مغز انسان: تفاوت میان نسخه‌ها

از ویکی‌پدیا، دانشنامهٔ آزاد
محتوای حذف‌شده محتوای افزوده‌شده
جز ابرابزار
تکمیل بخش وظایف و عملکرد (نیاز به بررسی دارد)
خط ۱۷۴: خط ۱۷۴:


مطالعه در مورد چگونگی بازنمایی، پردازش و کسب زبان توسط مغز، عصب-زبان‌شناسی نامیده می‌شود که یک حوزه چندرشته‌ای بزرگ است که از [[علوم اعصاب شناختی]]، [[زبان‌شناسی شناختی]]، و روان‌زبان‌شناسی استخراج می‌شود.<ref>{{Cite book|title=Language intervention strategies in aphasia and related neurogenic communication disorders|last=Damasio|first=H.|date=2001|publisher=Lippincott Williams & Wilkins|isbn=978-0-7817-2133-2|editor-last=Chapey|editor-first=Roberta|edition=4th|pages=18–36|chapter=Neural basis of language disorders|oclc=45952164}}</ref>
مطالعه در مورد چگونگی بازنمایی، پردازش و کسب زبان توسط مغز، عصب-زبان‌شناسی نامیده می‌شود که یک حوزه چندرشته‌ای بزرگ است که از [[علوم اعصاب شناختی]]، [[زبان‌شناسی شناختی]]، و روان‌زبان‌شناسی استخراج می‌شود.<ref>{{Cite book|title=Language intervention strategies in aphasia and related neurogenic communication disorders|last=Damasio|first=H.|date=2001|publisher=Lippincott Williams & Wilkins|isbn=978-0-7817-2133-2|editor-last=Chapey|editor-first=Roberta|edition=4th|pages=18–36|chapter=Neural basis of language disorders|oclc=45952164}}</ref>

=== تقسیم‌بندی وظایف ===
{{اصلی|تقسیم‌بندی وظایف مغز}}
[[مخ]] دارای یک سازمان متقابل است که هر [[نیم‌کره‌های مغز|نیمکره مغز]] عمدتاً با نیمی از بدن در تعامل است، سمت چپ مغز با سمت راست بدن، اتصالات حرکتی از مغز به [[نخاع]] و اتصالات حسی از نخاع به مغز، هر دو طرف متقاطع در ساقه مغز با یکدیگر تعامل دارد و بالعکس. علت تکوینی این امر نامشخص است.<ref name="Berntson">{{cite book|last1=Berntson|first1=G.|last2=Cacioppo|first2=J.|title=Handbook of Neuroscience for the Behavioral Sciences, Volume 1|publisher=[[John Wiley & Sons]]|year=2009|page=145|isbn=978-0-470-08355-0|url=https://books.google.com/books?id=LwdJhh8bOvwC&pg=PA145}}</ref> . ورودی بصری از قانون پیچیده‌تری پیروی می‌کند: اعصاب بینایی از دو چشم در نقطه‌ای به نام [[کیاسمای اپتیک|کیاسما بینایی]] به هم می‌رسند و نیمی از رشته‌های هر عصب برای پیوستن به دیگری جدا می‌شوند.<ref>{{cite book|author=Hellier, J.|title=The Brain, the Nervous System, and Their Diseases [3 volumes]|isbn=978-1-61069-338-7|publisher=[[ABC-CLIO]]|year=2014|page=1135|url=https://books.google.com/books?id=SDi2BQAAQBAJ&pg=PA1135}}</ref> نتیجه این است که اتصالات نیمه چپ [[شبکیه]]، در هر دو [[چشم]]، به سمت چپ مغز می رود، در حالی که اتصالات از نیمه راست شبکیه به سمت راست مغز می رود.<ref name="Kolb 2">{{cite book|last1=Kolb|first1=B.|last2=Whishaw|first2=I.Q.|title=Introduction to Brain and Behavior|isbn=978-1-4641-3960-4|publisher=[[Macmillan Higher Education]]|year=2013|page=296|url=https://books.google.com/books?id=teUkAAAAQBAJ}}</ref> از آنجا که هر نیمه شبکیه نوری را دریافت می کند که از نیمه مخالف میدان بینایی می آید، نتیجه عملکردی این است که ورودی بصری از سمت چپ جهان به سمت راست مغز می رود و بالعکس.<ref name="Berntson" /> بنابراین، سمت راست مغز ورودی حسی جسمی را از سمت چپ بدن، و ورودی بینایی را از سمت چپ میدان بینایی دریافت می‌کند.<ref name="Sherwood">{{cite book|last1=Sherwood|first1=L.|title=Human Physiology: From Cells to Systems|isbn=978-1-133-70853-7|publisher=[[Cengage Learning]]|year=2012|page=181|url=https://books.google.com/books?id=CZkJAAAAQBAJ&pg=PT181}}</ref><ref name="Kalat">{{cite book|author=Kalat, J|title=Biological Psychology|isbn=978-1-305-46529-9|publisher=[[Cengage Learning]]|year=2015|page=425|url=https://books.google.com/books?id=EzZBBAAAQBAJ&pg=PA425}}</ref>

سمت چپ و راست مغز [[متقارن]] به نظر می رسند، اما به صورت نامتقارن عمل می کنند.<ref name="Cowin">{{cite book|last1=Cowin|first1=S.C.|last2=Doty|first2=S.B.|title=Tissue Mechanics|isbn=978-0-387-49985-7|publisher=[[Springer Science & Business Media]]|year=2007|page=4|url=https://books.google.com/books?id=8BJhRkat--YC&pg=PA4}}</ref> به عنوان مثال، همتای ناحیه حرکتی نیمکره چپ که دست راست را کنترل می کند، ناحیه نیمکره راست کنترل کننده دست چپ است. با این حال، چندین استثنا مهم وجود دارد که شامل زبان و شناخت فضایی می شود. [[لوب پیشانی]] چپ برای زبان غالب است. اگر یک ناحیه کلیدی زبان در نیمکره چپ آسیب ببیند، ممکن است قربانی را قادر به صحبت کردن یا درک نکند،<ref name="Cowin" /> در حالی که آسیب معادل به نیمکره راست تنها باعث آسیب جزئی در مهارت های زبانی می شود.

بخش قابل توجهی از درک کنونی از تعاملات بین دو نیمکره از مطالعه «بیماران دوشاخه مغز» افرادی که در تلاش برای کاهش شدت [[تشنج]] های [[صرع]] تحت عمل جراحی برش [[جسم پینه ای]] قرار گرفتند، به دست آمده است.<ref name="Myers">{{cite book|last1=Morris|first1=C.G.|last2=Maisto|first2=A.A.|title=Understanding Psychology|isbn=978-0-205-76906-3|publisher=[[Prentice Hall]]|year=2011|page=56|url=https://books.google.com/books?id=hoVWAAAAYAAJ}}</ref> این بیماران رفتار غیرمعمولی را نشان نمی‌دهند که بلافاصله آشکار شود، اما در برخی موارد می‌توانند تقریباً مانند دو فرد مختلف در یک بدن رفتار کنند، با دست راست و سپس دست چپ آن را باز می‌کند.<ref name="Myers2">{{cite book|last1=Morris|first1=C.G.|last2=Maisto|first2=A.A.|title=Understanding Psychology|isbn=978-0-205-76906-3|publisher=[[Prentice Hall]]|year=2011|page=56|url=https://books.google.com/books?id=hoVWAAAAYAAJ}}</ref><ref name="Kolb 3">{{cite book|last1=Kolb|first1=B.|last2=Whishaw|first2=I.Q.|title=Introduction to Brain and Behavior (Loose-Leaf)|isbn=978-1-4641-3960-4|publisher=[[Macmillan Higher Education]]|year=2013|pages=524–549|url=https://books.google.com/books?id=teUkAAAAQBAJ}}</ref> این بیماران هنگامی که به طور خلاصه تصویری در سمت راست نقطه تثبیت بینایی نشان داده می شود، قادر به توصیف شفاهی آن هستند، اما زمانی که تصویر در سمت چپ نشان داده می شود، قادر به توصیف آن نیستند، اما ممکن است قادر به ارائه نشانه باشند. با دست چپ ماهیت شی نشان داده شده است.<ref name="Kolb 32">{{cite book|last1=Kolb|first1=B.|last2=Whishaw|first2=I.Q.|title=Introduction to Brain and Behavior (Loose-Leaf)|isbn=978-1-4641-3960-4|publisher=[[Macmillan Higher Education]]|year=2013|pages=524–549|url=https://books.google.com/books?id=teUkAAAAQBAJ}}</ref><ref name="Schacter">{{cite book|last1=Schacter|first1=D.L.|last2=Gilbert|first2=D.T.|last3=Wegner|first3=D.M.|title=Introducing Psychology|isbn=978-1-4292-1821-4|publisher=[[Macmillan Publishers|Macmillan]]|year=2009|page=80|url=https://books.google.com/books?id=gt8lpZylVmkC&pg=PA80}}</ref>
[[پرونده:Plutchik emotion wheel.png|بندانگشتی|چرخ احساسات پلانچیک]]

