «هوای آتش‌گیر» را بر آن نهاد. او گمان برد «هوای آتش‌گیر» در حقیقت همان مادهٔ افسانه‌ای «آتش‌دوست» یا phlogiston است.[۴۴][۴۵] آزمایش‌های پس از آن در سال ۱۷۸۱ نشان داد که از سوختن این گاز، آب پدید می‌آید. کاوندیش به عنوان کسی که برای نخستین بار هیدروژن را به عنوان یک عنصر دانست، شناخته می‌شود.[۴۶][۴۷] در سال ۱۷۸۳ لاوازیه و لاپلاس هنگامی که یافته‌های کاوندیش را آزمودند و دیدند که از سوختن این گاز، آب پدید می‌آید به پیشنهاد لاوازیه نام هیدروژن را برای آن برگزیدند.[۴۷] هیدروژن به معنی سازندهٔ آب یا آبزا، از واژهٔ یونانی ὕδρω یا hydro به معنی «آب» و γενῆς یا genes به معنی «سازنده» ساخته شده‌است.[۴۸]

لاوازیه در آزمایش‌های سرشناس خود دربارهٔ بقای ماده، از واکنش میان بخار آب با فلز آهنی که در آتش به شدت داغ و دچار تابش شده بود، به تولید هیدروژن دست یافت. اکسید کردن آهن در یک فرایند بدون هوا با کمک پروتون‌های آب در دمای بسیار بالا از واکنش‌های زیر پیروی می‌کند:

   Fe +    H۲O → FeO + H۲
2 Fe + 3 H۲O → Fe۲O۳ + 3 H۲
3 Fe + 4 H۲O → Fe۳O۴ + 4 H۲

زیرکونیم و بسیاری دیگر از فلزها اگر همین فرایند را با آب داشته باشند باز به تولید هیدروژن می‌رسند.

نخستین بار در سال ۱۸۹۸ جیمز دیوئر توانست هیدروژن را در فرایند سرمایش بازسازانه و با کمک چندی از ابتکارهای خودش مانند فلاسک خلاء مایع کند.[۴۷] او یک سال بعد توانست هیدروژن را جامد کند.[۴۷] در دسامبر ۱۹۳۱، هارولد یوری توانست دوتریوم و پس از او در ۱۹۳۴ ارنست رادرفورد، مارک اولیفانت و پاول هارتک توانستند تریتیوم را بدست آورند.[۴۶] در ادامه، آب سنگین که به جای هیدروژن معمولی از دوتریوم ساخته شده را گروه هارولد یوری در ۱۹۳۲ بدست آوردند.[۴۷] در سال ۱۸۰۶ فرانسوآ ایزاک دو ریواز نخستین ماشین درون‌سوز با سوخت آمیزه‌ای از هیدروژن و اکسیژن را ساخت و ادوارد دانیل کلارک لوله‌های دم دهندهٔ هیدروژن را در سال ۱۸۱۹ درست کرد. روشنایی کلسیم و لامپ دوبراینر هم نخستین بار در سال ۱۸۲۳ درست شدند.[۴۷]

نخستین نسل کشتی هوایی در آسمان

نخستین بادکنک هیدروژنی را ژاک شارل در ۱۷۸۳ پدید آورد،[۴۷] اما آنری ژیفار نخستین کسی بود که توانست از این بادکنک‌های هیدروژنی یک وسیلهٔ جابجایی در آسمان بسازد و به اندازهٔ کافی در هوا بالا رود. او در سال ۱۸۵۲ به این کامیابی دست یافت.[۴۷] پس از آن فردیناند زپلین آلمانی پیشنهاد ساخت یک کشتی پرنده را داد و در سال ۱۹۰۰ نخستین زپلین در آسمان به پرواز در آمد.[۴۷] با آمدن این ابزار مسافرت‌های هوایی ممکن شد تا آنجا که از سال ۱۹۱۰ تا ۱۹۱۴ که جنگ جهانی اول آغاز شد، ۳۵،۰۰۰ مسافر بدون هیچ حادثهٔ جدی در آسمان جابجا شدند. در طول جنگ هم این ابزار به عنوان دیده بان یا بمب افکن کاربرد داشت.

کشتی‌های هوایی بریتانیایی آر۳۴ که در سال ۱۹۱۹ ساخته شد می‌توانست عرض اقیانوس اطلس را بدون توقف طی کند. پس از آن در دههٔ ۱۹۲۰ پروازهای مرتب برای مسافرین فراهم شد. با شناسایی گاز هلیم توسط آمریکایی‌ها امید آن بود که این مسافرت‌ها از امنیت بیشتری برخوردار شوند. اما دولت آمریکا نپذیرفت که هلیوم را برای این هدف بفروشد. برای همین به ناچار این کشتی‌های فضایی همچنان با هیدروژن کار می‌کردند. کشتی هوایی هیندنبورگ که در ۶ مه ۱۹۳۷ در آسمان نیوجرسی آتش گرفت هم با گاز H۲ پرواز می‌کرد.[۴۷] این رویداد به صورت زنده از رادیو پخش می‌شد و از آن فیلم گرفته می‌شد. گمان آن می‌رفت که آتش‌سوزی به دلیل نشت گاز هیدروژن رخ داده‌است اما چندی بعد بررسی‌ها نشان داد که از جرقهٔ میان تارهای آلومینیمی در اثر الکتریسیتهٔ ساکن آتش‌سوزی روی داده‌است اما هر چه بود این رویداد باعث از بین رفتن اعتماد عمومی نسبت به ابزارهای پروازی به کمک گاز هیدروژن شد.

در سال ۱۹۷۷ برای نخستین بار از پیل‌های نیکل‌هیدروژن در سامانهٔ ردیابی ماهواره‌ای نیروی دریایی بهره برده شد.[۴۹] برای نمونه در ایستگاه فضایی بین‌المللی،[۵۰] اودیسهٔ مریخ[۵۱] و نقشه‌بردار سراسر مریخ،[۵۲] پیل‌های نیکل‌هیدروژن بکار رفته‌است. تلسکوپ فضایی هابل هم در بخش‌هایی از گردشش که فضا تاریک است از نیرو پیل‌های نیکل‌هیدروژن بهره می‌برد. اما این پیل‌ها در مه سال ۲۰۰۹ جایگزین شدند.

نقش هیدروژن در گسترش نظریهٔ کوانتوم[ویرایش]

طیف مرئی تابیده شده از هیدروژن، چهار خط مرئی سری بالمر.

ساختار اتمی نسبتاً سادهٔ هیدروژن یعنی اینکه تنها دارای یک پروتون و یک الکترون بود و افزون بر آن، طیف نوری که از هیدروژن تابیده می‌شد یا توسط هیدروژن دریافت می‌شد، همگی در گسترش نظریهٔ ساختار اتم بسیار کمک‌کار بودند.[۵۳] سادگی ساختار مولکول هیدروژن و کاتیون H۲+ کمک کرد تا شناخت بهتری از پیوندهای شیمیایی بدست آید. این دستاورد اندکی پس از بیان نظریهٔ رفتار مکانیک کوانتوم اتم هیدروژن در میانهٔ دههٔ ۱۹۲۰، بدست آمد.

یکی از اثرها و ویژگی‌های کوانتومی که به خوبی دیده شد (اما در آن هنگامه فهمیده نشد) مشاهدات ماکسول در زمینهٔ هیدروژن بود که نیم قرن پیش از رسیدن به نظریهٔ مکانیک کوانتوم روی داد. ماکسول مشاهده کرد که ظرفیت گرمایی H۲ در دماهای زیر دمای اتاق به سرعت از انرژی گرمایی گازهای دو اتمی دور و به تک اتمی‌ها نزدیک می‌شود. برپایهٔ نظریهٔ کوانتوم این رفتار به فاصلهٔ میان ترازهای انرژی دورانی باز می‌گردد که بویژه در H۲ به دلیل جرم کوچک آن، با هم فاصلهٔ زیادی دارند این ترازهای بافاصله، از پخش شدن یکنواخت انرژی گرمایی در حرکت دورانی هیدروژن در دمای پایین پیشگیری می‌کند. گازهای دو اتمی که از اتم‌های سنگین تری ساخته شده‌اند دارای چنین ترازهای با فاصلهٔ انرژی نیستند و نمی‌توانند چنین رفتاری را از خود نشان دهند.[۵۴]

پیدایش[ویرایش]

ان‌جی‌سی ۶۰۴ یک ناحیهٔ گسترده از هیدروژن یونی شده از کهکشان سه تکه

هیدروژن فراوانترین عنصر در جهان است تا آنجا که ۷۵٪ جرم مواد طبیعی از این عنصر ساخته شده و بیش از ۹۰٪ اتم‌های سازندهٔ آنها اتم هیدروژن است و البته گمان آن می‌رود که جرم‌های ناشناخته مانند مادهٔ تاریک و انرژی تاریک هم چنین ساختاری داشته باشند.[۵۵] هیدروژن و ایزوتوپ‌های آن به فراوانی در ستاره‌ها و سیاره‌های غول‌های گازی یافت می‌شوند. هیدروژن از راه واکنش‌های پروتون-پروتون و چرخهٔ سی‌ان‌او در همجوشی هسته‌ای نقشی کلیدی در زاییده شدن، درخشان شدن و پُرتوان شدن یک ستاره بازی می‌کند چون ابرهای مولکول هیدروژن رابطه‌ای مستقیم با زایش یک ستاره دارند.[۵۶]

در سراسر کیهان، هیدروژن بیشتر در حالت اتمی یا پلاسمایی دیده می‌شود. در حالت پلاسما ویژگی‌های ماده کاملاً متفاوت از ویژگی‌های آن در حالت مولکولی است چرا که در این وضعیت الکترون و پروتون دیگر در بند یکدیگر نیستند درنتیجه رسانش الکتریکی و تابش بسیار بالایی در ماده رخ می‌دهد (نوری که از خورشید و دیگر ستارگان تابیده می‌شود) و ذره‌های باردار به شدت زیر تاثیر میدان‌های مغناطیسی و الکتریکی قرار دارند. برای نمونه بادهای خورشیدی که با مغناط‌کرهٔ زمین در اندرکنش قرار می‌گیرد و باعث بوجود آمدن شفق قطبی و جریان‌های بیرکلند در زمین می‌شوند، چنین اند.

برخلاف فراوانی زیاد هیدروژن در کیهان، غلظت این عنصر در هواکرهٔ زمین بسیار کم است (۱ ppm برحسب حجم) و این بیشتر به دلیل سبکی این گاز نسبت به دیگر گازها است که می‌تواند آسان تر از میدان گرانش زمین بگریزد هیدروژن گازی هم که در زمین یافت می‌شود بیشتر به صورت مولکول دو اتمی H۲ دیده می‌شود. با وجود تمام این توضیح‌ها، از دیدگاه فراوانی، هیدروژن سومین عنصر فراوان در سطح زمین است[۵۷] و این به دلیل حضور آن در بیشتر ترکیب‌های شیمیایی مانند هیدروکربن‌ها و آب است.[۴۰] آب در دسترس ترین سرچشمهٔ هیدروژن در زمین است که از دو بخش هیدروژن و یک بخش اکسیژن (H۲O) ساخته شده‌است.

همچنین هیدروژن در بیشتر گونه‌های مواد آلی که در اندام‌های زنده کاربرد دارند پیدا می‌شود، زغال، سوخت فسیلی و گاز طبیعی. متان (CH۴)، که یکی از محصولات فرعی فساد ترکیبات آلی است همگی دارای هیدروژن اند. گاز هیدروژن توسط باکتری‌ها و جلبک‌ها ساخته می‌شود و البته یکی از سازندگان طبیعی باد شکم است.[۵۸]

هیدروژن از راه‌های گوناگون بدست می‌آید، گذر بخار از روی کربن داغ، تجزیه هیدروکربن بوسیلهٔ حرارت، واکنش هیدروکسید سدیم یا پتاسیم بر آلومینیوم، الکترولیز آب یا از جابجایی آن در اسیدها توسط فلزات خاص.

تولید[ویرایش]

در آزمایشگاه‌های زیست‌شناسی و شیمی می‌توان گاز هیدروژن را تولید کرد. این گاز معمولاً محصول کناری دیگر واکنش‌ها است.

در آزمایشگاه[ویرایش]

در آزمایشگاه با کمک دستگاه کیپ می‌توان از واکنش اسیدها با فلزهایی مانند روی، هیدروژن بدست آورد:

Zn + ۲ H+Zn۲+ + H۲

از واکنش آلومینیم با قلیاها هم می‌توان به نتیجه رسید:

۲ Al + ۶ H۲O + ۲ OH → ۲ Al(OH)
۴
+ ۳ H۲

الکترولیز آب هم یک روش آسان برای تولید هیدروژن است. با گذر یک جریان کم ولتاژ از آب می‌توان گاز اکسیژن را در آنُد و گاز هیدروژن را در کاتُد جمع کرد. برای جمع‌آوری هیدروژن معمولاً کاتد از پلاتین یا یک فلز واسطهٔ دیگر برگزیده می‌شود. البته چون امکان آتش گرفتن وجود دارد و اکسیژن هم به این سوختن کمک می‌کند برای همین فلز کاتد و آند هر دو واسطه در نظر گرفته می‌شود (آهن اکسید می‌شود و مقدار اکسیژن بدست آمده را کاهش می‌دهد). بیشترین بازده نظری این واکنش یعنی نسبت جریان الکتریسیته به هیدروژن تولیدی میان ۸۰ تا ۹۴ درصد است.[۵۹]

۲ H۲O(l) → ۲ H۲(g) + O۲(g)

شیمیدانان در سال ۲۰۰۷ دریافتند که اگر آلیاژی از گالیم و آلومینیم را به صورت گلوله‌ای در آورند و در آب بیندازند می‌تواند هیدروژن تولید کند. همچنین این فرایند آلومینا هم پدید می‌آورد. در این میان گالیم نمی‌گذارد که لایه‌ای از اکسیژن بر روی گلوله ساخته شود و البته گالیم پس از واکنش دوباره قابل استفاده‌است و این به دلیل گرانی این فلز نکتهٔ مهمی است. این روش از نظر کاهش هزینه هم درخور توجه‌است چرا که هیدروژن در همانجا تولید می‌شود و دیگر نیازی به جابجایی ندارد.[۶۰]

در صنعت[ویرایش]

راه‌های گوناگونی برای تولید صنعتی هیدروژن پیدا شده‌است. اما بهترین آن‌ها از نظر اقتصادی، برداشتن هیدروژن از هیدروکربن‌ها است. در این روش بخار آب در دمای بالا با سوخت‌های سنگواره‌ای مانند متان موجود در گاز طبیعی[۶۱] واکنش می‌دهد و مخلوط مونوکسید کربن و H۲ پدید می‌آورد که به آن گاز آب یا گاز سنتز می گویند. منظور از دمای بالا در این واکنش ۱۰۰۰ تا ۱۴۰۰ کلوین، ۷۰۰ تا ۱۱۰۰ سانتیگراد، ۱۳۰۰ تا ۲۰۰۰ فارنهایت است.

