انتقال گرما

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو
انرژی گرمایی تابش شده از زمین از اتمسفر جو ، از ابرها و از سطح زمین.(قرمز زیاد و آبی کم)

انتقال گرما یا انتقال حرارت الگو:به انگلیسی Heat transfer یک مفهوم فیزیکی است که مربوط به تولید، استفاده، انتقال و تغییرات در انرژی گرمایی ماده و حرارت بین سیستم‌های فیزیکی است. انتقال گرما به مکانیسم‌های مختلفی تقسیم بندی می‌شود مانند رسانش گرمایی، انتقال، تشعشع گرمایی و انتقال انرژی با تغییرات فازی.

رسانش گرمایی که نفوذ نیز نامیده می‌شود یک تغییر میکروسکوپیک مستقیم انرژی جنبشی ذرات از طریق مرز بین دو سیستم است. هنگامی که یک شئ در دمایی متفاوت با جسم دیگر یا با محیط اطرافش باشد، گرما جریان می‌یابد و جسم و محیط اطراف دمای مشابه به دست می‌آورند که در این نقطه آن‌ها در تعادل گرمایی هستند. این انتقال گرما خود بخودی همیشه از ناحیه با دمای بالا به ناحیه دیگر با دمای پایین‌تر اتفاق می‌افتد که با عنوان قانون دوم ترمودینامیک است.

همرفت گرما هنگامی که جریان توده‌ای سیال (مایع یا گاز) گرما را همراه جریان ماده در سیال حمل می‌کند اتفاق می‌افتد. جریان سیال ممکن است با فرایندهای بیرونی به صورت اجباری ایجاد شود یا گاهی اوقات (در میدان‌های گرانشی) توسط نیروهای رانشی هنگامی که انرژی گرمایی سیال را منبسط می‌کند (به عنوان مثال در یک ستون آتش) ایجاد شوند و در نتیجه باعث انتقال خودبخودی می‌شوند. فرایند دوم گاهی اوقات همرفت طبیعی نامیده می‌شود. همه فرایندهای همرفتی گرما را تا حدودی به وسیله نفوذ منتقل می‌کنند. نوع دیگری از همرفت، همرفت اجباری است. در این مورد سیال با استفاده از پمپ، توربین یا وسایل مکانیکی دیگر برای جریان یافتن تحت اجبار قرار می‌گیرد.

شکل نهایی عمده انتقال گرما با تابش است که درهر محیط شفافی (جامد یا سیال) اتفاق می‌افتد اما ممکن است حتی در خلأ (مانند هنگامی که خورشید زمین را گرم می‌کند) نیز اتفاق بیفتد. تابش نوعی انتقال انرژی در فضای خالی به وسیله موج‌های الکترومغناطیسی است که به همان روشی که امواج الکترومغناطیسی نوری، نور را منتقل می‌کنند صورت می‌پذیرد و همان قوانینی که انتقال نور را پوشش می‌دهند انتقال گرمای تابشی را نیز پوشش می‌دهند.

مکانیزم‌ها[ویرایش]

جریان گرمایی خطی

شیوه‌های بنیادی انتقال گرما عبارتند از:

  • رسانش یا هدایت: انتقال انرژی بین اجسام که در تماس فیزیکی هستند.
  • همرفت یا جابجایی: انتقال انرژی بین یک جسم و محیط اطراف به دلیل حرکت سیال.
  • تابش یا تشعشع: انتقال انرژی به/از جسم به وسیله تابش یا جذب پرتوهای الکترومغناطیسی.
  • انتقال جرم: انتقال انرژی از یک مکان به مکان دیگر به عنوان اثر جانبی انتقال فیزیکی جسم حاوی انرژی.

ج

تابش[ویرایش]

نوشتار‌های اصلی: تابش و تابش گرما

تابش گرمایی انرژی منتشرشده به وسیله ماده با موج الکترومغناطیسی است که شامل همه موادی که دارای دمای بالاتر از صفر مطلق هستند، می‌باشد. تابش گرمایی بدون حضور ماده، از میان فضای خالی منتشر می‌شود و تابش گرمایی نتیجه حرکات تصادفی اتم‌ها و مولکول‌ها در ماده‌است. از آنجا که این اتم‌ها و مولکول‌ها از ذرات باردار تشکیل شده‌اند (پروتون‌ها و الکترون‌ها) حرکات آن‌ها باعث انتشار امواج الکترومغناطیسی، که حامل انرژی هستند می‌باشد. بر خلاف روش‌های رسانش و همرفت، انتقال گرمای اشعه‌های گرمایی می‌تواند در یک نقطه کوچک با استفاده از آینههای منعکس کننده متمرکز شود که درجمع آوری انرژی خورشیدی تولیدی مورد بهره‌برداری قرار می‌گیرد. برای مثال، نور خورشید منعکس شده از آینه‌ها، برج انرژی خورشیدی PS10 را گرم می‌کند و در طول روز می‌تواند آب را تا ۲۸۵ درجه سانتی گراد (۵۴۵ فارنهایت) گرم کند.