=== عواطف ===
{{اصلی|هیجان}}
عواطف عموماً به عنوان فرآیندهای چند جزئی دو مرحله ای شامل برانگیختن و به دنبال آن احساسات [[روان‌شناختی|روانشناختی]]، ارزیابی، بیان، پاسخ های خودمختار و تمایلات عملی تعریف می شوند.<ref>{{cite book|last=Sander|first=David|editor1-last=Armony|editor1-first=J.|editor2-first=Patrik|editor2-last=Vuilleumier|title=The Cambridge handbook of human affective neuroscience|date=2013|publisher=Cambridge Univ. Press|location=Cambridge|isbn=978-0-521-17155-7|page=16}}</ref> تلاش برای بومی سازی احساسات اساسی در مناطق خاصی از مغز بحث برانگیز بوده است. برخی از تحقیقات هیچ مدرکی برای مکان های خاص مربوط به احساسات پیدا نکردند، اما در عوض مدارهایی را درگیر در فرآیندهای عاطفی عمومی یافتند. به نظر می رسد [[آمیگدال]]، [[قشر اوربیتوفرونتال]]، قشر اینسولا میانی و قدامی و [[قشر پیش پیشانی]] جانبی در ایجاد احساسات دخیل هستند، در حالی که شواهد ضعیف تری برای [[ناحیه تگمنتال شکمی]]، رنگ پریدگی شکمی و هسته اکومبنس در برجستگی انگیزشی یافت شد.<ref>{{cite journal|last1=Lindquist|first1=KA.|last2=Wager|first2=TD.|last3=Kober|first3=H|last4=Bliss-Moreau|first4=E|last5=Barrett|first5=LF|date=May 23, 2012|title=The brain basis of emotion: A meta-analytic review|journal=Behavioral and Brain Sciences|volume=35|issue=3|pages=121–143|doi=10.1017/S0140525X11000446|pmc=4329228|pmid=22617651}}</ref> با این حال، برخی دیگر شواهدی مبنی بر فعال شدن نواحی خاص، مانند [[عقده های قاعده ای]] در [[شادی]]، قشر سینگولیت ساب پینه ای در [[غم]] و آمیگدال در [[ترس]] یافته اند.<ref>{{Cite journal|last=Phan|first=K. Luan|last2=Wager|first2=Tor|last3=Taylor|first3=Stephan F.|last4=Liberzon|first4=Israel|date=June 2002|title=Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI|url=https://pubmed.ncbi.nlm.nih.gov/12030820/|journal=NeuroImage|volume=16|issue=2|pages=331–348|doi=10.1006/nimg.2002.1087|issn=1053-8119|pmid=12030820}}</ref>

=== شناخت ===
{{اصلی|شناخت}}{{همچنین ببینید|قشر_پیش‌پیشانی#عملکرد_اجرایی}}
مغز مسئول شناخت است،<ref name="NHM preface - Cognition">{{cite book|last1=Malenka|title=Molecular Neuropharmacology: A Foundation for Clinical Neuroscience|edition=2nd|page=xiii|isbn=978-0-07-148127-4|location=New York|publisher=McGraw-Hill Medical|year=2009|editor2-first=RY|first1=RC|editor2-last=Brown|editor1-first=A|editor1-last=Sydor|first3=SE|last3=Hyman|first2=EJ|last2=Nestler|chapter=Preface}}</ref><ref name="NHMH_3e – Higher Cognitive Function and Behavioral Control">{{cite book|vauthors=Malenka RC, Nestler EJ, Hyman SE, Holtzman DM|title=Molecular Neuropharmacology: A Foundation for Clinical Neuroscience|year=2015|publisher=McGraw-Hill Medical|location=New York|isbn=978-0-07-182770-6|edition=3rd|chapter=Chapter 14: Higher Cognitive Function and Behavioral Control}}</ref> که از طریق فرآیندهای متعدد و عملکردهای اجرایی عمل می کند.<ref name="NHMH_3e – Higher Cognitive Function and Behavioral Control2">{{cite book|vauthors=Malenka RC, Nestler EJ, Hyman SE, Holtzman DM|title=Molecular Neuropharmacology: A Foundation for Clinical Neuroscience|year=2015|publisher=McGraw-Hill Medical|location=New York|isbn=978-0-07-182770-6|edition=3rd|chapter=Chapter 14: Higher Cognitive Function and Behavioral Control}}</ref><ref name="NHMH_3e – pathways">{{cite book|vauthors=Malenka RC, Nestler EJ, Hyman SE, Holtzman DM|title=Molecular Neuropharmacology: A Foundation for Clinical Neuroscience|year=2015|publisher=McGraw-Hill Medical|location=New York|isbn=978-0-07-182770-6|edition=3rd|chapter=Chapter 6: Widely Projecting Systems: Monoamines, Acetylcholine, and Orexin}}</ref><ref name="Executive functions">{{cite journal|last1=Diamond|first1=A|year=2013|title=Executive functions|journal=Annual Review of Psychology|volume=64|pages=135–168|doi=10.1146/annurev-psych-113011-143750|pmc=4084861|pmid=23020641|author1-link=Adele Diamond}}[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4084861/figure/F4/ Figure 4: Executive functions and related terms] {{webarchive|url=https://web.archive.org/web/20180509181646/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4084861/figure/F4/|date=May 9, 2018}}</ref> عملکردهای اجرایی شامل توانایی فیلتر کردن [[اطلاعات]] و تنظیم محرک های نامربوط با کنترل [[توجه]] و بازداری شناختی، توانایی پردازش و دستکاری اطلاعات ذخیره شده در حافظه کاری، توانایی [[فکر کردن]] به چندین مفهوم به طور همزمان و تغییر وظایف با انعطاف پذیری شناختی، توانایی با کنترل بازدارنده، و توانایی تعیین ارتباط اطلاعات یا تناسب یک عمل، از تکانه ها و پاسخ های قوی جلوگیری می کند.<ref name="NHMH_3e – pathways" /><ref name="Executive functions" /> کارکردهای اجرایی مرتبه بالاتر مستلزم استفاده همزمان از چندین کارکرد اجرایی اساسی است و شامل [[برنامه ریزی]]، [[آینده نگری]] و هوش سیال (یعنی استدلال و حل مسئله) می شود.<ref name="Executive functions" />