CH۴ + H۲O → CO + ۳ H۲

تمایل بر این است که این واکنش در فشار پایین انجام گیرد ولی چنین نمی‌شود و در فشارهای بالا (۲ مگاپاسکال، ۲۰ اتمسفر یا ۶۰۰ اینچ جیوه) رخ می‌دهد چون هیدروژن با فشار بالا کالای تجاری تری است و فرایند پالایش آن و جداسازی اش از دیگر گازها (PSA) در فشار بالا بهتر صورت می‌گیرد. مخلوط گاز سنتز جهت تولید متانول و ترکیب‌های مرتبط دیگر بکار می‌رود. جدای از متان، هیدروکربن‌های پیچیده تر هم می‌توانند در تولید گاز سنتز بکار روند تنها نسبت محصولات تولیدی متفاوت است. یکی از بزرگترین پیچیدگی‌ها در این فرایندهای بهینه‌سازی پدیداری کُک یا کربن است.

CH۴ → C + ۲ H۲

برای پالایش گاز هیدروژن از بخار آب زیادی که در آغاز واکنش افزودیم، از مونوکسید کربن استفاده می‌شود و اکسید آهن در این میان نقش آسان‌گر را بازی می‌کند. این واکنش از واکنش‌های مهم صنعتی در تولید کربن دی‌اکسید است.[۶۱]

CO + H۲OCO۲ + H۲

یک روش صنعتی و مهم دیگر در تولید هیدروژن، اکسید کردن جزئی هیدروکربن‌ها است:[۶۲]

۲ CH۴ + O۲ → ۲ CO + ۴ H۲

و البته واکنش زغال سنگ که به عنوان پیش در آمدی بر واکنش بالایی است:[۶۱]

C + H۲O → CO + H۲

هیدروژن مورد نیاز در فرایند هابر برای تولید آمونیاک هم از گاز طبیعی بدست می‌آید.[۶۳] برقکافت آب‌نمک هم علاوه بر تولید سدیم هیدروکسید و آزادسازی کلر، هیدروژن نیز آزاد می‌کند.[۶۴]

به علت خورندگی و اشتعال پذیری گاز هیدروژن، جابجایی آن با دشواری روبروست. از این رو در بسیاری از این فرایندهای صنعتی، هیدروژن تولید شده در همان جا مصرف می‌شود بدون آنکه پالایش یا جداسازی انجام گیرد.

چرخهٔ گرماشیمی[ویرایش]

بیش از ۲۰۰ چرخهٔ گرماشیمی (ترموشی) برای شکستن مولکول آب به اتم‌های سازنده اش وجود دارد. دانشمندان بر روی نزدیک به دو جین از این چرخه‌ها مانند چرخهٔ اکسید آهن، چرخهٔ اکسید سریم (IV)-اکسید سریم (III)، چرخهٔ روی-اکسید روی، چرخهٔ گوگرد-ید، چرخهٔ مس-کلر، چرخهٔ هیبرید گوگرد پژوهش و آزمایش می‌کنند و در تلاش اند تا از آب و گرما، به هیدروژن و اکسیژن برسند بدون اینکه از جریان برق کمک بگیرند.[۶۵] شماری از آزمایشگاه‌ها (از جمله در فرانسه، آلمان، یونان، ژاپن و آمریکا) در حال گسترش روش‌های ترموشیمی یا گرماشیمی اند تا بتوانند با کمک انرژی خورشیدی و آب، هیدروژن تولید کنند.[۶۶]

خوردگی بدون هوا[ویرایش]

در شرایط بدون هوا، آهن و فولاد به آرامی با پروتون‌های آب، اکسید می‌شوند و مولکول هیدروژن (H۲) آزاد می‌شود. در این فرایند نخستین چیزی که ساخته می‌شود هیدروکسید آهن(II) (زنگارهای سبز) است و واکنش آن به صورت زیر است:

Fe + ۲ H۲O → Fe(OH)۲ + H۲

در شرایط بی هوا، هیدروکسید آهن(II) آزاد شده می‌تواند با پروتون‌های آب اکسید شود و مگنتیت و هیدروژن را پدید می‌آورد. فرایندی که توضیح داده شد، واکنش شیکور نام دارد.

۳ Fe(OH)۲ → Fe۳O۴ + ۲ H۲O + H۲
هیدروژن + آب + مگنتیتهیدروکسید آهن

بلور مگنتیت (Fe۳O۴)، اگر به خوبی ساخته شده باشد از دید ترمودینامیکی پایدارتر از هیدروکسید آهن (Fe(OH)۲) است.

آنچه گفته شد فرایند خوردگی بدون هوای آهن و فولاد است که در آب‌های زیرزمینی بدون اکسیژن یا در خاک‌های کاهندهٔ زیر سفره‌های آب روی می‌دهد.

درون زمین[ویرایش]

در نبود اکسیژن هوا (O۲)، در شرایط ویژهٔ درون زمین و در فاصله‌ای بسیار دور از هواکره، در فرایندی به نام سرپانتینی کردن، گاز هیدروژن یا H۲ پدید می‌آید. در این فرایند: اکسیدکردن بدون هوا، توسط پروتون‌های (H+) آب موجود در یون آهن Fe۲+ سیلیکات در شبکهٔ بلوری فایالیت (Fe۲SiO۴، الیوین سرشار از آهن) دیده می‌شود. در پایان، این واکنش به ساخت مگنتیت (Fe۳O۴کوارتز (SiO۲) و هیدروژن (H۲) می‌رسد:

۳ Fe۲SiO۴ + ۲ H۲O → ۲ Fe۳O۴ + ۳ SiO۲ + ۳ H۲
هیدروژن + کوارتز + مگنتیت → آب + فایالیت

این واکنش به واکنش شیکور که در خوردگی بدون هوا گفته شد، بسیار نزدیک است.

کاربردها[ویرایش]

کاربرد در فرایندها[ویرایش]

هیدروژن یا H۲ به فراوانی در صنایع شیمیایی و پتروشیمی کاربرد دارد. بزرگترین کاربرد آن در فراوری سوخت‌های سنگواره‌ای و تولید آمونیاک است. مصرف کنندگان کلیدی H۲ در کارخانه‌های پتروشیمی عبارتند از هیدرودآلکیلاسیون، هیدرودسولفوریزاسیون و کراکینگ. البته هیدروژن چندین کاربرد مهم دیگر هم دارد. هیدروژن در هیدروژنه کردن بویژه در افزایش سطح اشباع چربی‌های غیر اشباع و تولید روغن جامد، دانه‌های روغنی و تولید متانول کاربرد دارد. کاربرد دیگر آن به عنوان منبع هیدروژن در تولید هیدروکلریک اسید است. همچنین هیدروژن به عنوان عامل کاهنده در احیای سنگ معدن‌های فلزی کار می‌کند.[۶۷]

هیدروژن به خوبی در بسیاری از عنصرهای خاکی کمیاب و فلزهای واسطه[۶۸] حل می‌شود. همچنین در فلزهای آمورفی و بلورهای نانو حل شدنی است.[۶۹]

جدا از واکنش‌های شیمیایی که هیدروژن می‌تواند در آن‌ها شرکت کند، این ماده کاربرد فراوانی در مهندسی و فیزیک دارد. برای نمونه به عنوان گاز پوششی (محافظ) در روش‌های گوناگون جوشکاری مانند جوشکاری اتمی هیدروژن مورد نیاز است.[۷۰][۷۱] کاربرد دیگر هیدروژن در خنک کردن مولد الکتریکی نیروگاه‌های برق است. این کاربرد به این دلیل است که هیدروژن دارای بالاترین رسانش گرمایی در میان گازها است. در پژوهش‌های سرماشناسی مانند مطالعهٔ ابررسانایی هم بر روی هیدروژن مایع کار می‌شود.[۷۲] چگالی گاز هیدروژن نزدیک به ۱/۱۵ هوا است. به همین دلیل در گذشته به عنوان گاز بالابر در بالون‌ها و کشتی‌های هوایی کاربرد داشت.[۷۳]

به تازگی از هیدروژن خالص یا آمیخته‌ای از هیدروژن و نیتروژن برای شناسایی نشتی‌های ریز و سوراخ‌های بسیار کوچک در نیروگاه‌ها، صنعت‌های شیمیایی، هوافضا، خودروسازی و مخابرات بهره برده می‌شود.[۷۴] هیدروژن یک افزودنی مجاز به مواد خوراکی است (E 949) با کمک آن می‌توان بسته بندی مواد خوراکی را از نظر نشتی و سوراخ آزمود همچنین از اکسید شدن مواد خوراکی هم پیشگیری می‌کند.[۷۵] دمای هیدروژن در نقطهٔ سه‌گانه اش به عنوان یکی از نقطه‌های ثابت در ITS-90 (مقیاس بین‌المللی دما در ۱۹۹۰) نشانه گذاری شده که برابر با ۱۳٫۸۰۳۳ کلوین است.[۷۶]

ایزوتوپ‌های کمیاب هیدروژن هر یک کاربرد ویژه‌ای دارند.

حامل انرژی[ویرایش]

همچنین ببینید: اقتصاد هیدروژن

هیدروژن به خودی خود یک منبع انرژی نیست.[۸۰] مگر آنکه با کمک واکنش‌های همجوشی هسته‌ای در دوتریوم یا تریتیوم برای نیروگاه‌ها انرژی تولید کند؛ که البته این فناوری بسیار پیشرفته‌است.[۸۱] انرژی خورشید هم از همجوشی هسته‌ای هیدروژن گرفته شده‌است اما بر روی زمین به سختی می‌توان به صورت کنترل شده به این فرایند دست یافت.[۸۲] هیدروژن بدست آمده از خورشید، فرایندهای زیستی یا الکتریکی انرژی مورد نیاز برای تولیدش بیشتر از انرژی بدست آمده از سوختنش است به همین دلیل در این موقعیت‌ها با هیدروژن به عنوان یک حامل انرژی برخورد می‌شود مانند یک باتری. هیدروژن را می‌توان از سوخت‌های سنگواره‌ای (مانند متان) بدست آورد اما این گونه منبع‌ها همیشگی و پایدار نیستند.[۸۰]

چگالی انرژی در یکای حجم هم برای هیدروژن مایع و هم برای گاز فشردهٔ هیدروژن در هر فشاری که بتوان با آن کار کرد آشکارا از چگالی انرژی سوخت‌های سنگواره‌ای سنتی پایین‌تر است همچنین چگالی انرژی در یکای جرم هم برای سوخت‌های سنگواره‌ای بالاتر است.[۸۰] اما همچنان پژوهش‌ها بر سر این است که در آینده به گستردگی از هیدروژن عنوان یک حامل انرژی بهره برده شود.[۸۳] برای نمونه می‌توان فرایند جداسازی کربن از هواکره و ذخیره‌سازی آن را برای هیدروژن هم همانند کرد و از سوخت‌های سنگواره‌ای هیدروژن بدست آورد.[۸۴] اگر بتوان از هیدروژن به عنوان سوخت در ترابری بهره برد، این سوخت به نسبت دیگر سوخت‌ها، پاک می‌سوزد، اندکی NOx تولید می‌کند[۸۴] اما به هر حال بدون پدید آوردن کربن می‌سوزد.[۸۴] نباید فراموش کرد که هزینه‌های مربوط به دگرگونی کامل سامانه، به اقتصاد هیدروژنی درخور نگرش است.[۸۵]

خنک‌کننده[ویرایش]

از هیدروژن در نیروگاه‌های برق به عنوان خنک کنندهٔ ژنراتورها بهره برده می‌شود. این به دلیل ظرفیت گرمایی بسیار بالای این گاز است که از همهٔ گازها بالاتر است.

در نیمه رساناها[ویرایش]

هیدروژن برای اشباع پیوندهای شکستهٔ سیلیسیم آمورف و کربن آمورف کاربرد دارد و کمک می‌کند تا ویژگی‌های ماده پایدار شود.[۸۶] همچنین در بسیاری از اکسیدهای مواد به عنوان دهندهٔ الکترون کار می‌کند. چند مورد از این اکسیدها عبارتند از:[۸۷][۸۸][۸۹][۹۰]

ZnO, SnO۲, CdO, MgO, ZrO۲, HfO۲, La۲O۳, Y۲O۳, TiO۲, SrTiO۳، LaAlO۳، SiO۲, Al۲O۳، ZrSiO۴، HfSiO۴ و SrZrO۳.

دیگر کاربردها[ویرایش]

به مقدار بسیار زیادی هیدروژن در فرایند هابر (Haber Process) نقش دارد. دیگر کاربردهای هیدروژن عبارت‌اند از:

  • آلکیل زدایی آبی (هیدرو دِ آلکیلاسیون hydrodealkylation)، گوگردزدایی آبی (هیدرو دِ سولفوریزاسیون، hydrodesulfurization) و هیدروکرکینک (hydrocracking)
  • در سوخت‌های موشک

هیدروژن می‌تواند در موتورهای درون‌سوز سوخته شود یا در پیل‌های هیدروژنی، انرژی الکتریکی تولید کند. تاکنون چند خودروی آزمایشی توسط چند شرکت خودروسازی از جمله BMW (موتور گرمایی) و بنز، تویوتا، اپل و ... (پیل هیدروژنی) تولید شده است. پیل‌های سوختی هیدروژنی، به‌عنوان راه کاری برای تولید توان بالقوهٔ ارزان و بدون آلودگی، مورد توجه قرار گرفته‌است.[۹۱][۹۲]

واکنش‌های زیستی[ویرایش]

H۲ محصول برخی از واکنش‌های بدون هوا است که توسط چندین گونه میکروب درست می‌شود. این واکنش‌ها معمولاً با کمک آهن یا نیکل موجود در آنزیم‌هایی به نام هیدروژناس آسان می‌شوند. این آنزیم‌ها به عنوان آسانگر در واکنش‌های برگشت‌پذیر اکسایش و کاهش میان H۲ و اجزایش، دو پروتون و دو الکترون، کار می‌کنند. گاز هیدروژن هنگام انتقال تعادل‌های کاهشی بوجود آمده در اثر تخمیر اسید پیرویک با آب، پدید می‌آید.[۹۳]

همه روزه شکستن مولکول آب به اجزای سازنده اش، پروتون‌ها، الکترون‌ها و اکسیژن در واکنش نورساخت در اندام‌های زنده روی می‌دهد. برخی از اندام‌ها مانند سیانوباکتر و جلبک کلامیدوموناز رینهارتی یک گام دوم را هم وارد واکنش می‌کنند که مربوط به واکنش‌های در تاریکی است و در آن پروتون‌ها و الکترون‌ها کاهیده می‌شوند و با کمک آنزیم‌های ویژه‌ای که در کلروپلاست[۹۴] وجود دارد گاز H۲ را درست می‌کنند. تلاش شده تا آنزیم‌های سیانوباکتری را به صورت ژنی تصحیح کنند و با کمک آن‌ها حتی در حضور اکسیژن هم گاز هیدروژن تولید کنند.[۹۵] همچنین تلاش شده تا ژن‌های جلبک یک واکنش دهندهٔ زیستی را هم اصلاح کنند.[۹۶]

هشدارها[ویرایش]