انتقال جرم[ویرایش]

در انتقال جرم، انرژی از جمله انرژی گرمایی با انتقال فیزیکی از جسم گرم به جسم سرد از یک مکان به مکان دیگر حرکت می‌کند. این می‌تواند به سادگی با قرار دادن آب گرم در بطری و گرم کردن بستر آن و یا حرکت کوه یخ در تغییرات جریانهای اقیانوسی باشد؛ ویک مثال عملی هیدرولیک گرمایی است.

تغییر حالت[ویرایش]

انتقال گرما با محیط در طول تغییر حالت یعنی ذوب، تبخیر، انجماد، میعان، چگالش، تصعید مانند آب به یخ، آب به بخار، بخار به آب ویخ به آب شامل انرژی قابل توجهی هستند و در بسیاری از موارد مانند موتور بخار، یخچال، و غیره مورد بهره‌برداری قرار می‌گیرند.

برای مثال، معادله میسون (Mason) بیان تحلیلی تقریبی برای رشد قطرات آب بر پایه اثرات انتقال گرما در تبخیر و متراکم شدن است.

تبخیر: انتقال گرما در سیالات در حال جوش پیچیده‌است اما از اهمیت فنی قابل توجهی برخوردار است؛ و با استفاده از منحنی S مانند که وابستگی شار گرما به اختلاف دمای سطح را نشان می‌دهد مشخص می‌شود. در دماهای پایین، جوش اتفاق نمی‌افتد و میزان انتقال گرما با مکانیزم‌های معمول تک حالتی کنترل می‌شود. هنگامی که دمای سطح افزایش می‌یابد، جوش محلی رخ می‌دهد و هستهٔ حباب‌های بخار به سیال خنک‌تر مجاور رشد می‌کنند و فرو می‌پاشند. در سرعت‌های بالای تولید حباب، حباب‌ها شروع به تداخل می‌کنند.

در دماهای بالا، ماکزیمم مقدار شار انتقال گرما به دست می‌آید (شار دمای بحرانی یا CHF). در دماهای بالا، رژیم هیدرودینامیکی آرام فیلم جوشان به دست می‌آید. شار گرما در طول لایه‌های پایدار بخار کم است اما به آرامی با دما افزایش می‌یابد. ممکن است دیده شود که هر گونه تماس میان مایع و سطح، احتمالاً منجر به ایجاد بسیار سریع هسته‌های لایه‌های تازه بخار می‌شود (هستهٔ خودبخود).

چگالش: چگالش هنگامی که بخار سرد می‌شود و فاز آن به حالت مایع تغییر می‌کند، اتفاق می‌افتد. چگالش مانند جوش، از اهمیت زیادی در صنعت برخوردار است. در حین تراکم، گرمای نهان تبخیر باید آزاد شود و مقدار گرما همان است که در طی تبخیر در همان فشار سیال جذب می‌شود.

چگالش انواع مختلفی دارد:

  1. تراکم همگن در طول تشکیل مه
  2. چگالش در تماس مستقیم با مایع subcooled
  3. چگالش در تماس مستقیم با یک دیوار خنک‌کننده مبدل گرمایی: این حالت شایع‌ترین مورد استفاده در صنعت است.
  4. تراکم Filmwise زمانی است که فیلم مایع در سطح subcooled شکل گرفته استو معمولاً هنگامی رخ می‌دهد که مایع سطح را خیس می‌کند.
  5. تراکم Dropwise زمانی است که قطرات مایع در سطح subcooled شکل گرفته‌اند و گاهی اوقات زمانی که قطرات مایع سطح را خیس نکرده‌اند، اتفاق می‌افتد. تراکم Dropwise برای تداوم با اطمینان مشکل است و بنابراین تجهیزات صنعتی به طور معمول برای عمل کردن در تراکم filmwise طراحی شده‌اند.

روش‌های مدل سازی[ویرایش]

پدیده‌های پیچیده انتقال گرما را می‌توان در روش‌های مختلف مدل کرد.