قشر جلوی مغز نقش مهمی در میانجیگری عملکردهای اجرایی دارد.<ref name="NHMH_3e – Higher Cognitive Function and Behavioral Control2" /><ref name="Executive functions" /><ref name="Goldstein">{{cite book|editor1-last=Goldstein|title=Handbook of Executive Functioning|chapter=Chapter 2: The Physiology of Executive Functioning|pages=13–23|isbn=978-1-4614-8106-5|location=New York|publisher=Springer|date=2014|first3=A.|editor1-first=S.|last3=Swentosky|first2=L.L.|last2=Weyandt|first1=J.C.|last1=Hyun|editor2-first=J.|editor2-last=Naglieri|chapter-url=https://books.google.com/books?id=1e8VAgAAQBAJ&pg=PA13}}</ref> برنامه‌ریزی شامل فعال‌سازی قشر پیش پیشانی پشتی جانبی (DLPFC)، قشر کمربندی قدامی، قشر جلوی پیشانی زاویه‌دار، قشر جلوی پیشانی راست و شکنج فوق‌مارژینال است.<ref name="Goldstein" /> دستکاری حافظه کاری شامل DLPFC، شکنج فرونتال تحتانی و نواحی قشر جداری می شود.<ref name="NHMH_3e – Higher Cognitive Function and Behavioral Control2" /><ref name="Goldstein" /> کنترل مهاری شامل چندین نواحی از قشر جلوی مغز و همچنین هسته دمی و هسته زیر تالاموس می شود.<ref name="Executive functions" /><ref name="Goldstein" /><ref name="NHMH_3e – Addiction and ADHD">{{cite book|vauthors=Malenka RC, Nestler EJ, Hyman SE, Holtzman DM|title=Molecular Neuropharmacology: A Foundation for Clinical Neuroscience|year=2015|publisher=McGraw-Hill Medical|location=New York|isbn=978-0-07-182770-6|edition=3rd|chapter=Chapter 14: Higher Cognitive Function and Behavioral Control|quote=In conditions in which prepotent responses tend to dominate behavior, such as in drug addiction, where drug cues can elicit drug seeking (Chapter 16), or in attention deficit hyperactivity disorder (ADHD; described below), significant negative consequences can result.&nbsp;... ADHD can be conceptualized as a disorder of executive function; specifically, ADHD is characterized by reduced ability to exert and maintain cognitive control of behavior. Compared with healthy individuals, those with ADHD have diminished ability to suppress inappropriate prepotent responses to stimuli (impaired response inhibition) and diminished ability to inhibit responses to irrelevant stimuli (impaired interference suppression).&nbsp;... Functional neuroimaging in humans demonstrates activation of the prefrontal cortex and caudate nucleus (part of the dorsal striatum) in tasks that demand inhibitory control of behavior.&nbsp;... Early results with structural MRI show a thinner cerebral cortex, across much of the cerebrum, in ADHD subjects compared with age-matched controls, including areas of [the] prefrontal cortex involved in working memory and attention.}}</ref>


== پژوهش ==
== پژوهش ==

نسخهٔ ‏۱ دسامبر ۲۰۲۱، ساعت ۰۸:۴۲

مغز انسان
مغز انسان و جمجمه
لوب‌های بالایی از نیم‌کره‌های مخ: لوب‌های پیشانی (صورتی)، لوب‌های آهیانه‌ای (سبز)، لوب‌های پس‌سری (آبی)
جزئیات
ساخته ازلوله عصبی
دستگاهدستگاه عصبی مرکزی
سرخرگ‌هاسرخرگ کاروتید درونی، سرخرگ مهره‌ای
سیاهرگ‌هاسیاهرگ ژوگولار داخلی، وریدهای داخلی مخ؛
وریدهای خارجی: (فوقانی، میانی و وریدهای مخ تحتانیورید قاعده‌ای و وریدهای مخچه‌ای
شناسه‌ها
لاتینCerebrum[۱]
یونانیἐγκέφαλος (enképhalos)[۲]
TA98A14.1.03.001
TA25415
FMA50801

مغز انسان، عضو مرکزی دستگاه عصبی انسان است که به همراه طناب نخاعی، دستگاه عصبی مرکزی را تشکیل می‌دهند. مغز، شامل مخ، ساقه مغز و مخچه است. این عضو، اکثر فعالیت‌های بدن، همچون پردازش، یکپارچه سازی و هماهنگ‌کردن اطلاعات دریافتی از اعضای حسی را کنترل کرده و با ارسال دستورالعمل‌هایی به سایر نقاط بدن، تصمیم‌سازی می‌کند. مغز در استخوان‌های جمجمه قرار داشته و توسط آن‌ها محافظت می‌شود.

مخ، بزرگترین بخش از مغز انسان بوده و شامل دو نیمکره است. هستهٔ داخلی هر نیم‌کره از ماده سفید و سطح خارجی – قشر مغز – از ماده خاکستری تشکیل شده‌است. قشر مغز دارای لایه‌ای خارجی به نام نئوکورتکس و لایه‌ای داخلی به نام آلوکورتکس[الف] است. نئوکورتکس از شش لایه نورونی تشکیل شده در حالی که آلوکورتکس، سه یا چهار لایه نورونی دارد. هر نیم‌کره به‌طور قراردادی به چهار لوب پیشانی، گیجگاهی، آهیانه، پس‌سر تقسیم شده که به وسیله چین خودگی‌های عمیقی از یکدیگر جدا شده‌اند. لوب پیشانی، جایگاه عملکردهای اجرایی همچون خود-کنترلی، برنامه‌ریزی، استدلال و تفکر مجرد است در حالی که لوب پس‌سری به بینایی اختصاص داده شده‌است. در داخل هر لوب، نواحی قشری دارای مناطق عملکردی به‌خصوصی چون حسی، حرکتی و ارتباطی[ب] است. گرچه نیم‌کره‌های چپ و راست شباهت گسترده‌ای از نظر شکل و عملکرد با یکدیگر دارند، اما برخی از این عملکردها مرتبط با یک سمت اند، همچون زبان که به نیم‌کره چپ و توانایی تصور بصری-فضایی که به نیم‌کره راست مغز مرتبط اند. نیم‌کره‌ها توسط نوارهای عصبی رابط به هم متصل می‌شوند، بزرگترین این نوارها، جسم پینه‌ای است.

مخ، توسط ساقه مغز به طناب نخاعی متصل شده که خود دارای سه بخش میان‌مغز، پل مغز و بصل النخاع است. مخچه توسط سه جفت نوار عصبی به نام پایک‌های مخچه‌ای[پ] به ساقه مغز متصل می‌شود. در مخ، دستگاه بطنی شامل چهار بطن به هم متصل، قرار دارد که در آن‌ها مایع مغزی-نخاعی تولید شده و به گردش در می‌آید. زیرِ قشر مخ، ساختارهای مهم و متعددی مانند تالاموس، اپی‌تالاموس، غده پینه‌آل، هیپوتالاموس، غده هیپوفیز، ساب‌تالاموس، ساختارهای لیمبیک (شامل آمیگدال و هیپوکامپ)، کلاستروم[ت]، هسته‌های مختلف از عقده‌های قاعده‌ای (شامل ساختارهای قاعده‌ای مغز قدامی و سه عضو دور بطنی[ث]) قرار دارد. سلول‌های مغز شامل نورون‌ها و سلول‌های گلیال پشتیبان هستند. بیش از ۸۶ میلیارد نورون در مغز وجود دارند و تعداد سایر سلول‌های مغز نیز عددی کم و بیش برابر با همین مقدار است. فعالیت مغزی به دلیل اتصالات بین نورونی و آزاد شدن ناقلان عصبی از آن‌ها، در پاسخ به پتانسیل عمل شکل می‌گیرد. نورون‌ها به یکدیگر متصل می‌شوند تا مسیرهای نورونی، مدارهای عصبی و سامانه‌های شبکه‌ای را تشکیل دهند؛ نتیجه این ساختار، مداری است که براساس فرایند انتقال عصبی[ج] عمل می‌کند.