هنگام کار با هیدروژن باید بسیار هشیار بود. این به دلیل توان آتش‌گیری و انفجار آن است بویژه هنگامی که با هوا آمیخته می‌شود و هنگامی که خالص یا بدون اکسیژن باشد هم فرد را دچار خفگی می‌کند.[۹۷] هیدروژن مایع توان سردکنندگی بسیار بالایی دارد و مانند دیگر مایعات بسیار سرد، می‌تواند آسیب‌هایی همچون یخ‌زدگی را به بار آورد.[۹۸] هیدروژن در بسیاری از فلزها حل می‌شود گاهی این توانایی دلخواه ما نیست مانند امکان نشت به بیرون و پدیدهٔ تردی هیدروژنی[۹۹] که در صورت ادامه باعث ترک خوردگی یا انفجار می‌شود.[۱۰۰] نشت هیدروژن در هوای آزاد باعث شعله‌ور شدن آن می‌شود افزون بر این سوختن هیدروژن هنگامی که بسیار داغ باشد، تقریباً پدیده‌ای ناپیدا (نامرئی) است و می‌تواند باعث رویدادهای ناگواری شود.[۱۰۱]

داده‌های مربوط به هیدروژن از جمله داده‌های مربوط به امنیت آن به دسته‌ای از پدیده‌ها بستگی دارد. بسیاری از ویژگی‌های فیزیکی و شیمیایی هیدروژن به نسبت اورتوهیدروژن و پاراهیدروژن گاز وابسته‌است که معمولاً روزها و گاهی هفته‌ها طول می‌کشد تا در یک دمای مشخص به تعادل برسد و چون داده‌های امنیت مربوط به حالت تعادل است کمی کار دشوار می‌شود همچنین پارامترهای انفجار، مانند فشار و دمای بحرانی به شدت به هندسهٔ ظرف دربردارنده هم بستگی دارد.[۹۷]

جستارهای وابسته[ویرایش]

منابع[ویرایش]

  1. Simpson, J.A.; Weiner, E.S.C. (1989). "Hydrogen". Oxford English Dictionary 7 (2nd ed.). Oxford University Press. ISBN 0-19-861219-2. 
  2. Wiberg, Egon; Wiberg, Nils; Holleman, Arnold Frederick. Inorganic chemistry. Academic Press, 2001. 240. ISBN ‎0123526515. 
  3. Magnetic susceptibility of the elements and inorganic compounds, in Handbook of Chemistry and Physics 81st edition, CRC press.
  4. Senmerv - هیدروژن
  5. Palmer, D.. “Hydrogen in the Universe”. NASA, 13 September 1997. Archived from the original on 25 December 2012. Retrieved 2008-02-05. 
  6. Presenter: Professor Jim Al-Khalili (۲۰۱۰-۰۱-۲۱). "Discovering the Elements". Chemistry: A Volatile History. ۲۵:۴۰ minutes in. BBC. BBC Four. Archived from the original on 25 December 2012. http://www.webcitation.org/6D9jfzNVA.
  7. “Hydrogen Basics — Production”. Florida Solar Energy Center, 2007. Archived from the original on 25 December 2012. Retrieved 2008-02-05. 
  8. Rogers، H.C.. Hydrogen Embrittlement of Metals. ۱۹۹۹. Bibcode۱۹۶۸Sci...۱۵۹.۱۰۵۷R. doi:10.1126/science.159.3819.1057. PMID ۱۷۷۷۵۰۴۰. 
  9. Christensen, C.H.; Nørskov, J. K.; Johannessen, T. (9 July 2005). "Making society independent of fossil fuels — Danish researchers reveal new technology". Technical University of Denmark. Archived from the original on 24 October 2017. Retrieved 19 May 2015. 
  10. “Dihydrogen”. University of Southern Maine. Archived from the original on 25 December 2012. Retrieved 2009-04-06. 
  11. Carcassi، M.N.. Deflagrations of H۲–air and CH۴–air lean mixtures in a vented multi-compartment environment. ۲۰۰۵. doi:10.1016/j.energy.2004.02.012. 
  12. The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs. National Academies Press, 2004. 240. ISBN ‎0-309-09163-2. Archived from the original on 25 December 2012. 
  13. A comprehensive guide to the hazardous properties of chemical substances. Wiley-Interscience, 2007. 402. ISBN ‎0-471-71458-5. Archived from the original on 25 December 2012. 
  14. Dziadecki, J.. “Hindenburg Hydrogen Fire”. 2005. Archived from the original on 25 December 2012. Retrieved 2007-01-16. 
  15. Kelly, M.. “The Hindenburg Disaster”. About.com:American history. Archived from the original on 25 December 2012. Retrieved 2009-08-08. 
  16. Clayton، D.D.. Handbook of Isotopes in the Cosmos: Hydrogen to Gallium. Cambridge University Press، ۲۰۰۳. شابک ‎۰-۵۲۱-۸۲۳۸۱-۱. 
  17. Millar, Tom. “Lecture 7, Emission Lines — Examples”. University of Manchester, December 10, 2003. Archived from the original on 25 December 2012. Retrieved 2008-02-05. 
  18. Stern, David P.. “The Atomic Nucleus and Bohr's Early Model of the Atom”. NASA Goddard Space Flight Center (mirror), 2005-05-16. Archived from the original on 25 December 2012. Retrieved 2007-12-20. 
  19. Stern, David P.. “Wave Mechanics”. NASA Goddard Space Flight Center, 2005-02-13. Archived from the original on 25 December 2012. Retrieved 2008-04-16. 
  20. “Hydrogen (H۲) Properties, Uses, Applications: Hydrogen Gas and Liquid Hydrogen”. Universal Industrial Gases, Inc., 2003. Archived from the original on 25 December 2012. Retrieved 2008-02-05. 
  21. Tikhonov، Vladimir I.. Separation of Water into Its Ortho and Para Isomers. ۲۰۰۲. ۲۳۶۳. doi:10.1126/science.1069513. PMID ۱۲۰۸۹۴۳۵. 
  22. Hritz, James. “CH. 6 – Hydrogen”. NASA, 2006. Archived from the original on 24 October 2017. Retrieved 2008-02-05. 
  23. Shinitzky، Meir. Ortho-para spin isomers of the protons in the methylene group. ۲۰۰۶. doi:10.1002/chir.20319. PMID ۱۶۸۵۶۱۶۷. 
  24. Milenko، Yu. Ya.. Natural ortho-para conversion rate in liquid and gaseous hydrogen. 1997. Bibcode۱۹۹۷JLTP..۱۰۷...۷۷M. doi:10.1007/BF02396837. 
  25. Amos, Wade A. (1 November 1998). "Costs of Storing and Transporting Hydrogen" (PDF). National Renewable Energy Laboratory. pp. 6–9. Archived from the original on 24 October 2017. Retrieved 19 May 2015. 
  26. Svadlenak، R. Eldo. The Conversion of Ortho- to Parahydrogen on Iron Oxide-Zinc Oxide Catalysts. 1957. doi:10.1021/ja01577a013. 
  27. Wigner, E.; Huntington, H.B. (1935). "On the possibility of a metallic modification of hydrogen". Journal of Chemical Physics 3 (12): 764. Bibcode:1935JChPh...3..764W. doi:10.1063/1.1749590. 
  28. Eremets, M.I.; Troyan, I.A. (2011). "Conductive dense hydrogen". Nature Materials. Bibcode:2011NatMa..10..927E. doi:10.1038/nmat3175. 
  29. Dalladay-Simpson, Philip; Howie, Ross; Gregoryanz, Eugene (2016). "Evidence for a new phase of dense hydrogen above 325 gigapascals". Nature 529: 63–67. Bibcode:2016Natur.529...63D. doi:10.1038/nature16164. Archived from the original on 24 October 2017. 
  30. Clark, Jim. “The Acidity of the Hydrogen Halides”. 2002. Archived from the original on 25 December 2012. Retrieved 2008-03-09. 
  31. Kimball, John W.. “Hydrogen”. 2003-08-07. Archived from the original on 25 December 2012. Retrieved 2008-03-04. 
  32. IUPAC Compendium of Chemical Terminology, Electronic version, Hydrogen Bond
  33. Sandrock, Gary. “Metal-Hydrogen Systems”. Sandia National Laboratories, 2002-05-02. Archived from the original on 25 December 2012. Retrieved 2008-03-23. 
  34. ۳۴٫۰ ۳۴٫۱ “Structure and Nomenclature of Hydrocarbons”. Purdue University. Archived from the original on 25 December 2012. Retrieved 2008-03-23. 
  35. “Organic Chemistry”. Lexico Publishing Group, 2008. Archived from the original on 25 December 2012. Retrieved 2008-03-23. 
  36. “Biochemistry”. Lexico Publishing Group, 2008. Archived from the original on 25 December 2012. Retrieved 2008-03-23. 
  37. Moers، Kurt. Investigations on the Salt Character of Lithium Hydride. ۱۹۲۰. doi:10.1002/zaac.19201130116. 
  38. Downs، Anthony J.. The hydrides of aluminium, gallium, indium, and thallium: a re-evaluation. ۱۹۹۴. doi:10.1039/CS9942300175. 
  39. Hibbs، David E.. A remarkably stable indium trihydride complex: synthesis and characterisation of [InH۳P(C۶H۱۱)۳]. ۱۹۹۹. doi:10.1039/a809279f. 
  40. ۴۰٫۰ ۴۰٫۱ Miessler, Gary L.. Inorganic Chemistry. Prentice Hall, 2003. ISBN ‎0-13-035471-6. 
  41. دانشنامه ستاره‌شناسی - هیدروژن
  42. Boyle, Robert "Tracts written by the Honourable Robert Boyle containing new experiments, touching the relation betwixt flame and air..." (London, England: 1672).
  43. Winter, Mark. “Hydrogen: historical information”. WebElements Ltd, 2007. Archived from the original on 25 December 2012. Retrieved 2008-02-05. 
  44. . Archived from the original on 25 December 2012. http://www.webcitation.org/6D9jSJnZv. 
  45. Just the Facts—Inventions & Discoveries, School Specialty Publishing, 2005
  46. ۴۶٫۰ ۴۶٫۱ "Hydrogen". Van Nostrand's Encyclopedia of Chemistry. Wylie-Interscience. 2005. pp. 797–799. ISBN 0-471-61525-0. 
  47. ۴۷٫۰۰ ۴۷٫۰۱ ۴۷٫۰۲ ۴۷٫۰۳ ۴۷٫۰۴ ۴۷٫۰۵ ۴۷٫۰۶ ۴۷٫۰۷ ۴۷٫۰۸ ۴۷٫۰۹ ۴۷٫۱۰ Emsley, John (2001). Nature's Building Blocks. Oxford: Oxford University Press. pp. 183–191. ISBN 0-19-850341-5. 
  48. Stwertka, Albert. A Guide to the Elements. Oxford University Press, 1996. ISBN ‎0-19-508083-1. 
  49. “NTS-2 Nickel-Hydrogen Battery Performance 31”. Aiaa.org. Archived from the original on 25 December 2012. Retrieved 2009-04-06. 
  50. «Validation of international space station electrical performance model via on-orbit telemetry». در IECEC '02. 2002 37th Intersociety Energy Conversion Engineering Conference, 2002. ۲۰۰۴ (۲۰۰۲). doi:10.1109/IECEC.2002.1391972. شابک ‎۰-۷۸۰۳-۷۲۹۶-۴. بایگانی‌شده از نسخهٔ اصلی در 25 December 2012. بازبینی‌شده در ۲۰۱۱-۱۱-۱۱. 
  51. A lightweight high reliability single battery power system for interplanetary spacecraft. ۲۰۰۲. doi:10.1109/AERO.2002.1035418. شابک ‎۰-۷۸۰۳-۷۲۳۱-X. 
  52. “Mars Global Surveyor”. Astronautix.com. Archived from the original on 25 December 2012. Retrieved 2009-04-06. 
  53. Crepeau, Bob. Niels Bohr: The Atomic Model. Great Neck Publishing, 2006-01-01. ISBN ‎1-4298-0723-7. 
  54. Berman، R.. Cryogenics. ۱۹۵۶. Bibcode۱۹۵۶ARPC....۷....۱B. doi:10.1146/annurev.pc.07.100156.000245. 
  55. Gagnon, Steve. “Hydrogen”. Jefferson Lab. Archived from the original on 25 December 2012. Retrieved 2008-02-05. 
  56. Haubold, Hans. “Solar Thermonuclear Energy Generation”. Columbia University, November 15, 2007. Archived from the original on 25 December 2012. Retrieved 2008-02-12. 
  57. “Basic Research Needs for the Hydrogen Economy”. Argonne National Laboratory, U.S. Department of Energy, Office of Science Laboratory, May 15, 2003. Archived from the original on 24 October 2017. Retrieved 2016-08-13. 
  58. Berger, Wolfgang H.. “The Future of Methane”. University of California, San Diego, November 15, 2007. Archived from the original on 25 December 2012. Retrieved 2008-02-12. 
  59. Kruse, B.. “Hydrogen Status og Muligheter”. Bellona, 2002. Archived from the original on 24 October 2017. Retrieved 2008-02-12. 
  60. Venere, Emil. “New process generates hydrogen from aluminum alloy to run engines, fuel cells”. Purdue University, May 15, 2007. Archived from the original on 25 December 2012. Retrieved 2008-02-05. 
  61. ۶۱٫۰ ۶۱٫۱ ۶۱٫۲ Oxtoby، D. W.. Principles of Modern Chemistry. Thomson Brooks/Cole، ۲۰۰۲. شابک ‎۰-۰۳-۰۳۵۳۷۳-۴. 
  62. “Hydrogen Properties, Uses, Applications”. Universal Industrial Gases, Inc., 2007. Archived from the original on 25 December 2012. Retrieved 2008-03-11. 
  63. Funderburg, Eddie. “Why Are Nitrogen Prices So High?”. The Samuel Roberts Noble Foundation, 2008. Archived from the original on 25 December 2012. Retrieved 2008-03-11. 
  64. Lees, Andrew. “Chemicals from salt”. BBC, 2007. Archived from the original on 25 December 2012. Retrieved 2008-03-11. 
  65. «Development of solar-powered thermochemical production of hydrogen from water». بایگانی‌شده از نسخهٔ اصلی در ۲۵ دسامبر ۲۰۱۲. 
  66. “Development of Solar-Powered Thermochemical Production of Hydrogen from Water, DOE Hydrogen Program, 2007”. Archived from the original on 25 December 2012. Retrieved 2008-05-17. 
  67. “Hydrogen”. Los Alamos National Laboratory, 2003-12-15. Archived from the original on 25 December 2012. Retrieved 2008-02-05. 
  68. Takeshita، T.. Hydrogen solubility in 1:5 compounds between yttrium or thorium and nickel or cobalt. ۱۹۷۴. doi:10.1021/ic50139a050. 
  69. Kirchheim، R.. Hydrogen in amorphous and nanocrystalline metals. ۱۹۸۸. doi:10.1016/0025-5416(88)90377-1. 
  70. Durgutlu، Ahmet. Experimental investigation of the effect of hydrogen in argon as a shielding gas on TIG welding of austenitic stainless steel. ۲۰۰۳. doi:10.1016/j.matdes.2003.07.004. 
  71. «Atomic Hydrogen Welding». Specialty Welds، ۲۰۰۷. بایگانی‌شده از نسخهٔ اصلی در ۲۵ دسامبر ۲۰۱۲. 
  72. Hardy، Walter N.. From H2 to cryogenic H masers to HiTc superconductors: An unlikely but rewarding path. ۲۰۰۳. Bibcode۲۰۰۳PhyC..۳۸۸....۱H. doi:10.1016/S0921-4534(02)02591-1. 
  73. Barnes, Matthew. “LZ-129, Hindenburg”. 2004. Archived from the original on 25 December 2012. Retrieved 2008-03-18. 
  74. Block, M. (3 September 2004). Hydrogen as Tracer Gas for Leak Detection. 16th WCNDT 2004 (Montreal, Canada: Sensistor Technologies). Archived from the original on 24 October 2017. Retrieved 25 March 2008. 
  75. “Report from the Commission on Dietary Food Additive Intake”. European_Union. Archived from the original on 25 December 2012. Retrieved 2008-02-05. 
  76. International Temperature Scale of 1990 (PDF). Procès-Verbaux du Comité International des Poids et Mesures. 1989: T23–T42. Archived from the original on 24 October 2017. Retrieved 25 March 2008. 
  77. Reinsch، J. «The deuterium isotope effect upon the reaction of fatty acyl-CoA dehydrogenase and butyryl-CoA». J. Biol. Chem.، ۱۹۸۰. PMID ۷۴۱۰۴۱۳. 
  78. Bergeron، Kenneth D.. The Death of no-dual-use. Educational Foundation for Nuclear Science, Inc.، ۲۰۰۴. ۱۵. doi:10.2968/060001004. بایگانی‌شده از نسخهٔ اصلی در ۲۵ دسامبر ۲۰۱۲. 
  79. Quigg، Catherine T.. Tritium Warning. March ۱۹۸۴. ۵۶–۵۷. 
  80. ۸۰٫۰ ۸۰٫۱ ۸۰٫۲ McCarthy, John. “Hydrogen”. Stanford University, 1995-12-31. Archived from the original on 25 December 2012. Retrieved 2008-03-14. 
  81. “Nuclear Fusion Power”. World Nuclear Association, 2007. Archived from the original on 25 December 2012. Retrieved 2008-03-16. 
  82. “Chapter 13: Nuclear Energy — Fission and Fusion”. California Energy Commission, 2006. Archived from the original on 25 December 2012. Retrieved 2008-03-14. 
  83. "DOE Seeks Applicants for Solicitation on the Employment Effects of a Transition to a Hydrogen Economy". Hydrogen Program (Press release). US Department of Energy. 22 March 2006. Archived from the original on 19 July 2011. Retrieved 16 March 2008. 
  84. ۸۴٫۰ ۸۴٫۱ ۸۴٫۲ "Carbon Capture Strategy Could Lead to Emission-Free Cars" (Press release). Georgia Tech. 11 February 2008. Archived from the original on 24 October 2017. Retrieved 16 March 2008. 
  85. Romm، Joseph J.. The Hype About Hydrogen: Fact And Fiction In The Race To Save The Climate. Island Press، ۲۰۰۴. شابک ‎۱-۵۵۹۶۳-۷۰۳-X. 
  86. Le Comber، P. G.. Hall effect and impurity conduction in substitutionally doped amorphous silicon. ۱۹۷۷. Bibcode۱۹۷۷PMag...۳۵.۱۱۷۳C. doi:10.1080/14786437708232943. 
  87. Peacock، P. W.. Behavior of hydrogen in high dielectric constant oxide gate insulators. ۲۰۰۳. Bibcode۲۰۰۳ApPhL..۸۳.۲۰۲۵P. doi:10.1063/1.1609245. 
  88. Kilic، Cetin. n-type doping of oxides by hydrogen. ۲۰۰۲. Bibcode۲۰۰۲ApPhL..۸۱...۷۳K. doi:10.1063/1.1482783. 
  89. Van de Walle، Chris G.. Hydrogen as a cause of doping in zinc oxide. ۲۰۰۰. Bibcode۲۰۰۰PhRvL..۸۵.۱۰۱۲V. doi:10.1103/PhysRevLett.85.1012. PMID ۱۰۹۹۱۴۶۲. 
  90. Janotti، Anderson. Hydrogen multicentre bonds. ۲۰۰۷. Bibcode۲۰۰۷NatMa...۶...۴۴J. doi:10.1038/nmat1795. PMID ۱۷۱۴۳۲۶۵. 
  91. سوخت هیدروژن:
  92. Contents> سوخت هیدروژن
  93. Cammack, Richard; Robson, R. L. (۲۰۰۱). Hydrogen as a Fuel: Learning from Nature. Taylor & Francis Ltd. pp. ۲۰۲–۲۰۳. Archived from the original on 25 December 2012.  Unknown parameter |شابک= ignored (help);
  94. Kruse, O.; Rupprecht, J. ; Bader, K. -P. ; Thomas-Hall, S. ; Schenk, P. M. ; Finazzi, G. ; Hankamer, B (2005). "Improved photobiological H2 production in engineered green algal cells". The Journal of Biological Chemistry 280 (40): 34170–7. PMID 16100118 Check |pmid= value (help). doi:10.1074/jbc.M503840200. 
  95. Smith, H. O.; Xu, Q (2005). "IV.E.6 Hydrogen from Water in a Novel Recombinant Oxygen-Tolerant Cyanobacteria System" (PDF). FY2005 Progress Report. United States Department of Energy. Archived from the original on 25 December 2012. Retrieved 2008-02-05. 
  96. Williams, Chris (2006-02-24). "Pond life: the future of energy". Science (The Register). Archived from the original on 25 December 2012. Retrieved 2008-03-24. 
  97. ۹۷٫۰ ۹۷٫۱ Smith, H. O.. “Safety Standard for Hydrogen and Hydrogen Systems”. NASA, 1997. Archived from the original on 25 December 2012. Retrieved 2008-02-05. 
  98. “Hydrogen, refrigerated liquid”. Praxair, Inc., 2015. Archived from the original on 24 October 2017. Retrieved 2016-08-13. 
  99. 'Bugs' and hydrogen embrittlement. ۱۹۸۵-۰۷-۲۰. ۴۱. doi:10.2307/3970088. JSTOR ۳۹۷۰۰۸۸. 
  100. Hayes, B.. “Union Oil Amine Absorber Tower”. TWI. Archived from the original on 25 December 2012. Retrieved 29 January 2010. 
  101. “Hydrogen Safety”. Humboldt State University. Archived from the original on 25 December 2012. Retrieved 2010-04-14. 
جدول تناوبی بر اساس دوره کشف
گروه → ۱ ۲ ۳ ۴ ۵ ۶ ۷ ۸ ۹ ۱۰ ۱۱ ۱۲ ۱۳ ۱۴ ۱۵ ۱۶ ۱۷ ۱۸
↓ دوره
۱ ۱
H