  • معادله گرما: معادله گرما، معادله دیفرانسیل با مشتقات جزئی است که توزیع گرما (یا تغییرات دما) را در منطقه‌ای داده شده در طول زمان شرح می‌دهد. در بعضی مواقع راه حل دقیق معادله در دسترس است و در موارد دیگر، این معادله بایدبا حل عددی وبا استفاده از روش‌های محاسباتی حل شود. برای مثال در مدل‌های ساده آب و هوایی، ممکن است سرمایش نیوتون به جای کدهای تابشی برای حفظ دمای اتمسفر استفاده شود.
  • تجزیه و تحلیل توده‌ای سیستم‌ها: تجزیه و تحلیل سیستم‌ها با استفاده از مدل ظرفیت توده‌ای یک تخمین متداول در رسانش گذرا است که ممکن است هنگامی که رسانش گرمایی داخل شی خیلی بیشتر از رسانش گرمایی در مرزهای جسم است، مورد استفاده قرار گیرد. این روش تقریبی است که یکی از جنبه‌های هدایت گذرای سیستم –در داخل جسم-رابه یک سیستم معادل حالت پایدار کاهش می‌دهد. در این روش فرض بر این است که دما در داخل جسم کاملاً یکسان است؛ اگر چه مقدار آن ممکن است با زمان در حال تغییر باشد. در این روش، نسبت مقاومت در برابر گرمای رسانشی در درون جسم به مقاومت در برابر انتقال گرمای همرفت در مرزهای جسم که به عنوان عدد بیو شناخته می‌شود، محاسبه می‌شود.

برای عددهای بایو کوچک تخمین دمای یکنواخت مکانی در داخل جسم می‌تواند به کار رود و فرض شده‌است که انتقال گرما در جسم زمان برای توزیع یکنواخت درون خود با توجه به مقاومت کمتر به انجام این کار در مقایسه با مقاومت برای گرمای ورودی به جسم دارد. تجزیه و تحلیل توده‌ای سیستم‌ها اغلب پیچیدگی معادلات را به معادله دیفرانسیل خطی مرتبه اول کاهش می‌دهد که در آن گرمایش و سرمایش با حل تابع نمایی ساده شرح داده می‌شوند و اغلب به عنوان قانون سرمایش نیوتون اشاره دارد.

کاربرد[ویرایش]

موج گرما، موردی از مطالعهٔ انتقال گرما در آب و هوا

مسئلهٔ توزیع دما و شارش گرما در بسیاری از شاخه‌های علوم و مهندسی مطرح است. مثلاً در طراحی دیگ‌های بخار، چگالنده‌ها، تبخیر کننده‌ها، مبدل‌های حرارتی و رادیاتورها تحلیل انتقال گرما برای محاسبهٔ اندازهٔ آنها لازم است.

اشاره‌ها و کاربردها: انتقال گرما کاربرد گسترده‌ای عملکرد دستگاههای متعدد و سیستم‌ها دارد. اصول انتقال گرما ممکن است برای حفظ، افزایش یا کاهش دما در طیف وسیعی از شرایط مورد استفاده قرار گیرد.

منابع[ویرایش]

مشارکت‌کنندگان ویکی‌پدیا، «Heat_transfer»، ویکی‌پدیای en، دانشنامهٔ آزاد (بازیابی در ۰۶/۰۲/۲۰۱۲).

مطالعهٔ بیشتر[ویرایش]

  • مقدمه‌ای بر انتقال گرما
  • Bayley, F.J. , M.J. Owen and A.B. Turner: Heat Transfer, Barnes&Noble, New York, 1972.
  • Chapman, Alan J. :Heat Transfer, Macmillan, New York, 1967.
  • Gebhart, B. : Heat Transfer, McGraw-Hill, New York, 1971.
  • Grassmann, Peter: Physikalische Grundlagen der Verfahrenstechnik, Saverlander, Aarau, 1982.
  • Gröber, H. , S. Erk and U. grigull: Fundamentals of Heat Transfer, McGraw-Hill, New York, 1961.
  • Holman, J.P. , Heat Transfer, McGraw-Hill, New York, 1981.
  • Incropera, Frank P. and David P. Dewitt: Fundamentals of Heat Transfer, Wiley, New York 1981.
  • Kreith, F. , Principles of Heat Trasfer, Intext, New York, 1973.
  • Kreith, F. and W.Z. Black: Basic Heat Trasfer, Harper & Row, New York, 1979.
  • Lienhard, John H. : A Heat Trasfer Textbook, Prentice-Hall, Englewood Cliffs, N.J. , 1981.
  • Özişik, M.N. : Basic Heat Transfer, McGraw-Hill, New York, 1977.
  • Thomas, Lindon D. :Fundamentals of Heat Transfer, Prentice-Hall, Englewood Cliffs, N.J. , 1980.
  • Wolf, Helmut: Heat Trasfer, Harper & Row, London, 1983.