مغز دارای سه فرایند محافظتی به نام‌های جمجمه، مایع مغزی-نخاعی و سد خونی-مغزی است. جمجمه، مغز را از آسیب‌های احتمالی حفظ می‌کند، مایع مغزی-نخاعی، مغز را در استخوان جمجمه ثابت نگه می‌دارد و سد خونی-مغزی دارای مویرگ‌های پیوسته بوده و مغز را از جریان عمومی خون جدا می‌کند. با این حال، مغز هنوز هم در معرض آسیب، بیماری و عفونت قرار دارد. آسیب ممکن است توسط تروما یا فقدان تغذیه خونی ناشی از سکته باشد. مغز نسبت به اختلالات زوال آسیب‌پذیر است، این اختلالات شامل بیماری آلزایمر، MS و HAND می‌شود. تصور بر این است که بسیاری از بیماری‌های روانی مانند اسکیزوفرنی و افسردگی بالینی با بدعملکردی‌های مغزی مرتبط باشد. همچنین ممکن است مغز، محل تومورهای خوش‌خیم و بدخیم شود که عمدهٔ این تومورها از متاستاز سایر نقاط بدن ایجاد می‌گردد.

مطالعه کالبدشناسی مغز را نوروآناتومی و مطالعه عملکردهای مغزی را علوم اعصاب می‌نامند. فنون مختلفی جهت مطالعه مغز به کار می‌روند. به‌طور سنتی، ساختار مغزی دیگر حیوانات بررسی و مطالعات میکروسکوپی بر روی آن‌ها صورت می‌گیرد. این روش بررسی غالباً بر روی حیواناتی با ساختاری نزدیک به انسان مانند انسان‌سانان انجام و با فرایندهای مشابه در انسان مقایسه می‌شود. همچنین فناوری‌های تصویربرداری پزشکی چون تصویربرداری عصبی کارکردی و نوار مغزی (EEG) در مطالعه مغز نقش مهمی را ایفا می‌کنند. تاریخچه پزشکی افراد دچار آسیب مغزی، باعث شده‌است که بینش ما نسبت به عملکرد هر بخش از مغز افزایش یابد. تحقیقات روی مغز طی زمان پیشرفت کرده و مراحلِ فلسفی، آزمایشی و نظری را پشت سر نهاده‌است. یکی از این مراحل نوظهور، شبیه‌سازی فعالیت‌های مغزی است.[۳]

فلسفه ذهن برای قرن‌ها تلاش کرده تا مسئلهٔ طبیعتِ خودآگاهی و مسئلهٔ ذهن و بدن[چ] را حل کند. شبه‌علمی به نام فرنولوژی تلاش کرد تا در قرن نوزدهم میلادی، ویژگی‌های شخصیتی را در نواحی از قشر مغزی موضع‌سازی کند. در داستان‌های علمی-تخیلی، پیوند مغز در قالب افسانه‌هایی چون مغزِ دونووان (۱۹۴۲ میلادی)[ح] به تصویر کشیده شده‌است.

ساختار

مغز انسان (سطح ساژیتال[خ])

کالبدشناسی کلی

اسکن MRI از مغز یک انسان

مغز انسان بالغ به‌طور میانگین وزنی بین ۱٫۲ تا ۱٫۴ کیلوگرم دارد که در حدود ۲ درصد از وزن کل بدن است.[۴][۵] حجم مغز در مردان حدود ۱۲۶۰ و در زنان ۱۱۳۰ سانتی‌متر مکعب است.[۶] وزن مغز بین افراد مختلف دارای نوسان زیادی است،[۶] به طوری که رنج مرجع استاندارد برای مردان ۱٬۱۸۰ تا ۱٬۶۲۰ گرم[۷] و برای زنان ۱٬۰۳۰ تا ۱٬۴۰۰ گرم است.[۸]

مخ، شامل نیم‌کره‌های مغز است که بزرگترین بخش مغز را تشکیل داده و بر روی سایر ساختارهای مغزی قرار دارد.[۹] ناحیه بیرونی نیم‌کره‌ها، یعنی قشر مغز (ماده خاکستری)، شامل لایه‌های قشری از نورون‌ها است. هر نیم‌کره به وسیله شیارهایی به چهار لوب تقسیم می‌گردد: لوب پیشانی، لوب آهیانه‌ای، لوب گیجگاهی و لوب پس‌سری.[۱۰] برخی منابع سه لوب دیگر را نیز فهرست می‌کنند که شامل یک لوب مرکزی، لوب لیمبیک و لوب اینسولار است.[۱۱] لوب مرکزی، شکنج پیش‌مرکزی[د] و شکنج پس‌مرکزی[ذ] را تشکیل می‌دهد و آن را به عنوان لوبی مجزا در نظر گرفته‌اند، چرا که نقش عملکردی متمایزی دارد.[۱۱][۱۲]

ساقه مغز که شبیه ساقه است، در ابتدای ناحیه میان‌مغز به مخ متصل شده و در همان موقعیت از مخ خارج می‌شود. ساقه مغز شامل میان‌مغز، پل مغز و بصل النخاع است. پشت ساقه مغز، مخچه[ر] قرار دارد.[۹]

مخ، ساقه مغز، مخچه و طناب نخاعی توسط سه لایه مننژ پوشیده شده‌اند. این سه لایه از خارج به داخل شامل لایهٔ سختی به نام سخت‌شامه، لایهٔ میانیِ عنکبوتیه و لایه لطیف نرم‌شامه (لایه ای که در تماس با مغز است) هستند. بین عنکبوتیه و نرم‌شامه، فضای زیرعنکبوتیه و تیغه‌های زیرعنکبوتیه‌ای قرار دارد که شامل مایع مغزی-نخاعی می‌شود.[۱۳] بیرونی‌ترین غشای قشر مخ، غشای قاعده‌ای نرم‌شامه به نام گلیای محدود کننده[ز] قرار داشته که بخش مهمی از سد خونی-مغزی است.[۱۴] مغز زنده بسیار نرم بوده و مثل توفو حالتی ژل مانند دارد.[۱۵] لایه‌های قشری از جنس نورون، بخش اعظم ماده خاکستری مخ را تشکیل می‌دهند، در حالی که نواحی زیرقشری از جنس آکسون‌های میلینی شده، ماده سفید را تشکیل می‌دهند.[۹] مادهٔ سفید مغز، حدود نیمی از حجم کلِ مغز را شامل می‌شود.[۱۶]

نواحی ساختاری و عملکردی مغز انسان
نموداری که ساختارهای متعددِ درون مغز انسان را نشان می‌دهد
تشریح مغز انسان در سطح ساژیتال. در این تصویر، مادهٔ سفیدِ متعلق به جسم پینه‌ای نشان داده شده‌است.
نموداری از ننواحی عملکردی مغز انسان
نواحی عملکردیِ مغز انسان. نواحی که با خط‌چین مشخص شده‌اند، اغلب در نیم‌کرهٔ چپ غلبه دارند.

مخ

شنکنج‌ها و شیارهای اصلی روی سطح بیرونی قشر
لوب‌های مغز

مخ، بزرگترین بخش مغز است و توسط شکاف عمیقی به نام شیار طویلی،[ژ] به نیم‌کره‌های چپ و راست تقسیم‌بندی می‌شود که تقریباً متقارن اند.[۱۷] به عدم تقارن بین لوب‌ها، پتالیا[س] می‌گویند.[۱۸] نیم‌کره‌ها توسط پنج رابط به هم متصل اند که کل شیار طولی را پیموده و بزرگترین بخش آن را جسم پینه‌ای می‌نامند.[۹] هر نیم‌کره به صورت قراردادی به چهار لوب اصلی تقسیم‌بندی می‌گردند؛ لوب پیشانی، لوب آهیانه‌ای، لوب گیجگاهی و لوب پس‌سری که نامگذاریشان براساس استخوان‌های جمجمه‌ای است که بر روی هر کدام از این قسمت‌ها قرار دارند.[۱۰] هر لوب با یک یا دو عملکرد اختصاصی همراه است که این عملکردها با یکدیگر همپوشانی دارند.[۱۹] سطح مغز چین خوردگی‌هایی دارد که به برآمدگی‌هایی به نام شکنج[ش] و فرورفتگی‌هایی به نام شیار[ص] تقسیم‌بندی شده و اغلب براساس موقعیتشان نامگذاری می‌شوند، همچون شکنج پیشانی از لوب پیشانی یا شیار مرکزی که نواحی مرکزی نیم‌کره‌ها را از هم جداسازی می‌کند. تغییرات کوچک بسیاری در نوع چین خوردگی‌های دوم و سوم افراد مختلف وجود دارد.[۲۰]