۲
He
۲ ۳
Li
۴
Be

۵
B
۶
C
۷
N
۸
O
۹
F
۱۰
Ne
۳ ۱۱
Na
۱۲
Mg

۱۳
Al
۱۴
Si
۱۵
P
۱۶
S
۱۷
Cl
۱۸
Ar
۴ ۱۹
K
۲۰
Ca
۲۱
Sc
۲۲
Ti
۲۳
V
۲۴
Cr
۲۵
Mn
۲۶
Fe
۲۷
Co
۲۸
Ni
۲۹
Cu
۳۰
Zn
۳۱
Ga
۳۲
Ge
۳۳
As
۳۴
Se
۳۵
Br
۳۶
Kr
۵ ۳۷
Rb
۳۸
Sr
۳۹
Y
۴۰
Zr
۴۱
Nb
۴۲
Mo
۴۳
Tc
۴۴
Ru
۴۵
Rh
۴۶
Pd
۴۷
Ag
۴۸
Cd
۴۹
In
۵۰
Sn
۵۱
Sb
۵۲
Te
۵۳
I
۵۴
Xe
۶ ۵۵
Cs
۵۶
Ba
*
۷۲
Hf
۷۳
Ta
۷۴
W
۷۵
Re
۷۶
Os
۷۷
Ir
۷۸
Pt
۷۹
Au
۸۰
Hg
۸۱
Tl
۸۲
Pb
۸۳
Bi
۸۴
Po
۸۵
At
۸۶
Rn
۷ ۸۷
Fr
۸۸
Ra
**
۱۰۴
Rf
۱۰۵
Db
۱۰۶
Sg
۱۰۷
Bh
۱۰۸
Hs
۱۰۹
Mt
۱۱۰
Ds
۱۱۱
Rg
۱۱۲
Cn
۱۱۳
Nh
۱۱۴
Fl
۱۱۵
Mc
۱۱۶
Lv
۱۱۷
Ts
۱۱۸
Og

* لانتانیدها ۵۷
La
۵۸
Ce
۵۹
Pr
۶۰
Nd
۶۱
Pm
۶۲
Sm
۶۳
Eu
۶۴
Gd
۶۵
Tb
۶۶
Dy
۶۷
Ho
۶۸
Er
۶۹
Tm
۷۰
Yb
۷۱
Lu

** آکتینیدها ۸۹
Ac
۹۰
Th
۹۱
Pa
۹۲
U
۹۳
Np
۹۴
Pu
۹۵
Am
۹۶
Cm
۹۷
Bk
۹۸
Cf
۹۹
Es
۱۰۰
Fm
۱۰۱
Md
۱۰۲
No
۱۰۳
Lr

شرح
     روزگار باستان تا قرون وسطی (۱۴ عنصر): تا قرون وسطی اکتشاف‌ها ثبت نشده است.       از قرون وسطی تا ۱۸۰۰ (۲۰ عنصر): اکتشافات در عصر روشنگری       از ۱۸۰۰ تا ۱۸۴۹ (۲۴ عنصر): انقلابات علمی و صنعتی       از ۱۸۵۰ تا ۱۸۹۹ (۲۶ عنصر): عصر طبقه‌بندی عناصر; استفاده از تکنیک‌های تجزیه و تحلیل طیف : بیسبودرن، روبرت بونزن، ویلیام کروکز، کیرشهف و دیگران       از ۱۹۰۰ تا ۱۹۴۹ (۱۳ عنصر): توسعه تئوری کوانتوم و مکانیک کوانتوم       از ۱۹۵۰ تا ۱۹۹۹ (۱۶ عنصر): بعد از پروژه منهتن، سنتز اعداد اتمی ۹۸ و بالاتر (برخورددهنده‌ها، روش‌های بمباران)       از ۲۰۰۰ تا کنون (۵ عنصر): سنتزهای اخیر

Hydrogen,  1H
Hydrogen discharge tube.jpg
Purple glow in its plasma state
General properties
Appearance colorless gas
Standard atomic weight (Ar, standard) [1.007841.00811] conventional: 1.008[1]
Hydrogen in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson


H

Li
– ← hydrogenhelium
Atomic number (Z) 1
Group, period group 1, period 1
Block s-block
Element category   diatomic nonmetal
Electron configuration 1s1
Electrons per shell
1
Physical properties
Color colorless
Phase (at STP) gas
Melting point 13.99 K ​(−259.16 °C, ​−434.49 °F)
Boiling point 20.271 K ​(−252.879 °C, ​−423.182 °F)
Density (at STP) 0.08988 g/L
when liquid (at m.p.) 0.07 g/cm3 (solid: 0.0763 g/cm3)[2]
when liquid (at b.p.) 0.07099 g/cm3
Triple point 13.8033 K, ​7.041 kPa
Critical point 32.938 K, 1.2858 MPa
Heat of fusion (H2) 0.117 kJ/mol
Heat of vaporization (H2) 0.904 kJ/mol
Molar heat capacity (H2) 28.836 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 15 20
Atomic properties
Oxidation states −1, +1 ​(an amphoteric oxide)
Electronegativity Pauling scale: 2.20
Ionization energies
  • 1st: 1312.0 kJ/mol
Covalent radius 31±5 pm
Van der Waals radius 120 pm
Color lines in a spectral range
Miscellanea
Crystal structure hexagonal
Hexagonal crystal structure for hydrogen
Speed of sound 1310 m/s (gas, 27 °C)
Thermal conductivity 0.1805 W/(m·K)
Magnetic ordering diamagnetic[3]
Magnetic susceptibility −3.98·10−6 cm3/mol (298 K)[4]
CAS Number 12385-13-6
1333-74-0 (H2)
History
Discovery Henry Cavendish[5][6] (1766)
Named by Antoine Lavoisier[7] (1783)
Main isotopes of hydrogen
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
1H 99.98% stable
2H 0.02% stable
3H trace 12.32 y β 3He
| references | in Wikidata

Hydrogen is a chemical element with symbol H and atomic number 1. With a standard atomic weight of 1.008, hydrogen is the lightest element on the periodic table. Its monatomic form (H) is the most abundant chemical substance in the Universe, constituting roughly 75% of all baryonic mass.[9][note 1] Non-remnant stars are mainly composed of hydrogen in the plasma state. The most common isotope of hydrogen, termed protium (name rarely used, symbol 1H), has one proton and no neutrons.

The universal emergence of atomic hydrogen first occurred during the recombination epoch. At standard temperature and pressure, hydrogen is a colorless, odorless, tasteless, non-toxic, nonmetallic, highly combustible diatomic gas with the molecular formula H2. Since hydrogen readily forms covalent compounds with most nonmetallic elements, most of the hydrogen on Earth exists in molecular forms such as water or organic compounds. Hydrogen plays a particularly important role in acid–base reactions because most acid-base reactions involve the exchange of protons between soluble molecules. In ionic compounds, hydrogen can take the form of a negative charge (i.e., anion) when it is known as a hydride, or as a positively charged (i.e., cation) species denoted by the symbol H+. The hydrogen cation is written as though composed of a bare proton, but in reality, hydrogen cations in ionic compounds are always more complex. As the only neutral atom for which the Schrödinger equation can be solved analytically,[10] study of the energetics and bonding of the hydrogen atom has played a key role in the development of quantum mechanics.

Hydrogen gas was first artificially produced in the early 16th century by the reaction of acids on metals. In 1766–81, Henry Cavendish was the first to recognize that hydrogen gas was a discrete substance,[11] and that it produces water when burned, the property for which it was later named: in Greek, hydrogen means "water-former".

Industrial production is mainly from steam reforming natural gas, and less often from more energy-intensive methods such as the electrolysis of water.[12] Most hydrogen is used near the site of its production, the two largest uses being fossil fuel processing (e.g., hydrocracking) and ammonia production, mostly for the fertilizer market. Hydrogen is a concern in metallurgy as it can embrittle many metals,[13] complicating the design of pipelines and storage tanks.[14]

Properties

Combustion

A black cup-like object hanging by its bottom with blue glow coming out of its opening.
The Space Shuttle Main Engine burnt hydrogen with oxygen, producing a nearly invisible flame at full thrust.
Explosion of a hydrogen–air mixture.

Hydrogen gas (dihydrogen or molecular hydrogen)[15] is highly flammable and will burn in air at a very wide range of concentrations between 4% and 75% by volume.[16] The enthalpy of combustion is −286 kJ/mol:[17]

2 H2(g) + O2(g) → 2 H2O(l) + 572 kJ (286 kJ/mol)[note 2]

Hydrogen gas forms explosive mixtures with air in concentrations from 4–74% and with chlorine at 5–95%. The explosive reactions may be triggered by spark, heat, or sunlight. The hydrogen autoignition temperature, the temperature of spontaneous ignition in air, is 500 °C (932 °F).[18] Pure hydrogen-oxygen flames emit ultraviolet light and with high oxygen mix are nearly invisible to the naked eye, as illustrated by the faint plume of the Space Shuttle Main Engine, compared to the highly visible plume of a Space Shuttle Solid Rocket Booster, which uses an ammonium perchlorate composite. The detection of a burning hydrogen leak may require a flame detector; such leaks can be very dangerous. Hydrogen flames in other conditions are blue, resembling blue natural gas flames.[19]

The destruction of the Hindenburg airship was a notorious example of hydrogen combustion and the cause is still debated. The visible orange flames in that incident were the result of a rich mixture of hydrogen to oxygen combined with carbon compounds from the airship skin.

H2 reacts with every oxidizing element. Hydrogen can react spontaneously and violently at room temperature with chlorine and fluorine to form the corresponding hydrogen halides, hydrogen chloride and hydrogen fluoride, which are also potentially dangerous acids.[20]

Electron energy levels

Drawing of a light-gray large sphere with a cut off quarter and a black small sphere and numbers 1.7x10−5 illustrating their relative diameters.
Depiction of a hydrogen atom with size of central proton shown, and the atomic diameter shown as about twice the Bohr model radius (image not to scale)

The ground state energy level of the electron in a hydrogen atom is −13.6 eV,[21] which is equivalent to an ultraviolet photon of roughly 91 nm wavelength.[22]

The energy levels of hydrogen can be calculated fairly accurately using the Bohr model of the atom, which conceptualizes the electron as "orbiting" the proton in analogy to the Earth's orbit of the Sun. However, the atomic electron and proton are held together by electromagnetic force, while planets and celestial objects are held by gravity. Because of the discretization of angular momentum postulated in early quantum mechanics by Bohr, the electron in the Bohr model can only occupy certain allowed distances from the proton, and therefore only certain allowed energies.[23]

A more accurate description of the hydrogen atom comes from a purely quantum mechanical treatment that uses the Schrödinger equation, Dirac equation or even the Feynman path integral formulation to calculate the probability density of the electron around the proton.[24] The most complicated treatments allow for the small effects of special relativity and vacuum polarization. In the quantum mechanical treatment, the electron in a ground state hydrogen atom has no angular momentum at all—illustrating how the "planetary orbit" differs from electron motion.

Elemental molecular forms

Two bright circles on dark background, both contain numerous thin black lines inside.
First tracks observed in liquid hydrogen bubble chamber at the Bevatron

There exist two different spin isomers of hydrogen diatomic molecules that differ by the relative spin of their nuclei.[25] In the orthohydrogen form, the spins of the two protons are parallel and form a triplet state with a molecular spin quantum number of 1 (​12+​12); in the parahydrogen form the spins are antiparallel and form a singlet with a molecular spin quantum number of 0 (​12–​12). At standard temperature and pressure, hydrogen gas contains about 25% of the para form and 75% of the ortho form, also known as the "normal form".[26] The equilibrium ratio of orthohydrogen to parahydrogen depends on temperature, but because the ortho form is an excited state and has a higher energy than the para form, it is unstable and cannot be purified. At very low temperatures, the equilibrium state is composed almost exclusively of the para form. The liquid and gas phase thermal properties of pure parahydrogen differ significantly from those of the normal form because of differences in rotational heat capacities, as discussed more fully in spin isomers of hydrogen.[27] The ortho/para distinction also occurs in other hydrogen-containing molecules or functional groups, such as water and methylene, but is of little significance for their thermal properties.[28]

The uncatalyzed interconversion between para and ortho H2 increases with increasing temperature; thus rapidly condensed H2 contains large quantities of the high-energy ortho form that converts to the para form very slowly.[29] The ortho/para ratio in condensed H2 is an important consideration in the preparation and storage of liquid hydrogen: the conversion from ortho to para is exothermic and produces enough heat to evaporate some of the hydrogen liquid, leading to loss of liquefied material. Catalysts for the ortho-para interconversion, such as ferric oxide, activated carbon, platinized asbestos, rare earth metals, uranium compounds, chromic oxide, or some nickel[30] compounds, are used during hydrogen cooling.[31]

Phases

Compounds

Covalent and organic compounds

While H2 is not very reactive under standard conditions, it does form compounds with most elements. Hydrogen can form compounds with elements that are more electronegative, such as halogens (e.g., F, Cl, Br, I), or oxygen; in these compounds hydrogen takes on a partial positive charge.[32] When bonded to fluorine, oxygen, or nitrogen, hydrogen can participate in a form of medium-strength noncovalent bonding with the hydrogen of other similar molecules, a phenomenon called hydrogen bonding that is critical to the stability of many biological molecules.[33][34] Hydrogen also forms compounds with less electronegative elements, such as metals and metalloids, where it takes on a partial negative charge. These compounds are often known as hydrides.[35]

Hydrogen forms a vast array of compounds with carbon called the hydrocarbons, and an even vaster array with heteroatoms that, because of their general association with living things, are called organic compounds.[36] The study of their properties is known as organic chemistry[37] and their study in the context of living organisms is known as biochemistry.[38] By some definitions, "organic" compounds are only required to contain carbon. However, most of them also contain hydrogen, and because it is the carbon-hydrogen bond which gives this class of compounds most of its particular chemical characteristics, carbon-hydrogen bonds are required in some definitions of the word "organic" in chemistry.[36] Millions of hydrocarbons are known, and they are usually formed by complicated synthetic pathways that seldom involve elementary hydrogen.

Hydrides

Compounds of hydrogen are often called hydrides, a term that is used fairly loosely. The term "hydride" suggests that the H atom has acquired a negative or anionic character, denoted H, and is used when hydrogen forms a compound with a more electropositive element. The existence of the hydride anion, suggested by Gilbert N. Lewis in 1916 for group 1 and 2 salt-like hydrides, was demonstrated by Moers in 1920 by the electrolysis of molten lithium hydride (LiH), producing a stoichiometry quantity of hydrogen at the anode.[39] For hydrides other than group 1 and 2 metals, the term is quite misleading, considering the low electronegativity of hydrogen. An exception in group 2 hydrides is BeH
2
, which is polymeric. In lithium aluminium hydride, the AlH
4
anion carries hydridic centers firmly attached to the Al(III).

Although hydrides can be formed with almost all main-group elements, the number and combination of possible compounds varies widely; for example, more than 100 binary borane hydrides are known, but only one binary aluminium hydride.[40] Binary indium hydride has not yet been identified, although larger complexes exist.[41]

In inorganic chemistry, hydrides can also serve as bridging ligands that link two metal centers in a coordination complex. This function is particularly common in group 13 elements, especially in boranes (boron hydrides) and aluminium complexes, as well as in clustered carboranes.[42]

Protons and acids

Oxidation of hydrogen removes its electron and gives H+, which contains no electrons and a nucleus which is usually composed of one proton. That is why H+
is often called a proton. This species is central to discussion of acids. Under the Bronsted-Lowry theory, acids are proton donors, while bases are proton acceptors.

A bare proton, H+
, cannot exist in solution or in ionic crystals because of its unstoppable attraction to other atoms or molecules with electrons. Except at the high temperatures associated with plasmas, such protons cannot be removed from the electron clouds of atoms and molecules, and will remain attached to them. However, the term 'proton' is sometimes used loosely and metaphorically to refer to positively charged or cationic hydrogen attached to other species in this fashion, and as such is denoted "H+
" without any implication that any single protons exist freely as a species.

To avoid the implication of the naked "solvated proton" in solution, acidic aqueous solutions are sometimes considered to contain a less unlikely fictitious species, termed the "hydronium ion" (H
3
O+
). However, even in this case, such solvated hydrogen cations are more realistically conceived as being organized into clusters that form species closer to H
9
O+
4
.[43] Other oxonium ions are found when water is in acidic solution with other solvents.[44]

Although exotic on Earth, one of the most common ions in the universe is the H+
3
ion, known as protonated molecular hydrogen or the trihydrogen cation.[45]

Isotopes

Hydrogen discharge (spectrum) tube
Deuterium discharge (spectrum) tube
Schematic drawing of a positive atom in the center orbited by a negative particle.
Protium, the most common isotope of hydrogen, has one proton and one electron. Unique among all stable isotopes, it has no neutrons (see diproton for a discussion of why others do not exist).

Hydrogen has three naturally occurring isotopes, denoted 1
H
, 2
H
and 3
H
. Other, highly unstable nuclei (4
H
to 7
H
) have been synthesized in the laboratory but not observed in nature.[46][47]

  • 1
    H
    is the most common hydrogen isotope with an abundance of more than 99.98%. Because the nucleus of this isotope consists of only a single proton, it is given the descriptive but rarely used formal name protium.[48]
  • 2
    H
    , the other stable hydrogen isotope, is known as deuterium and contains one proton and one neutron in the nucleus. All deuterium in the universe is thought to have been produced at the time of the Big Bang, and has endured since that time. Deuterium is not radioactive, and does not represent a significant toxicity hazard. Water enriched in molecules that include deuterium instead of normal hydrogen is called heavy water. Deuterium and its compounds are used as a non-radioactive label in chemical experiments and in solvents for 1
    H
    -NMR spectroscopy.[49] Heavy water is used as a neutron moderator and coolant for nuclear reactors. Deuterium is also a potential fuel for commercial nuclear fusion.[50]
  • 3
    H
    is known as tritium and contains one proton and two neutrons in its nucleus. It is radioactive, decaying into helium-3 through beta decay with a half-life of 12.32 years.[42] It is so radioactive that it can be used in luminous paint, making it useful in such things as watches. The glass prevents the small amount of radiation from getting out.[51] Small amounts of tritium are produced naturally by the interaction of cosmic rays with atmospheric gases; tritium has also been released during nuclear weapons tests.[52] It is used in nuclear fusion reactions,[53] as a tracer in isotope geochemistry,[54] and in specialized self-powered lighting devices.[55] Tritium has also been used in chemical and biological labeling experiments as a radiolabel.[56]

Hydrogen is the only element that has different names for its isotopes in common use today. During the early study of radioactivity, various heavy radioactive isotopes were given their own names, but such names are no longer used, except for deuterium and tritium. The symbols D and T (instead of 2
H
and 3
H
) are sometimes used for deuterium and tritium, but the corresponding symbol for protium, P, is already in use for phosphorus and thus is not available for protium.[57] In its nomenclatural guidelines, the International Union of Pure and Applied Chemistry (IUPAC) allows any of D, T, 2
H
, and 3
H
to be used, although 2
H
and 3
H
are preferred.[58]

The exotic atom muonium (symbol Mu), composed of an antimuon and an electron, is also sometimes considered as a light radioisotope of hydrogen, due to the mass difference between the antimuon and the electron.[59] Muonium was discovered in 1960.[60] During the muon's 2.2 µs lifetime, muonium can enter into compounds such as muonium chloride (MuCl) or sodium muonide (NaMu), analogous to hydrogen chloride and sodium hydride respectively.[61]

History

Discovery and use

In 1671, Robert Boyle discovered and described the reaction between iron filings and dilute acids, which results in the production of hydrogen gas.[62][63] In 1766, Henry Cavendish was the first to recognize hydrogen gas as a discrete substance, by naming the gas from a metal-acid reaction "inflammable air". He speculated that "inflammable air" was in fact identical to the hypothetical substance called "phlogiston"[64][65] and further finding in 1781 that the gas produces water when burned. He is usually given credit for the discovery of hydrogen as an element.[5][6] In 1783, Antoine Lavoisier gave the element the name hydrogen (from the Greek ὑδρο- hydro meaning "water" and -γενής genes meaning "creator")[7] when he and Laplace reproduced Cavendish's finding that water is produced when hydrogen is burned.[6]

Antoine-Laurent de Lavoisier

Lavoisier produced hydrogen for his experiments on mass conservation by reacting a flux of steam with metallic iron through an incandescent iron tube heated in a fire. Anaerobic oxidation of iron by the protons of water at high temperature can be schematically represented by the set of following reactions:

   Fe +    H2O → FeO + H2
2 Fe + 3 H2O → Fe2O3 + 3 H2
3 Fe + 4 H2O → Fe3O4 + 4 H2

Many metals such as zirconium undergo a similar reaction with water leading to the production of hydrogen.

Hydrogen was liquefied for the first time by James Dewar in 1898 by using regenerative cooling and his invention, the vacuum flask.[6] He produced solid hydrogen the next year.[6] Deuterium was discovered in December 1931 by Harold Urey, and tritium was prepared in 1934 by Ernest Rutherford, Mark Oliphant, and Paul Harteck.[5] Heavy water, which consists of deuterium in the place of regular hydrogen, was discovered by Urey's group in 1932.[6] François Isaac de Rivaz built the first de Rivaz engine, an internal combustion engine powered by a mixture of hydrogen and oxygen in 1806. Edward Daniel Clarke invented the hydrogen gas blowpipe in 1819. The Döbereiner's lamp and limelight were invented in 1823.[6]

The first hydrogen-filled balloon was invented by Jacques Charles in 1783.[6] Hydrogen provided the lift for the first reliable form of air-travel following the 1852 invention of the first hydrogen-lifted airship by Henri Giffard.[6] German count Ferdinand von Zeppelin promoted the idea of rigid airships lifted by hydrogen that later were called Zeppelins; the first of which had its maiden flight in 1900.[6] Regularly scheduled flights started in 1910 and by the outbreak of World War I in August 1914, they had carried 35,000 passengers without a serious incident. Hydrogen-lifted airships were used as observation platforms and bombers during the war.

The first non-stop transatlantic crossing was made by the British airship R34 in 1919. Regular passenger service resumed in the 1920s and the discovery of helium reserves in the United States promised increased safety, but the U.S. government refused to sell the gas for this purpose. Therefore, H2 was used in the Hindenburg airship, which was destroyed in a midair fire over New Jersey on 6 May 1937.[6] The incident was broadcast live on radio and filmed. Ignition of leaking hydrogen is widely assumed to be the cause, but later investigations pointed to the ignition of the aluminized fabric coating by static electricity. But the damage to hydrogen's reputation as a lifting gas was already done and commercial hydrogen airship travel ceased. Hydrogen is still used, in preference to non-flammable but more expensive helium, as a lifting gas for weather balloons.

In the same year the first hydrogen-cooled turbogenerator went into service with gaseous hydrogen as a coolant in the rotor and the stator in 1937 at Dayton, Ohio, by the Dayton Power & Light Co.;[66] because of the thermal conductivity of hydrogen gas, this is the most common type in its field today.