بخش بیرونی مخ را قشر مغز می‌نامند که از ماده خاکستری تشکیل شده و در لایه‌های مختلف آرایش یافته‌اند. این لایه بین ۲ تا ۴ میلیمتر ضخامت دارد و به صورت عمیق تا خورده و ظاهری پیچ‌خورده را ایجاد می‌کند.[۲۱] زیر قشر مغز، ماده سفید مخی قرار دارد. بزرگترین بخش از قشر مخ، نئوکورتکس است که دارای شش لایه نورونی است. باقی قشر را آلوکورتکس می‌نامند که دارای سه یا چهار لایه است.[۹]

با تقسیم‌بندی قشر به حدود پنجاه ناحیه عملکردی متفاوت به نام نواحی برادمن،[ض] بر روی قشر مغز نقشه‌ای نگاشته شده‌است. وقتی این نواحی زیر میکروسکوپ دیده‌شوند، تمایز واضحی بینشان دیده می‌شود.[۲۲] قشر به دو ناحیه عملکردی اصلی تقسیم می‌شود: یک قشر حرکتی و یک قشر حسی.[۲۳] قشر حرکتی اولیه که آکسون‌ها را به سمت پایینِ نورون‌های حرکتی در ساقه مغز و طناب نخاعی می‌فرستد، بخش عقبی لوب پیشانی را در جلوی ناحیه پیکری-حسی اشغال می‌کند. نواحی حسی اولیه، پیام‌ها را از طریق هسته‌های رله‌ای از اعصاب حسی و نوارها در تالاموس دریافت می‌کنند. نواحی حسی اولیه شامل قشر بصری لوب پس‌سری، قشر شنوایی در بخش‌هایی از لوب گیجگاهی، قشر اینسولار و قشر پیکری-حسی در لوب آهیانه‌ای است. بخش‌های باقیمانده از قشر را نواحی ارتباطی[ط] می‌نامند. این نواحی ورودی‌هایشان را از نواحی حسی و بخش‌های پایین‌تر مغز دریافت کرده و درگیر فرایندهای شناختی پیچیدهٔ ادراک، تفکر و تصمیم‌گیری اند.[۲۴] عملکردهای اصلی لوب پیشانی مربوط به کنترل توجه، تفکر انتزاعی، رفتار، حل مسئله و واکنش‌های فیزیکی و شخصیت است.[۲۵][۲۶] لوب پس‌سری، کوچکترین لوب بوده و عملکردهای اصلی آن شامل ادراک بصری، پردازش بصری-فضایی، حرکت و ادراک رنگ است.[۲۵][۲۶] یک لبول کوچکتر به نام کونئوس نیز در لوب پس سری وجود دارد که وظیفه پردازش اطلاعات اولیه بینایی را بر عهده دارد.[۲۷] این لبول در کنترل فرایندهای اختلال دو قطبی نیز بسیار حائز اهمیت است.[۲۷] لوب گیجگاهی خاطرات شنوایی، بصری، زبانی و برخی از خاطرات گفتاری را کنترل می‌کند.[۲۵]

چین‌های قشری و ماده سفید در تشریح افقیِ سر

مخ شامل بطن‌ها است که مایع مغزی-نخاعی در آن مکان‌ها تولید شده و به گردش در می‌آید. در زیر جسم پینه‌ای، دیوارهٔ شفاف[ظ] قرار دارد که غشای جداکنندهٔ بطن‌های طرفی می‌باشد. در زیر بطن‌های طرفی، تالاموس و در جلو و پایین آن نیز هیپوتالاموس قرار دارد. هیپوتالاموس به جلو کشیده شده و غده هیپوفیز را شکل می‌دهد. عقبِ تالاموس، ساقهٔ مغز واقع شده‌است.[۲۸]

عقده‌های قاعده‌ای که به آن‌ها هسته‌های قاعده‌ای نیز گفته می‌شود، دسته‌ای از ساختارها در عمق نیم‌کره‌ها هستند که درگیر تنظیم رفتار و حرکت می‌باشند.[۲۹] بزرگترین مؤلفهٔ آن، جسم مخطط است، سایر مؤلفه‌ها گلوبوس پالیدوس، توده سیاه و هسته سابتالاموس هستند.[۲۹] جسم مخطط به بخش شکمی و پشتی دسته‌بندی می‌شود، تقسیم‌بندی که براساس عملکرد و ارتباطات بنا شده‌است. جسم مخطط شکمی شامل هسته اکومبنس[ع] و پیاز بویایی[غ] است در حالی که جسم مخطط پشتی شامل هسته دم‌دار و پوتامن است. پوتامن و گلوبوس پالیدوس توسط کپسول داخلی از بطن‌های طرفی و تالاموس جدا شده‌اند، در حالی که هسته دم‌دار حول بطن‌های طرفی و روی وجوه بیرونی آن کشیده شده و بر آن‌ها مماس است.[۳۰] در عمیق‌ترین بخش شیار جانبی، بین قشر اینسولار و جسم مخطط، ورقه نورونی نازکی به نام کلاستروم قرار دارد.[۳۱]

در پایین و جلوی جسم مخطط، تعدادی از ساختارهای مغز قدامی قاعده‌ای[ف] قرار دارند. این ساختارها شامل این موارد اند: نوکلئوس باسالیس،[ق] نوار قطری بروکا،[ک] سابستنشا اینومیناتا[گ] و هسته سپتال مدیال. این ساختارها در تولید ناقل عصبی به نام استیل‌کولین مهم اند، که پس از تولید به‌طور گسترده در سرتاسر مغز منتشر می‌گردد. مغز قدامی قاعده‌ای، به خصوص نوکلئوس باسالیس را به عنوان خروجی کولینرژیک اصلیِ دستگاه عصبی مرکزی به جسم مخطط و نئوکورتکس در نظر می‌گیرند.[۳۲]

مخچه

مغز انسان از نمای تحتانی، مخچه و ساقه مغز نشان داده شده

مخچه به یک لوب قدامی، یک لوب خلفی و لوب فلوکولوندولار[ل][۳۳] تقسیم‌بندی می‌گردد. کرمینه، بین لوب‌های خلفی و قدامی قرار داشته و آن‌ها را به هم متصل می‌کند.[۳۴] مخچه، در مقایسه با قشر مخ، قشر بیرونی بسیار نازکتری دارد، به طوری که شیارهای باریکی بر روی آن چندین چین خوردگی عرضی خمیده را ایجاد می‌کنند.[۳۴] زیر و بین این دو لوب، لوب سوم فلوکولوندولار قرار دارد.[۳۵] مخچه در سمت عقب حفره کرانیال قرار دارد، به طوری که زیر لوب‌های پس‌سری قرار داشته و توسط چادرینه مخچه که ورقه‌ای از فیبرها است از این‌ها جدا شده‌است.[۳۶]

مخچه توسط سه جفت از نوارهای عصبی به نام پایک‌های مخچه‌ای[م] به ساقه مغز وصل شده‌اند. جفت پایک‌های فوقانی به میان‌مغز، جفت پایک‌های میانی به بصل النخاع و جفت پایک تحتانی نیز به پل مغزی متصل می‌شوند.[۳۴] مخچه شامل بخشی از بصل النخاعِ داخلی از جنس ماده سفید و یک قشر خارجی از جنس ماده خاکستری که غنی از چین‌خوردگی است.[۳۶] به نظر می‌رسد که لوب‌های قدامی و خلفی مخچه در هماهنگ‌کردن و هموار سازی حرکات پیچیده و لوب فلوکولوندولار نیز در حفظ تعادل نقش ایفا می‌کند[۳۷] گرچه که اختلاف نظرهایی در مورد عملکردهای شناختی، رفتاری و حرکتی آن وجود دارد.[۳۸]