The nickel hydrogen battery was used for the first time in 1977 aboard the U.S. Navy's Navigation technology satellite-2 (NTS-2).[67] For example, the ISS,[68] Mars Odyssey[69] and the Mars Global Surveyor[70] are equipped with nickel-hydrogen batteries. In the dark part of its orbit, the Hubble Space Telescope is also powered by nickel-hydrogen batteries, which were finally replaced in May 2009,[71] more than 19 years after launch and 13 years beyond their design life.[72]

Role in quantum theory

A line spectrum showing black background with narrow lines superimposed on it: one violet, one blue, one cyan, and one red.
Hydrogen emission spectrum lines in the visible range. These are the four visible lines of the Balmer series

Because of its simple atomic structure, consisting only of a proton and an electron, the hydrogen atom, together with the spectrum of light produced from it or absorbed by it, has been central to the development of the theory of atomic structure.[73] Furthermore, study of the corresponding simplicity of the hydrogen molecule and the corresponding cation H+
2
brought understanding of the nature of the chemical bond, which followed shortly after the quantum mechanical treatment of the hydrogen atom had been developed in the mid-1920s.

One of the first quantum effects to be explicitly noticed (but not understood at the time) was a Maxwell observation involving hydrogen, half a century before full quantum mechanical theory arrived. Maxwell observed that the specific heat capacity of H2 unaccountably departs from that of a diatomic gas below room temperature and begins to increasingly resemble that of a monatomic gas at cryogenic temperatures. According to quantum theory, this behavior arises from the spacing of the (quantized) rotational energy levels, which are particularly wide-spaced in H2 because of its low mass. These widely spaced levels inhibit equal partition of heat energy into rotational motion in hydrogen at low temperatures. Diatomic gases composed of heavier atoms do not have such widely spaced levels and do not exhibit the same effect.[74]

Antihydrogen (
H
) is the antimatter counterpart to hydrogen. It consists of an antiproton with a positron. Antihydrogen is the only type of antimatter atom to have been produced as of 2015.[75][76]

Natural occurrence

Hydrogen, as atomic H, is the most abundant chemical element in the universe, making up 75% of normal matter by mass and more than 90% by number of atoms. (Most of the mass of the universe, however, is not in the form of chemical-element type matter, but rather is postulated to occur as yet-undetected forms of mass such as dark matter and dark energy.[77]) This element is found in great abundance in stars and gas giant planets. Molecular clouds of H2 are associated with star formation. Hydrogen plays a vital role in powering stars through the proton-proton reaction and the CNO cycle nuclear fusion.[78]

Throughout the universe, hydrogen is mostly found in the atomic and plasma states, with properties quite different from those of molecular hydrogen. As a plasma, hydrogen's electron and proton are not bound together, resulting in very high electrical conductivity and high emissivity (producing the light from the Sun and other stars). The charged particles are highly influenced by magnetic and electric fields. For example, in the solar wind they interact with the Earth's magnetosphere giving rise to Birkeland currents and the aurora. Hydrogen is found in the neutral atomic state in the interstellar medium. The large amount of neutral hydrogen found in the damped Lyman-alpha systems is thought to dominate the cosmological baryonic density of the Universe up to redshift z=4.[79]

Under ordinary conditions on Earth, elemental hydrogen exists as the diatomic gas, H2. However, hydrogen gas is very rare in the Earth's atmosphere (1 ppm by volume) because of its light weight, which enables it to escape from Earth's gravity more easily than heavier gases. However, hydrogen is the third most abundant element on the Earth's surface,[80] mostly in the form of chemical compounds such as hydrocarbons and water.[42] Hydrogen gas is produced by some bacteria and algae and is a natural component of flatus, as is methane, itself a hydrogen source of increasing importance.[81]

A molecular form called protonated molecular hydrogen (H+
3
) is found in the interstellar medium, where it is generated by ionization of molecular hydrogen from cosmic rays. This charged ion has also been observed in the upper atmosphere of the planet Jupiter. The ion is relatively stable in the environment of outer space due to the low temperature and density. H+
3
is one of the most abundant ions in the Universe, and it plays a notable role in the chemistry of the interstellar medium.[82] Neutral triatomic hydrogen H3 can exist only in an excited form and is unstable.[83] By contrast, the positive hydrogen molecular ion (H+
2
) is a rare molecule in the universe.

Production

H
2
is produced in chemistry and biology laboratories, often as a by-product of other reactions; in industry for the hydrogenation of unsaturated substrates; and in nature as a means of expelling reducing equivalents in biochemical reactions.

Steam reforming

Hydrogen can be prepared in several different ways, but economically the most important processes involve removal of hydrogen from hydrocarbons, as about 95% of hydrogen production came from steam reforming around year 2000.[84] Commercial bulk hydrogen is usually produced by the steam reforming of natural gas.[85] At high temperatures (1000–1400 K, 700–1100 °C or 1300–2000 °F), steam (water vapor) reacts with methane to yield carbon monoxide and H
2
.

CH
4
+ H
2
O
→ CO + 3 H
2

This reaction is favored at low pressures but is nonetheless conducted at high pressures (2.0  MPa, 20 atm or 600 inHg). This is because high-pressure H
2
is the most marketable product and pressure swing adsorption (PSA) purification systems work better at higher pressures. The product mixture is known as "synthesis gas" because it is often used directly for the production of methanol and related compounds. Hydrocarbons other than methane can be used to produce synthesis gas with varying product ratios. One of the many complications to this highly optimized technology is the formation of coke or carbon:

CH
4
→ C + 2 H
2

Consequently, steam reforming typically employs an excess of H
2
O
. Additional hydrogen can be recovered from the steam by use of carbon monoxide through the water gas shift reaction, especially with an iron oxide catalyst. This reaction is also a common industrial source of carbon dioxide:[85]

CO + H
2
O
CO
2
+ H
2

Other important methods for H
2
production include partial oxidation of hydrocarbons:[86]

2 CH
4
+ O
2
→ 2 CO + 4 H
2

and the coal reaction, which can serve as a prelude to the shift reaction above:[85]

C + H
2
O
→ CO + H
2

Hydrogen is sometimes produced and consumed in the same industrial process, without being separated. In the Haber process for the production of ammonia, hydrogen is generated from natural gas.[87] Electrolysis of brine to yield chlorine also produces hydrogen as a co-product.[88]

Metal-acid

In the laboratory, H
2
is usually prepared by the reaction of dilute non-oxidizing acids on some reactive metals such as zinc with Kipp's apparatus.

Zn + 2 H+
Zn2+
+ H
2

Aluminium can also produce H
2
upon treatment with bases:

2 Al + 6 H
2
O
+ 2 OH
→ 2 Al(OH)
4
+ 3 H
2

The electrolysis of water is a simple method of producing hydrogen. A low voltage current is run through the water, and gaseous oxygen forms at the anode while gaseous hydrogen forms at the cathode. Typically the cathode is made from platinum or another inert metal when producing hydrogen for storage. If, however, the gas is to be burnt on site, oxygen is desirable to assist the combustion, and so both electrodes would be made from inert metals. (Iron, for instance, would oxidize, and thus decrease the amount of oxygen given off.) The theoretical maximum efficiency (electricity used vs. energetic value of hydrogen produced) is in the range 80–94%.[89]

2 H
2
O
(l) → 2 H
2
(g) + O
2
(g)

An alloy of aluminium and gallium in pellet form added to water can be used to generate hydrogen. The process also produces alumina, but the expensive gallium, which prevents the formation of an oxide skin on the pellets, can be re-used. This has important potential implications for a hydrogen economy, as hydrogen can be produced on-site and does not need to be transported.[90]

Thermochemical

There are more than 200 thermochemical cycles which can be used for water splitting, around a dozen of these cycles such as the iron oxide cycle, cerium(IV) oxide–cerium(III) oxide cycle, zinc zinc-oxide cycle, sulfur-iodine cycle, copper-chlorine cycle and hybrid sulfur cycle are under research and in testing phase to produce hydrogen and oxygen from water and heat without using electricity.[91] A number of laboratories (including in France, Germany, Greece, Japan, and the USA) are developing thermochemical methods to produce hydrogen from solar energy and water.[92]

Anaerobic corrosion

Under anaerobic conditions, iron and steel alloys are slowly oxidized by the protons of water concomitantly reduced in molecular hydrogen (H
2
). The anaerobic corrosion of iron leads first to the formation of ferrous hydroxide (green rust) and can be described by the following reaction:

Fe + 2 H
2
O → Fe(OH)
2
+ H
2

In its turn, under anaerobic conditions, the ferrous hydroxide (Fe(OH)
2
) can be oxidized by the protons of water to form magnetite and molecular hydrogen. This process is described by the Schikorr reaction:

3 Fe(OH)
2
Fe
3
O
4
+ 2 H
2
O + H
2
ferrous hydroxide → magnetite + water + hydrogen

The well crystallized magnetite (Fe
3
O
4
) is thermodynamically more stable than the ferrous hydroxide (Fe(OH)
2
).

This process occurs during the anaerobic corrosion of iron and steel in oxygen-free groundwater and in reducing soils below the water table.

Geological occurrence: the serpentinization reaction

In the absence of atmospheric oxygen (O
2
), in deep geological conditions prevailing far away from Earth atmosphere, hydrogen (H
2
) is produced during the process of serpentinization by the anaerobic oxidation by the water protons (H+) of the ferrous (Fe2+) silicate present in the crystal lattice of the fayalite (Fe
2
SiO
4
, the olivine iron-endmember). The corresponding reaction leading to the formation of magnetite (Fe
3
O
4
), quartz (SiO
2
) and hydrogen (H
2
) is the following:

3Fe
2
SiO
4
+ 2 H
2
O → 2 Fe
3
O
4
+ 3 SiO
2
+ 3 H
2
fayalite + water → magnetite + quartz + hydrogen

This reaction closely resembles the Schikorr reaction observed in the anaerobic oxidation of the ferrous hydroxide in contact with water.

Formation in transformers

From all the fault gases formed in power transformers, hydrogen is the most common and is generated under most fault conditions; thus, formation of hydrogen is an early indication of serious problems in the transformer's life cycle.[93]

Applications

Consumption in processes

Large quantities of H
2
are needed in the petroleum and chemical industries. The largest application of H
2
is for the processing ("upgrading") of fossil fuels, and in the production of ammonia. The key consumers of H
2
in the petrochemical plant include hydrodealkylation, hydrodesulfurization, and hydrocracking. H
2
has several other important uses. H
2
is used as a hydrogenating agent, particularly in increasing the level of saturation of unsaturated fats and oils (found in items such as margarine), and in the production of methanol. It is similarly the source of hydrogen in the manufacture of hydrochloric acid. H
2
is also used as a reducing agent of metallic ores.[94]

Hydrogen is highly soluble in many rare earth and transition metals[95] and is soluble in both nanocrystalline and amorphous metals.[96] Hydrogen solubility in metals is influenced by local distortions or impurities in the crystal lattice.[97] These properties may be useful when hydrogen is purified by passage through hot palladium disks, but the gas's high solubility is a metallurgical problem, contributing to the embrittlement of many metals,[13] complicating the design of pipelines and storage tanks.[14]

Apart from its use as a reactant, H
2
has wide applications in physics and engineering. It is used as a shielding gas in welding methods such as atomic hydrogen welding.[98][99] H2 is used as the rotor coolant in electrical generators at power stations, because it has the highest thermal conductivity of any gas. Liquid H2 is used in cryogenic research, including superconductivity studies.[100] Because H
2
is lighter than air, having a little more than ​114 of the density of air, it was once widely used as a lifting gas in balloons and airships.[101]

In more recent applications, hydrogen is used pure or mixed with nitrogen (sometimes called forming gas) as a tracer gas for minute leak detection. Applications can be found in the automotive, chemical, power generation, aerospace, and telecommunications industries.[102] Hydrogen is an authorized food additive (E 949) that allows food package leak testing among other anti-oxidizing properties.[103]

Hydrogen's rarer isotopes also each have specific applications. Deuterium (hydrogen-2) is used in nuclear fission applications as a moderator to slow neutrons, and in nuclear fusion reactions.[6] Deuterium compounds have applications in chemistry and biology in studies of reaction isotope effects.[104] Tritium (hydrogen-3), produced in nuclear reactors, is used in the production of hydrogen bombs,[105] as an isotopic label in the biosciences,[56] and as a radiation source in luminous paints.[106]

The triple point temperature of equilibrium hydrogen is a defining fixed point on the ITS-90 temperature scale at 13.8033 kelvins.[107]

Coolant

Hydrogen is commonly used in power stations as a coolant in generators due to a number of favorable properties that are a direct result of its light diatomic molecules. These include low density, low viscosity, and the highest specific heat and thermal conductivity of all gases.

Energy carrier

Hydrogen is not an energy resource,[108] except in the hypothetical context of commercial nuclear fusion power plants using deuterium or tritium, a technology presently far from development.[109] The Sun's energy comes from nuclear fusion of hydrogen, but this process is difficult to achieve controllably on Earth.[110] Elemental hydrogen from solar, biological, or electrical sources requires more energy to make than is obtained by burning it, so in these cases hydrogen functions as an energy carrier, like a battery. Hydrogen may be obtained from fossil sources (such as methane), but these sources are unsustainable.[108]

The energy density per unit volume of both liquid hydrogen and compressed hydrogen gas at any practicable pressure is significantly less than that of traditional fuel sources, although the energy density per unit fuel mass is higher.[108] Nevertheless, elemental hydrogen has been widely discussed in the context of energy, as a possible future carrier of energy on an economy-wide scale.[111] For example, CO
2
sequestration followed by carbon capture and storage could be conducted at the point of H
2
production from fossil fuels.[112] Hydrogen used in transportation would burn relatively cleanly, with some NOx emissions,[113] but without carbon emissions.[112] However, the infrastructure costs associated with full conversion to a hydrogen economy would be substantial.[114] Fuel cells can convert hydrogen and oxygen directly to electricity more efficiently than internal combustion engines.[115]

Semiconductor industry

Hydrogen is employed to saturate broken ("dangling") bonds of amorphous silicon and amorphous carbon that helps stabilizing material properties.[116] It is also a potential electron donor in various oxide materials, including ZnO,[117][118] SnO2, CdO, MgO,[119] ZrO2, HfO2, La2O3, Y2O3, TiO2, SrTiO3, LaAlO3, SiO2, Al2O3, ZrSiO4, HfSiO4, and SrZrO3.[120]

Biological reactions

H2 is a product of some types of anaerobic metabolism and is produced by several microorganisms, usually via reactions catalyzed by iron- or nickel-containing enzymes called hydrogenases. These enzymes catalyze the reversible redox reaction between H2 and its component two protons and two electrons. Creation of hydrogen gas occurs in the transfer of reducing equivalents produced during pyruvate fermentation to water.[121] The natural cycle of hydrogen production and consumption by organisms is called the hydrogen cycle.[122]

Water splitting, in which water is decomposed into its component protons, electrons, and oxygen, occurs in the light reactions in all photosynthetic organisms. Some such organisms, including the alga Chlamydomonas reinhardtii and cyanobacteria, have evolved a second step in the dark reactions in which protons and electrons are reduced to form H2 gas by specialized hydrogenases in the chloroplast.[123] Efforts have been undertaken to genetically modify cyanobacterial hydrogenases to efficiently synthesize H2 gas even in the presence of oxygen.[124] Efforts have also been undertaken with genetically modified alga in a bioreactor.[125]