ساقه مغز

ساقه مغز در زیر مخ قرار دارد و از میان‌مغز، پل مغز و مدولا تشکیل شده‌است. در قسمت پشتی جمجمه، حفره کرانیال قدامی و بر روی قسمتی از قاعده جمجمه معروف به کلیووس قرار دارد و به سوراخ بزرگ پس‌سری در استخوان پس‌سری ختم می‌شود. ساقه مغز در زیر آن به عنوان طناب نخاعی ادامه می‌یابد که توسط ستون مهره ای محافظت می‌شود.[۳۹]

ده جفت از دوازده جفت اعصاب مغزی [ن] مستقیماً از ساقه مغز خارج می‌شوند. [۳۹] ساقه مغز همچنین حاوی بسیاری از هسته‌های عصبی جمجمه و هسته‌های اعصاب محیطی و همچنین هسته‌هایی است که در تنظیم بسیاری از فرآیندهای ضروری از جمله تنفس ، کنترل حرکات چشم و تعادل نقش دارند. [۴۱] [۳۹] سازند مشبک، شبکه‌ای از هسته‌هایی با شکل‌گیری نامشخص، در داخل و در طول ساقه مغز وجود دارد. [۳۹] بسیاری از تنه عصبی، که اطلاعات را به و از قشر مغز به بقیه بدن منتقل می‌کنند، از ساقه مغز عبور می‌کنند. [۳۹]

میکروآناتومی

مغز انسان اساساً از نورون‌ها، سلول‌های گلیال، سلول‌های بنیادی عصبی[و] و رگ‌های خونی تشکیل شده‌است. انواع نورون شامل نورون‌های داخلی، سلول‌های هرمی از جمله سلول‌های بتز، نورون‌های حرکتی (نورون حرکتی فوقانی و نورون حرکتی تحتانی) و مخچه سلول‌های پورکنژ. سلول‌های بتز بزرگترین سلول‌ها (بر اساس اندازه بدن سلولی) در سیستم عصبی هستند. [۴۲] تخمین زده می‌شود که مغز انسان بالغ دارای ۸±۸۶ میلیارد نورون است که تعداد آنها تقریباً برابر (۱۰±۸۵ میلیارد) سلول غیر عصبی است.[۴۳][ه] از این نورون‌ها، ۱۶ میلیارد (۱۹٪) در قشر مغز و ۶۹ میلیارد (۸۰٪) در مخچه قرار دارند.[۴۳][ی]

انواع سلول‌های گلیال آستروسیت‌ها (از جمله برگمان گلیا[اا]، الیگودندروسیت‌ها، سلول‌های اپاندیمی (شامل تانیسیت‌ها[اب]، سلول‌های گلیال شعاعی، میکروگلیا و زیرگروهی از سلول‌های پیش ساز الیگودندروسیت هستند. آستروسیت‌ها بزرگترین سلول‌های گلیال هستند. آنها سلول‌های ستاره‌ای[اپ] هستند که فرآیندهای زیادی از جسم سلولی آنها تابش می‌شود. برخی از این فرایندها به صورت پاهای انتهایی اطراف عروقی بر روی دیواره‌های مویرگ ختم می‌شوند. گلیا لیمیتانس[ات] قشر از فرآیندهای آستروسیتی پا تشکیل شده‌است که بخشی از سلول‌های مغز را شامل می‌شود.

ماست‌سل‌ها گلبول‌های سفید خونی هستند که در سیستم عصبی ایمنی[اث] مغز تعامل دارند.[۴۴] ماست سل‌ها در سیستم عصبی مرکزی در تعدادی ساختار از جمله مننژها وجود دارند.[۴۴] آنها به عنوان واسطه در واکنش‌های عصبی ایمنی در شرایط التهابی حضور دارند و به حفظ سد خونی مغزی، به‌ویژه در مناطقی از مغز که مانع وجود ندارد، کمک می‌کنند.[۴۴][۴۱] ماست سل‌ها همان عملکردهای کلی را در بدن و سیستم عصبی مرکزی مانند تأثیرگذاری یا تنظیم پاسخ‌های آلرژیک، ایمنی ذاتی و سازگار، خودایمنی و التهاب را انجام می‌دهند.[۴۴] ماست سل‌ها به عنوان سلول مؤثر[اج] اصلی عمل می‌کنند که از طریق آن پاتوژن‌ها می‌توانند سیگنال‌های بیوشیمیایی را که بین دستگاه گوارش و سیستم عصبی مرکزی انجام می‌شود تحت تأثیر قرار دهند.[۴۵][۴۶]

نشان داده شده‌است که حدود ۴۰۰ ژن، ویژه مغز هستند. در همه نورون‌ها ELAVL3[اچ] و در نورون‌های هرمی NRGN[اح] و REEP2[اخ] نیز بیان می‌شود. GAD1 - ضروری برای بیوسنتز انتقال دهنده عصبی GABA - در بین نورون‌ها بیان می‌شود. پروتئین بیان شده در سلول‌های گلیال شامل نشانگر آستروسیت GFAP[اد] و S100B[اذ] است در حالی که پروتئین اصلی میلین و فاکتور رونویسی OLIG2[ار] در الیگودندروسیت بیان شده‌است.[۴۷]

مایع مغزی نخاعی

مایع مغزی نخاعی در فضاهای اطراف و درون مغز گردش می‌کند

مایع مغزی نخاعی یک مایع بین سلولی شفاف و بی‌رنگ است که در اطراف مغز در شامگان، در دستگاه بطنی و در کانال مرکزی نخاع در گردش است. همچنین برخی از شکاف‌های فضای زیر عنکبوتیه را پر می‌کند که به عنوان مخازن زیر عنکبوتیه[از]شناخته می‌شوند. [۳۹] چهار بطن، دو بطن جانبی، یک بطن سوم و یک بطن چهارم، همگی حاوی یک شبکه کوروئید هستند که مایع مغزی نخاعی تولید می‌کند. [۴۲] بطن سوم در خط وسط قرار دارد و به بطن‌های جانبی متصل است. [۳۹] یک مجرای منفرد، قنات مغزی بین پونز و مخچه، بطن سوم را به بطن چهارم متصل می‌کند. [۳۹] سه دهانه مجزا، دریچه میانی و دو روزنه جانبی، مایع مغزی نخاعی را از بطن چهارم به سیسترنا مگنا یکی از مخازن اصلی تخلیه می‌کند. از اینجا، مایع مغزی نخاعی در اطراف مغز و نخاع در فضای زیر عنکبوتیه، بین ماده عنکبوتیه و پیا ماتر، گردش می‌کند. [۳۹] در هر زمان، حدود ۱۵۰ میلی لیتر مایع مغزی نخاعی که بیشتر در فضای زیر عنکبوتیه وجود دارد دائماً در حال بازسازی و جذب است و تقریباً هر ۵ تا ۶ ساعت یک بار جایگزین می‌شود. [۳۹]

سیستم لنفاوی[۴۸][۴۹][۵۰] به عنوان سیستم تخلیه لنفاوی مغز توصیف شده‌است. مسیر گلیمفاتیک در سراسر مغز شامل مسیرهای تخلیه از مایع مغزی نخاعی و از عروق لنفاوی مننژیال[اژ] است که با سینوس‌های دورال مرتبط هستند و در کنار رگ‌های خونی مغز قرار دارند.[۵۱][۵۲] این مسیر مایع بینابینی را از بافت مغز تخلیه می‌کند.[۵۲]

تأمین خون

دو گردش درحلقه ویلیس به هم می‌پیوندند (نمای پایینی).
نموداری که ویژگی‌های غشای خارجی مغز و تأمین رگ‌های خونی را نشان می‌دهد

سرخرگهای کاروتید درونی خون اکسیژن دار را به قسمت جلوی مغز و سرخرگهای مهره‌ای خون را به پشت مغز می‌رسانند. [۳۹] این دو گردش خون در حلقه ویلیس به هم می پیوندند، حلقه ای از شریان‌های متصل که در مخزن بین ساقه ای بین مغز میانی و پونز قرار دارد. [۳۹]

شریان‌های کاروتید داخلی شاخه‌هایی از سرخرگ کاروتید مشترک هستند. آنها از طریق کانال کاروتید[اس] وارد جمجمه می‌شوند، از طریق سینوس کاورنوس[اش] حرکت می‌کنند و وارد فضای شامگان می‌شوند. [۳۹] سپس آنها واردحلقه ویلیس می‌شوند، با دو شاخه، که از طریق سرخرگ مغزی پیشین بیرون می‌آیند. این شاخه‌ها در امتداد شکاف طولی به سمت جلو و سپس به سمت بالا حرکت می‌کنند و قسمت جلویی و خط میانی مغز را تأمین می‌کنند. [۳۹] یک یا چند سرخرگ ارتباطی پیشین، مدت کوتاهی پس از بیرون آمدن آنها به صورت شاخه به دو شریان مغزی قدامی می‌پیوندند. [۳۹] شریان‌های کاروتید داخلی به عنوان سرخرگ مغزی میانی به جلو پیش می‌روند. آنها به طرفی در امتداد استخوان پروانه‌ای کاسه چشم حرکت می‌کنند، سپس از طریق قشر اینسولار، جایی که شاخه‌های نهایی ایجاد می‌شوند، به سمت بالا حرکت می‌کنند. [۳۹]

شریان‌های مهره ای به صورت شاخه‌هایی از سرخرگ زیرترقوه‌ای چپ و راست ظاهر می‌شوند. آنها از طریق سوراخ‌های عرضی که فضاهایی در مهره‌های گردن هستند به سمت بالا حرکت می‌کنند. هر طرف از طریق فورامن مگنوم در امتداد سمت مربوطه مدولا وارد حفره جمجمه می‌شود. [۳۹] آنها یکی از سه شاخه مخچه را بیرون می‌دهند. شریان‌های مهره‌ای در جلوی قسمت میانی مدولا به هم می‌پیوندند و سرخرگ قاعده‌ای بزرگ‌تری را تشکیل می‌دهند که شاخه‌های متعددی را برای تأمین مدولا و پونز و دو شاخه مخچه قدامی و فوقانی می‌فرستد. [۳۹] در نهایت، شریان بازیلار به دو سرخرگ مغزی پسین تقسیم می‌شود. اینها به سمت خارج، اطراف دمگل‌های مخچه فوقانی و در امتداد بالای تنتوریوم مخچه حرکت می‌کنند، جایی که شاخه‌هایی را برای تأمین لوب‌های گیجگاهی و پس سری می‌فرستند. [۳۹] هر شریان مغزی خلفی یک سرخرگ ارتباطی پسین کوچک را می‌فرستد تا به شریان‌های کاروتید داخلی بپیوندد.

تخلیه خون

سیاهرگ‌های مغزی[اص] خون بدون اکسیژن را از مغز تخلیه می‌کنند. مغز دارای دو شبکه اصلی سیاهرگ شامل یک شبکه بیرونی یا سطحی، در سطح مغز که دارای سه شاخه است و یک شبکه داخلی می‌شود. این دو شبکه از طریق وریدهای آناستوموز (بازپیوندی) با هم ارتباط برقرار می‌کنند. [۳۹] سیاهرگ‌های مغز به حفره‌های بزرگ‌تر سینوس‌های سیاهرگی سخت‌شامه که معمولاً بین سخت‌شیره و پوشش جمجمه قرار دارند، تخلیه می‌شوند. [۵۳] خون از مخچه و مغز میانی به سیاهرگ بزرگ مغز[اض] تخلیه می‌شود. خون از بصل النخاع و پونز ساقه مغز دارای الگوی متغیری به وریدهای نخاعی یا وریدهای مغزی مجاور است. [۳۹]

خون در قسمت عمیق مغز از طریق یک شبکه وریدی به سینوس کاورنو در جلو و سینوس‌های پتروزال فوقانی و تحتانی در طرفین و سینوس ساژیتال تحتانی در پشت تخلیه می‌شود. [۵۳] خون از مغز بیرونی به سینوس ساژیتال فوقانی[اط] بزرگ تخلیه می‌شود که در خط وسط بالای مغز قرار دارد. خون از اینجا به خون سینوس مستقیم[اظ] در محل تلاقی سینوس‌ها می‌پیوندد. [۵۳]

خون از اینجا به سینوس‌های عرضی[اع] چپ و راست تخلیه می‌شود. [۵۳] سپس این سینوس‌ها به سینوس‌های سیگموئید[اغ] تخلیه می‌شوند که خون را از سینوس کاورنووس و سینوس‌های پتروزال فوقانی و تحتانی دریافت می‌کنند. سیگموئید به سیاهرگ ژوگولار داخلی تخلیه می‌شود. [۵۳] [۳۹]

سد خونی مغزی

شریان‌های بزرگتر در سراسر مغز خون را به مویرگ‌های کوچکتر می‌رسانند. این کوچک‌ترین رگ‌های خونی در مغز، با سلول‌هایی پوشانده شده‌اند که با اتصالات محکم به هم متصل شده‌اند و بنابراین مایعات به همان درجه‌ای که در مویرگ‌های دیگر وجود دارد، داخل یا خارج نمی‌شوند که باعث ایجاد سد خونی مغزی می‌شود. [۴۱] پریسیتز[اف] نقش عمده ای در تشکیل اتصالات محکم دارند.[۵۴] این مانع برای مولکول‌های بزرگتر نفوذپذیری کمتری دارد، اما همچنان در برابر آب، دی‌اکسید کربن، اکسیژن و بیشتر مواد محلول در چربی (از جمله بیهوش کننده‌ها و الکل) نفوذپذیر است. [۴۱] سد خونی مغزی در اندام‌های دور بطنی[اق]— که ساختارهایی در مغز هستند که ممکن است نیاز به واکنش به تغییرات در مایعات بدن داشته باشند — مانند غده کاجی، ناحیه پوسترما، و برخی از نواحی هیپوتالاموس وجود ندارد. [۴۱] سد خونی مایع مغزی نخاعی مشابهی وجود دارد که همان هدف سد خونی مغزی را دارد، اما به دلیل ویژگی‌های ساختاری متمایز بین دو سیستم مانع، انتقال مواد مختلف به مغز را تسهیل می‌کند. [۴۱]

وظایف و عملکرد

مغز انسان از ۸۶ میلیارد سلول عصبی تشکیل شده‌است؛ این سیستم به وسیله ارتباط میان بخش‌های مختلف بدن مانند دستگاه گردش خون، دستگاه گوارش، سیستم ایمنی و … باعث ایجاد هماهنگی در فعالیت‌های بدن می‌شود.[۵۵] مدارهای حرکتی دستورات را به ماهیچهها برده و رفلکس‌های سادهٔ ارادی را ایجاد می‌کند؛ مدارات حسی پیام‌ها را از گیرنده‌های حسی دریافت و به سمت مغز هدایت می‌کند تا پاسخ مناسبی به این پدیده‌ها داده شود. همچنین فعالیت‌های شناختی مانند حافظه، تصمیم‌گیری و ادراک توسط کورتکس پردازش و فعالیت‌های پیچیده مانند زبان و برنامه‌ریزی را ایجاد می‌کند.[۵۶][۵۷]