Safety and precautions

Hydrogen poses a number of hazards to human safety, from potential detonations and fires when mixed with air to being an asphyxiant in its pure, oxygen-free form.[126] In addition, liquid hydrogen is a cryogen and presents dangers (such as frostbite) associated with very cold liquids.[127] Hydrogen dissolves in many metals, and, in addition to leaking out, may have adverse effects on them, such as hydrogen embrittlement,[128] leading to cracks and explosions.[129] Hydrogen gas leaking into external air may spontaneously ignite. Moreover, hydrogen fire, while being extremely hot, is almost invisible, and thus can lead to accidental burns.[130]

Even interpreting the hydrogen data (including safety data) is confounded by a number of phenomena. Many physical and chemical properties of hydrogen depend on the parahydrogen/orthohydrogen ratio (it often takes days or weeks at a given temperature to reach the equilibrium ratio, for which the data is usually given). Hydrogen detonation parameters, such as critical detonation pressure and temperature, strongly depend on the container geometry.[126]

Notes

  1. ^ However, most of the universe's mass is not in the form of baryons or chemical elements. See dark matter and dark energy.
  2. ^ 286 kJ/mol: energy per mole of the combustible material (molecular hydrogen)

References

  1. ^ Meija, J.; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry. 88 (3): 265–91. doi:10.1515/pac-2015-0305. 
  2. ^ Wiberg, Egon; Wiberg, Nils; Holleman, Arnold Frederick (2001). Inorganic chemistry. Academic Press. p. 240. ISBN 0123526515. 
  3. ^ Lide, D. R., ed. (2005). "Magnetic susceptibility of the elements and inorganic compounds". CRC Handbook of Chemistry and Physics (PDF) (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5. 
  4. ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4. 
  5. ^ a b c "Hydrogen". Van Nostrand's Encyclopedia of Chemistry. Wylie-Interscience. 2005. pp. 797–799. ISBN 0-471-61525-0. 
  6. ^ a b c d e f g h i j k l Emsley, John (2001). Nature's Building Blocks. Oxford: Oxford University Press. pp. 183–191. ISBN 0-19-850341-5. 
  7. ^ a b Stwertka, Albert (1996). A Guide to the Elements. Oxford University Press. pp. 16–21. ISBN 0-19-508083-1. 
  8. ^ Simpson, J. A.; Weiner, E. S. C. (1989). "Hydrogen". Oxford English Dictionary. 7 (2nd ed.). Clarendon Press. ISBN 0-19-861219-2. 
  9. ^ Palmer, D. (13 September 1997). "Hydrogen in the Universe". NASA. Retrieved 5 February 2008. 
  10. ^ Laursen, S.; Chang, J.; Medlin, W.; Gürmen, N.; Fogler, H. S. (27 July 2004). "An extremely brief introduction to computational quantum chemistry". Molecular Modeling in Chemical Engineering. University of Michigan. Retrieved 4 May 2015. 
  11. ^ Presenter: Professor Jim Al-Khalili (21 January 2010). "Discovering the Elements". Chemistry: A Volatile History. 25:40 minutes in. BBC. BBC Four. 
  12. ^ "Hydrogen Basics – Production". Florida Solar Energy Center. 2007. Retrieved 5 February 2008. 
  13. ^ a b Rogers, H. C. (1999). "Hydrogen Embrittlement of Metals". Science. 159 (3819): 1057–1064. Bibcode:1968Sci...159.1057R. doi:10.1126/science.159.3819.1057. PMID 17775040. 
  14. ^ a b Christensen, C. H.; Nørskov, J. K.; Johannessen, T. (9 July 2005). "Making society independent of fossil fuels – Danish researchers reveal new technology". Technical University of Denmark. Retrieved 19 May 2015. 
  15. ^ "Dihydrogen". O=CHem Directory. University of Southern Maine. Archived from the original on 13 February 2009. Retrieved 6 April 2009. 
  16. ^ Carcassi, M. N.; Fineschi, F. (2005). "Deflagrations of H2–air and CH4–air lean mixtures in a vented multi-compartment environment". Energy. 30 (8): 1439–1451. doi:10.1016/j.energy.2004.02.012. 
  17. ^ Committee on Alternatives and Strategies for Future Hydrogen Production and Use, US National Research Council, US National Academy of Engineering (2004). The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs. National Academies Press. p. 240. ISBN 0-309-09163-2. 
  18. ^ Patnaik, P. (2007). A Comprehensive Guide to the Hazardous Properties of Chemical Substances. Wiley-Interscience. p. 402. ISBN 0-471-71458-5. 
  19. ^ Schefer, E. W.; Kulatilaka, W. D.; Patterson, B. D.; Settersten, T. B. (June 2009). "Visible emission of hydrogen flames". Combustion and Flame. 156 (6): 1234–1241. doi:10.1016/j.combustflame.2009.01.011. 
  20. ^ Clayton, D. D. (2003). Handbook of Isotopes in the Cosmos: Hydrogen to Gallium. Cambridge University Press. ISBN 0-521-82381-1. 
  21. ^ NAAP Labs (2009). "Energy Levels". University of Nebraska Lincoln. Retrieved 20 May 2015. 
  22. ^ "photon wavelength 13.6 eV". Wolfram Alpha. 20 May 2015. Retrieved 20 May 2015. 
  23. ^ Stern, D. P. (16 May 2005). "The Atomic Nucleus and Bohr's Early Model of the Atom". NASA Goddard Space Flight Center (mirror). Retrieved 20 December 2007. 
  24. ^ Stern, D. P. (13 February 2005). "Wave Mechanics". NASA Goddard Space Flight Center. Retrieved 16 April 2008. 
  25. ^ Staff (2003). "Hydrogen (H2) Properties, Uses, Applications: Hydrogen Gas and Liquid Hydrogen". Universal Industrial Gases, Inc. Retrieved 5 February 2008. 
  26. ^ Tikhonov, V. I.; Volkov, A. A. (2002). "Separation of Water into Its Ortho and Para Isomers". Science. 296 (5577): 2363. doi:10.1126/science.1069513. PMID 12089435. 
  27. ^ Hritz, J. (March 2006). "CH. 6 – Hydrogen" (PDF). NASA Glenn Research Center Glenn Safety Manual, Document GRC-MQSA.001. NASA. Retrieved 5 February 2008. 
  28. ^ Shinitzky, M.; Elitzur, A. C. (2006). "Ortho-para spin isomers of the protons in the methylene group". Chirality. 18 (9): 754–756. doi:10.1002/chir.20319. PMID 16856167. 
  29. ^ Milenko, Yu. Ya.; Sibileva, R. M.; Strzhemechny, M. A. (1997). "Natural ortho-para conversion rate in liquid and gaseous hydrogen". Journal of Low Temperature Physics. 107 (1–2): 77–92. Bibcode:1997JLTP..107...77M. doi:10.1007/BF02396837. 
  30. ^ Amos, Wade A. (1 November 1998). "Costs of Storing and Transporting Hydrogen" (PDF). National Renewable Energy Laboratory. pp. 6–9. Retrieved 19 May 2015. 
  31. ^ Svadlenak, R. E.; Scott, A. B. (1957). "The Conversion of Ortho- to Parahydrogen on Iron Oxide-Zinc Oxide Catalysts". Journal of the American Chemical Society. 79 (20): 5385–5388. doi:10.1021/ja01577a013. 
  32. ^ Clark, J. (2002). "The Acidity of the Hydrogen Halides". Chemguide. Retrieved 9 March 2008. 
  33. ^ Kimball, J. W. (7 August 2003). "Hydrogen". Kimball's Biology Pages. Retrieved 4 March 2008. 
  34. ^ IUPAC Compendium of Chemical Terminology, Electronic version, Hydrogen Bond
  35. ^ Sandrock, G. (2 May 2002). "Metal-Hydrogen Systems". Sandia National Laboratories. Archived from the original on 24 February 2008. Retrieved 23 March 2008. 
  36. ^ a b "Structure and Nomenclature of Hydrocarbons". Purdue University. Retrieved 23 March 2008. 
  37. ^ "Organic Chemistry". Dictionary.com. Lexico Publishing Group. 2008. Retrieved 23 March 2008. 
  38. ^ "Biochemistry". Dictionary.com. Lexico Publishing Group. 2008. Retrieved 23 March 2008. 
  39. ^ Moers, K. (1920). "Investigations on the Salt Character of Lithium Hydride". Zeitschrift für Anorganische und Allgemeine Chemie. 113 (191): 179–228. doi:10.1002/zaac.19201130116. 
  40. ^ Downs, A. J.; Pulham, C. R. (1994). "The hydrides of aluminium, gallium, indium, and thallium: a re-evaluation". Chemical Society Reviews. 23 (3): 175–184. doi:10.1039/CS9942300175. 
  41. ^ Hibbs, D. E.; Jones, C.; Smithies, N. A. (1999). "A remarkably stable indium trihydride complex: synthesis and characterisation of [InH3P(C6H11)3]". Chemical Communications (2): 185–186. doi:10.1039/a809279f. 
  42. ^ a b c Miessler, G. L.; Tarr, D. A. (2003). Inorganic Chemistry (3rd ed.). Prentice Hall. ISBN 0-13-035471-6. 
  43. ^ Okumura, A. M.; Yeh, L. I.; Myers, J. D.; Lee, Y. T. (1990). "Infrared spectra of the solvated hydronium ion: vibrational predissociation spectroscopy of mass-selected H3O+•(H2O)n•(H2)m". Journal of Physical Chemistry. 94 (9): 3416–3427. doi:10.1021/j100372a014. 
  44. ^ Perdoncin, G.; Scorrano, G. (1977). "Protonation Equilibria in Water at Several Temperatures of Alcohols, Ethers, Acetone, Dimethyl Sulfide, and Dimethyl Sulfoxide". Journal of the American Chemical Society. 99 (21): 6983–6986. doi:10.1021/ja00463a035. 
  45. ^ Carrington, A.; McNab, I. R. (1989). "The infrared predissociation spectrum of triatomic hydrogen cation (H3+)". Accounts of Chemical Research. 22 (6): 218–222. doi:10.1021/ar00162a004. 
  46. ^ Gurov, Y. B.; Aleshkin, D. V.; Behr, M. N.; Lapushkin, S. V.; Morokhov, P. V.; Pechkurov, V. A.; Poroshin, N. O.; Sandukovsky, V. G.; Tel'kushev, M. V.; Chernyshev, B. A.; Tschurenkova, T. D. (2004). "Spectroscopy of superheavy hydrogen isotopes in stopped-pion absorption by nuclei". Physics of Atomic Nuclei. 68 (3): 491–97. Bibcode:2005PAN....68..491G. doi:10.1134/1.1891200. 
  47. ^ Korsheninnikov, A.; Nikolskii, E.; Kuzmin, E.; Ozawa, A.; Morimoto, K.; Tokanai, F.; Kanungo, R.; Tanihata, I.; et al. (2003). "Experimental Evidence for the Existence of 7H and for a Specific Structure of 8He". Physical Review Letters. 90 (8): 082501. Bibcode:2003PhRvL..90h2501K. doi:10.1103/PhysRevLett.90.082501. 
  48. ^ Urey, H. C.; Brickwedde, F. G.; Murphy, G. M. (1933). "Names for the Hydrogen Isotopes". Science. 78 (2035): 602–603. Bibcode:1933Sci....78..602U. doi:10.1126/science.78.2035.602. PMID 17797765. 
  49. ^ Oda, Y.; Nakamura, H.; Yamazaki, T.; Nagayama, K.; Yoshida, M.; Kanaya, S.; Ikehara, M. (1992). "1H NMR studies of deuterated ribonuclease HI selectively labeled with protonated amino acids". Journal of Biomolecular NMR. 2 (2): 137–47. doi:10.1007/BF01875525. PMID 1330130. 
  50. ^ Broad, W. J. (11 November 1991). "Breakthrough in Nuclear Fusion Offers Hope for Power of Future". The New York Times. Retrieved 12 February 2008. 
  51. ^ Traub, R. J.; Jensen, J. A. (June 1995). "Tritium radioluminescent devices, Health and Safety Manual" (PDF). International Atomic Energy Agency. p. 2.4. Retrieved 20 May 2015. 
  52. ^ Staff (15 November 2007). "Tritium". U.S. Environmental Protection Agency. Retrieved 12 February 2008. 
  53. ^ Nave, C. R. (2006). "Deuterium-Tritium Fusion". HyperPhysics. Georgia State University. Retrieved 8 March 2008. 
  54. ^ Kendall, C.; Caldwell, E. (1998). "Fundamentals of Isotope Geochemistry". US Geological Survey. Retrieved 8 March 2008. 
  55. ^ "The Tritium Laboratory". University of Miami. 2008. Retrieved 8 March 2008. 
  56. ^ a b Holte, A. E.; Houck, M. A.; Collie, N. L. (2004). "Potential Role of Parasitism in the Evolution of Mutualism in Astigmatid Mites". Experimental and Applied Acarology. Lubbock: Texas Tech University. 25 (2): 97–107. doi:10.1023/A:1010655610575. 
  57. ^ van der Krogt, P. (5 May 2005). "Hydrogen". Elementymology & Elements Multidict. Retrieved 20 December 2010. 
  58. ^ § IR-3.3.2, Provisional Recommendations, Nomenclature of Inorganic Chemistry, Chemical Nomenclature and Structure Representation Division, IUPAC. Accessed on line 3 October 2007.
  59. ^ IUPAC (1997). "Muonium". In A.D. McNaught, A. Wilkinson. Compendium of Chemical Terminology (2nd ed.). Blackwell Scientific Publications. doi:10.1351/goldbook.M04069. ISBN 0-86542-684-8. 
  60. ^ V.W. Hughes; et al. (1960). "Formation of Muonium and Observation of its Larmor Precession". Physical Review Letters. 5 (2): 63–65. Bibcode:1960PhRvL...5...63H. doi:10.1103/PhysRevLett.5.63. 
  61. ^ W.H. Koppenol; IUPAC (2001). "Names for muonium and hydrogen atoms and their ions" (PDF). Pure and Applied Chemistry. 73 (2): 377–380. doi:10.1351/pac200173020377. 
  62. ^ Boyle, R. (1672). "Tracts written by the Honourable Robert Boyle containing new experiments, touching the relation betwixt flame and air..." London.
  63. ^ Winter, M. (2007). "Hydrogen: historical information". WebElements Ltd. Retrieved 5 February 2008. 
  64. ^ Musgrave, A. (1976). "Why did oxygen supplant phlogiston? Research programmes in the Chemical Revolution". In Howson, C. Method and appraisal in the physical sciences. The Critical Background to Modern Science, 1800–1905. Cambridge University Press. Retrieved 22 October 2011. 
  65. ^ Cavendish, Henry (12 May 1766). "Three Papers, Containing Experiments on Factitious Air, by the Hon. Henry Cavendish, F. R. S". Philosophical Transactions. The Royal Society. 56: 141–184. Bibcode:1766RSPT...56..141C. JSTOR 105491. 
  66. ^ National Electrical Manufacturers Association (1946). A chronological history of electrical development from 600 B.C. p. 102. 
  67. ^ "NTS-2 Nickel-Hydrogen Battery Performance 31". Aiaa.org. Retrieved 6 April 2009. 
  68. ^ Jannette, A. G.; Hojnicki, J. S.; McKissock, D. B.; Fincannon, J.; Kerslake, T. W.; Rodriguez, C. D. (July 2002). Validation of international space station electrical performance model via on-orbit telemetry (PDF). IECEC '02. 2002 37th Intersociety Energy Conversion Engineering Conference, 2002. pp. 45–50. doi:10.1109/IECEC.2002.1391972. ISBN 0-7803-7296-4. Retrieved 11 November 2011. 
  69. ^ Anderson, P. M.; Coyne, J. W. (2002). "A lightweight high reliability single battery power system for interplanetary spacecraft". Aerospace Conference Proceedings. 5: 5–2433. doi:10.1109/AERO.2002.1035418. ISBN 0-7803-7231-X. 
  70. ^ "Mars Global Surveyor". Astronautix.com. Archived from the original on 10 August 2009. Retrieved 6 April 2009. 
  71. ^ Lori Tyahla, ed. (7 May 2009). "Hubble servicing mission 4 essentials". NASA. Retrieved 19 May 2015. 
  72. ^ Hendrix, Susan (25 November 2008). Lori Tyahla, ed. "Extending Hubble's mission life with new batteries". NASA. Retrieved 19 May 2015. 
  73. ^ Crepeau, R. (1 January 2006). Niels Bohr: The Atomic Model. Great Scientific Minds. Great Neck Publishing. ISBN 1-4298-0723-7. 
  74. ^ Berman, R.; Cooke, A. H.; Hill, R. W. (1956). "Cryogenics". Annual Review of Physical Chemistry. 7: 1–20. Bibcode:1956ARPC....7....1B. doi:10.1146/annurev.pc.07.100156.000245. 
  75. ^ Charlton, Mike; Van Der Werf, Dirk Peter (1 March 2015). "Advances in antihydrogen physics". Science Progress. 98 (1): 34–62. doi:10.3184/003685015X14234978376369. 
  76. ^ Kellerbauer, Alban (29 January 2015). "Why Antimatter Matters". European Review. 23 (01): 45–56. doi:10.1017/S1062798714000532. 
  77. ^ Gagnon, S. "Hydrogen". Jefferson Lab. Retrieved 5 February 2008. 
  78. ^ Haubold, H.; Mathai, A. M. (15 November 2007). "Solar Thermonuclear Energy Generation". Columbia University. Archived from the original on 2011-12-11. Retrieved 12 February 2008. 
  79. ^ Storrie-Lombardi, L. J.; Wolfe, A. M. (2000). "Surveys for z > 3 Damped Lyman-alpha Absorption Systems: the Evolution of Neutral Gas". Astrophysical Journal. 543 (2): 552–576. arXiv:astro-ph/0006044Freely accessible. Bibcode:2000ApJ...543..552S. doi:10.1086/317138. 
  80. ^ Dresselhaus, M.; et al. (15 May 2003). "Basic Research Needs for the Hydrogen Economy" (PDF). Argonne National Laboratory, U.S. Department of Energy, Office of Science Laboratory. Archived from the original (PDF) on 13 February 2008. Retrieved 5 February 2008. 
  81. ^ Berger, W. H. (15 November 2007). "The Future of Methane". University of California, San Diego. Retrieved 12 February 2008. 
  82. ^ McCall Group; Oka Group (22 April 2005). "H3+ Resource Center". Universities of Illinois and Chicago. Retrieved 5 February 2008. 
  83. ^ Helm, H.; et al. "Coupling of Bound States to Continuum States in Neutral Triatomic Hydrogen" (PDF). Department of Molecular and Optical Physics, University of Freiburg, Germany. Retrieved 25 November 2009. 
  84. ^ Ogden, J. M. (1999). "Prospects for building a hydrogen energy infrastructure". Annual Review of Energy and the Environment. 24: 227–279. doi:10.1146/annurev.energy.24.1.227. 
  85. ^ a b c Oxtoby, D. W. (2002). Principles of Modern Chemistry (5th ed.). Thomson Brooks/Cole. ISBN 0-03-035373-4. 
  86. ^ "Hydrogen Properties, Uses, Applications". Universal Industrial Gases, Inc. 2007. Retrieved 11 March 2008. 
  87. ^ Funderburg, E. (2008). "Why Are Nitrogen Prices So High?". The Samuel Roberts Noble Foundation. Archived from the original on 9 May 2001. Retrieved 11 March 2008. 
  88. ^ Lees, A. (2007). "Chemicals from salt". BBC. Archived from the original on 26 October 2007. Retrieved 11 March 2008. 
  89. ^ Kruse, B.; Grinna, S.; Buch, C. (2002). "Hydrogen Status og Muligheter" (PDF). Bellona. Archived from the original (PDF) on 16 February 2008. Retrieved 12 February 2008. 
  90. ^ Venere, E. (15 May 2007). "New process generates hydrogen from aluminum alloy to run engines, fuel cells". Purdue University. Retrieved 5 February 2008. 
  91. ^ Weimer, Al (25 May 2005). "Development of solar-powered thermochemical production of hydrogen from water" (PDF). Solar Thermochemical Hydrogen Generation Project. 
  92. ^ Perret, R. "Development of Solar-Powered Thermochemical Production of Hydrogen from Water, DOE Hydrogen Program, 2007" (PDF). Retrieved 17 May 2008. 
  93. ^ Hirschler, M. M. (2000). Electrical Insulating Materials: International Issues. ASTM International. pp. 89–. ISBN 978-0-8031-2613-8. Retrieved 13 July 2012. 
  94. ^ Chemistry Operations (15 December 2003). "Hydrogen". Los Alamos National Laboratory. Retrieved 5 February 2008. 
  95. ^ Takeshita, T.; Wallace, W. E.; Craig, R. S. (1974). "Hydrogen solubility in 1:5 compounds between yttrium or thorium and nickel or cobalt". Inorganic Chemistry. 13 (9): 2282–2283. doi:10.1021/ic50139a050. 
  96. ^ Kirchheim, R.; Mutschele, T.; Kieninger, W.; Gleiter, H.; Birringer, R.; Koble, T. (1988). "Hydrogen in amorphous and nanocrystalline metals". Materials Science and Engineering. 99: 457–462. doi:10.1016/0025-5416(88)90377-1. 
  97. ^ Kirchheim, R. (1988). "Hydrogen solubility and diffusivity in defective and amorphous metals". Progress in Materials Science. 32 (4): 262–325. doi:10.1016/0079-6425(88)90010-2. 
  98. ^ Durgutlu, A. (2003). "Experimental investigation of the effect of hydrogen in argon as a shielding gas on TIG welding of austenitic stainless steel". Materials & Design. 25 (1): 19–23. doi:10.1016/j.matdes.2003.07.004. 
  99. ^ "Atomic Hydrogen Welding". Specialty Welds. 2007. Archived from the original on 16 July 2011. 
  100. ^ Hardy, W. N. (2003). "From H2 to cryogenic H masers to HiTc superconductors: An unlikely but rewarding path". Physica C: Superconductivity. 388–389: 1–6. Bibcode:2003PhyC..388....1H. doi:10.1016/S0921-4534(02)02591-1. 
  101. ^ Almqvist, Ebbe (2003). History of industrial gases. New York, N.Y.: Kluwer Academic/Plenum Publishers. pp. 47–56. ISBN 0306472775. Retrieved 20 May 2015. 
  102. ^ Block, M. (3 September 2004). Hydrogen as Tracer Gas for Leak Detection. 16th WCNDT 2004. Montreal, Canada: Sensistor Technologies. Retrieved 25 March 2008. 
  103. ^ "Report from the Commission on Dietary Food Additive Intake" (PDF). European Union. Retrieved 5 February 2008. 
  104. ^ Reinsch, J.; Katz, A.; Wean, J.; Aprahamian, G.; MacFarland, J. T. (1980). "The deuterium isotope effect upon the reaction of fatty acyl-CoA dehydrogenase and butyryl-CoA". J. Biol. Chem. 255 (19): 9093–97. PMID 7410413. 
  105. ^ Bergeron, K. D. (2004). "The Death of no-dual-use". Bulletin of the Atomic Scientists. Educational Foundation for Nuclear Science, Inc. 60 (1): 15. doi:10.2968/060001004. 
  106. ^ Quigg, C. T. (March 1984). "Tritium Warning". Bulletin of the Atomic Scientists. 40 (3): 56–57. 
  107. ^ International Temperature Scale of 1990 (PDF). Procès-Verbaux du Comité International des Poids et Mesures. 1989. pp. T23–T42. Retrieved 25 March 2008. 
  108. ^ a b c McCarthy, J. (31 December 1995). "Hydrogen". Stanford University. Retrieved 14 March 2008. 
  109. ^ "Nuclear Fusion Power". World Nuclear Association. May 2007. Retrieved 16 March 2008. 
  110. ^ "Chapter 13: Nuclear Energy – Fission and Fusion". Energy Story. California Energy Commission. 2006. Archived from the original on 2 March 2008. Retrieved 14 March 2008. 
  111. ^ "DOE Seeks Applicants for Solicitation on the Employment Effects of a Transition to a Hydrogen Economy". Hydrogen Program (Press release). US Department of Energy. 22 March 2006. Archived from the original on 19 July 2011. Retrieved 16 March 2008. 
  112. ^ a b "Carbon Capture Strategy Could Lead to Emission-Free Cars" (Press release). Georgia Tech. 11 February 2008. Retrieved 16 March 2008. 
  113. ^ Heffel, J. W. (2002). "NOx emission and performance data for a hydrogen fueled internal combustion engine at 1500 rpm using exhaust gas recirculation". International Journal of Hydrogen Energy. 28 (8): 901–908. doi:10.1016/S0360-3199(02)00157-X. 
  114. ^ Romm, J. J. (2004). The Hype About Hydrogen: Fact And Fiction in the Race To Save The Climate (1st ed.). Island Press. ISBN 1-55963-703-X. 
  115. ^ Garbak, John (2011). "VIII.0 Technology Validation Sub-Program Overview" (PDF). DOE Fuel Cell Technologies Program, FY 2010 Annual Progress Report. Retrieved 20 May 2015. 
  116. ^ Le Comber, P. G.; Jones, D. I.; Spear, W. E. (1977). "Hall effect and impurity conduction in substitutionally doped amorphous silicon". Philosophical Magazine. 35 (5): 1173–1187. Bibcode:1977PMag...35.1173C. doi:10.1080/14786437708232943. 
  117. ^ Van de Walle, C. G. (2000). "Hydrogen as a cause of doping in zinc oxide". Physical Review Letters. 85 (5): 1012–1015. Bibcode:2000PhRvL..85.1012V. doi:10.1103/PhysRevLett.85.1012. PMID 10991462. 
  118. ^ Janotti, A.; Van De Walle, C. G. (2007). "Hydrogen multicentre bonds". Nature Materials. 6 (1): 44–47. Bibcode:2007NatMa...6...44J. doi:10.1038/nmat1795. PMID 17143265. 
  119. ^ Kilic, C.; Zunger, Alex (2002). "n-type doping of oxides by hydrogen". Applied Physics Letters. 81 (1): 73–75. Bibcode:2002ApPhL..81...73K. doi:10.1063/1.1482783. 
  120. ^ Peacock, P. W.; Robertson, J. (2003). "Behavior of hydrogen in high dielectric constant oxide gate insulators". Applied Physics Letters. 83 (10): 2025–2027. Bibcode:2003ApPhL..83.2025P. doi:10.1063/1.1609245. 
  121. ^ Cammack, R.; Robson, R. L. (2001). Hydrogen as a Fuel: Learning from Nature. Taylor & Francis Ltd. pp. 202–203. ISBN 0-415-24242-8. 
  122. ^ Rhee, T. S.; Brenninkmeijer, C. A. M.; Röckmann, T. (19 May 2006). "The overwhelming role of soils in the global atmospheric hydrogen cycle". Atmospheric Chemistry and Physics. 6 (6): 1611–1625. doi:10.5194/acp-6-1611-2006. Retrieved 20 May 2015. 
  123. ^ Kruse, O.; Rupprecht, J.; Bader, K.; Thomas-Hall, S.; Schenk, P. M.; Finazzi, G.; Hankamer, B. (2005). "Improved photobiological H2 production in engineered green algal cells". The Journal of Biological Chemistry. 280 (40): 34170–7. doi:10.1074/jbc.M503840200. PMID 16100118. 
  124. ^ Smith, Hamilton O.; Xu, Qing (2005). "IV.E.6 Hydrogen from Water in a Novel Recombinant Oxygen-Tolerant Cyanobacteria System" (PDF). FY2005 Progress Report. United States Department of Energy. Retrieved 6 August 2016. 
  125. ^ Williams, C. (24 February 2006). "Pond life: the future of energy". Science. The Register. Retrieved 24 March 2008. 
  126. ^ a b Brown, W. J.; et al. (1997). "Safety Standard for Hydrogen and Hydrogen Systems" (PDF). NASA. Retrieved 12 July 2017. 
  127. ^ "Liquid Hydrogen MSDS" (PDF). Praxair, Inc. September 2004. Archived from the original (PDF) on 27 May 2008. Retrieved 16 April 2008. 
  128. ^ "'Bugs' and hydrogen embrittlement". Science News. Washington, D.C. 128 (3): 41. 20 July 1985. doi:10.2307/3970088. JSTOR 3970088. 
  129. ^ Hayes, B. "Union Oil Amine Absorber Tower". TWI. Retrieved 29 January 2010. 
  130. ^ Walker, James L.; Waltrip, John S.; Zanker, Adam (1988). John J. McKetta; William Aaron Cunningham, eds. Lactic acid to magnesium supply-demand relationships. Encyclopedia of Chemical Processing and Design. 28. New York: Dekker. p. 186. ISBN 082472478X. Retrieved 20 May 2015. 

Further reading

  • Chart of the Nuclides (17th ed.). Knolls Atomic Power Laboratory. 2010. ISBN 978-0-9843653-0-2. 
  • Ferreira-Aparicio, P.; Benito, M. J.; Sanz, J. L. (2005). "New Trends in Reforming Technologies: from Hydrogen Industrial Plants to Multifuel Microreformers". Catalysis Reviews. 47 (4): 491–588. doi:10.1080/01614940500364958. 
  • Newton, David E. (1994). The Chemical Elements. New York: Franklin Watts. ISBN 0-531-12501-7. 
  • Rigden, John S. (2002). Hydrogen: The Essential Element. Cambridge, Massachusetts: Harvard University Press. ISBN 0-531-12501-7. 
  • Romm, Joseph, J. (2004). The Hype about Hydrogen, Fact and Fiction in the Race to Save the Climate. Island Press. ISBN 1-55963-703-X. 
  • Scerri, Eric (2007). The Periodic System, Its Story and Its Significance. New York: Oxford University Press. ISBN 0-19-530573-6. 

External links

Listen to this article (2 parts) · (info)
This audio file was created from a revision of the article "Hydrogen" dated 2006-10-28, and does not reflect subsequent edits to the article. (Audio help)