کنترل حرکات بدن

لوب پیشانی در استدلال، حرکت ارادی، احساس و زبان نقش دارد. این لوب قشر حرکتی[اک]، قشر پیش پیشانی و منطقه بروکا را نیز شامل می‌شود. قشر حرکتی مسئول ایجاد، تعادل و هماهنگی حرکات در بدن است؛ قشر پیش پیشانی، مسئول عملکردهای شناختی سطح بالا و پیچیده‌است و منطقه بروکا برای فرایندهای مرتبط با زبان ضروریست[۵۸] و آسیب به آن می‌تواند بیماری‌هایی مانند آفازی بروکا را ایجاد کند.[۵۹] مغز به وسیله ارتباط با مخچه پیام‌های ارادی و نیمه ارادی را از طریق اعصاب مغزی به نورون‌های حرکتی بدن منتقل و به وسیله مجرای نخاعی پیام‌های حرکتی را از مغز، به دیگر بخش‌های بدن و اندام‌ها ارسال می‌کند.[۶۰] اعصاب اطراف جمجمه نیز حرکات مربوط به چشم، دهان و صورت را بدون واسطه تنظیم و هماهنگ می‌کند.[۶۱]

حرکت‌های درشت، مانند حرکت بدن، حرکت بازوها و پاها، در قشر حرکتی ایجاد می‌شود. این بخش دارای سه قسمت است:[۶۲][۶۳]

  • قشر حرکتی اولیه که بخشی از شکنج پیش مرکزی[اگ] بوده و دارای بخش‌هایی است که به حرکت قسمت‌های مختلف بدن اختصاص دارد.
  • ناحیه پیش حرکتی[ال] که در جلوی قشر حرکتی اولیه قرار دارد و در تنظیم و هماهنگ سازی حرکات نقش اساسی ایفا می‌کند.
  • ناحیه حرکتی تکمیلی[ام] که در مجاور ناحیه پیش حرکتی قرار دارد و همانند آن وظیفه هماهنگ سازی و تنظیم حرکات بدن را بر عهده دارد.
تصویر همونکلوس قشری که دو نوع حسی و حرکتی دارد.

دست‌ها و دهان نسبت به سایر قسمت‌های بدن ناحیه بسیار بزرگ‌تری از مغز را برای پردازش اطلاعات حرکتی شان در اختیار دارند همین امر سبب می‌شود قادر به انجام حرکت‌های ظریف و پیچیده تری مانند تکلم و نوشتن شوند.[۶۴] پیام‌های عصبی تولید شده از قشر حرکتی در امتداد دستگاه کورتیکوسپینال[ان] در جلوی بصل النخاع حرکت کرده و با گذر از اهرام مدولاری[او] و مقطع عرضی بصل النخاع در سطح تقاطع هرم‌ها، وارد ریشه پشتی در کانال نخاعی می‌شود و از طریق نورون‌های حرکتی پیام‌های انقباضی را برای ماهیچه‌ها ارسال می‌کند. مخچه و عقده‌های قاعده ای نیز در تنظیم حرکات ظریف و پیچیده عضلات نقش دارند.[۶۵][۶۶]

به وسیلهٔ همونکلوس حرکتی[اه] بخش‌های درگیرِ مغز در حرکت هر کدام از اندام‌های بدن را توصیف می‌کنند.[۶۲]

درک حواس بدن

سیستم عصبی حسی وظیفه دریافت و پردازش اطلاعات حسی را بر عهده دارد. این اطلاعات از طریق اعصاب جمجمه، از طریق مجاری در طناب نخاعی و مستقیماً در مراکزی از مغز دریافت می‌شود که به وسیلهٔ رگ‌های مجاور عصب خون رسانی می‌شوند.[۶۷] موتورهای ترکیبی و سیگنال‌های حسی نیز یکپارچه شده‌اند.[۶۷]

نواحی قشری مغز

مغز اطلاعات مربوط به لمس ظریف، فشار، درد، لرزش و دما را از پوست دریافت می‌کند. از مفاصل، مغز اطلاعاتی در مورد موقعیت مفصل دریافت می‌کند.[۶۸] قشر حسی دقیقاً در نزدیکی قشر حرکتی قرار دارد و مانند قشر حرکتی دارای نواحی مربوط به احساس از قسمت‌های مختلف بدن است. حسی که توسط یک گیرنده حسی روی پوست جمع‌آوری می‌شود به یک سیگنال عصبی تبدیل می‌شود که از طریق دستگاه‌های نخاعی به تعدادی نورون منتقل می‌شود. مسیر ستون پشتی-لمنیسکوس داخلی حاوی اطلاعاتی در مورد لمس ظریف، ارتعاش و موقعیت مفاصل است. فیبرهای مسیر از قسمت پشتی نخاع به قسمت پشتی بصل النخاع می‌روند، جایی که با نورون‌های مرتبه دوم متصل می‌شوند که بلافاصله الیاف را در سراسر خط وسط می‌فرستند. این فیبرها سپس به سمت بالا به داخل کمپلکس شکمی بازال در تالاموس حرکت می‌کنند، جایی که با نورون‌های مرتبه سوم که فیبرها را به قشر حسی می‌فرستند، متصل می‌شوند.[۶۸] دستگاه اسپینوتلامیک اطلاعاتی در مورد درد، دما و لمس شدید دارد. فیبرهای مسیر از طناب نخاعی عبور می‌کنند و با نورون‌های مرتبه دوم در تشکیل شبکه‌ای ساقه مغز برای درد و دما متصل می‌شوند و همچنین برای لمس شدید به کمپلکس شکمی تالاموس ختم می‌شوند.[۶۹]

مسیر سیگنال‌های عصبی از دو چشم به مغز

بینایی توسط نوری که به شبکیه چشم برخورد می‌کند تولید می‌شود. گیرنده‌های نوری در شبکیه، محرک حسی نور را به سیگنال عصبی الکتریکی منتقل می‌کنند که به قشر بینایی در لوب پس سری فرستاده می‌شود. سیگنال‌های بینایی از طریق اعصاب بینایی شبکیه را ترک می‌کنند. فیبرهای عصبی بینایی از نیمه‌های بینی شبکیه به طرف مقابل می‌پیوندند و از نیمه‌های زمانی شبکیه مقابل به فیبرها می‌پیوندند تا مجاری بینایی را تشکیل دهند. ترتیب اپتیک چشم و مسیرهای بینایی به این معنی است که دید از میدان بینایی چپ توسط نیمه راست هر شبکیه دریافت می‌شود، توسط قشر بینایی سمت راست پردازش می‌شود و بالعکس. فیبرهای مجرای بینایی در هسته ژنیکوله جانبی به مغز می‌رسند و از طریق تشعشعات بینایی برای رسیدن به قشر بینایی حرکت می‌کنند.[۷۰]

شنوایی و تعادل هر دو در گوش داخلی ایجاد می‌شوند. صدا منجر به ارتعاشات استخوانچه‌ها می‌شود که در نهایت به اندام شنوایی ادامه می‌یابد و تغییر در تعادل منجر به حرکت مایعات در گوش داخلی می‌شود. این یک سیگنال عصبی ایجاد می‌کند که از عصب دهلیزی عبور می‌کند. از اینجا به هسته‌های حلزونی، هسته اولیواری فوقانی، هسته ژنیکوله داخلی و در نهایت تابش شنوایی به قشر شنوایی می‌رسد.[۷۱]

حس بویایی توسط سلول‌های گیرنده در اپیتلیوم مخاط بویایی در حفره بینی ایجاد می‌شود. این اطلاعات از طریق عصب بویایی که از طریق قسمت نسبتاً قابل نفوذ به جمجمه می‌رود منتقل می‌شود. این عصب به مدار عصبی لامپ بویایی منتقل می‌شود و از آنجا اطلاعات به قشر بویایی منتقل می‌شود.[۷۲][۷۳] مزه از گیرنده‌های روی زبان ایجاد می‌شود و در امتداد اعصاب صورت و گلوفارنکس به هسته منفرد در ساقه مغز منتقل می‌شود. برخی از اطلاعات چشایی نیز از طریق عصب واگ از حلق به این ناحیه منتقل می‌شود. سپس اطلاعات از اینجا از طریق تالاموس به قشر چشایی منتقل می‌شود.[۷۴]

تنظیم

عملکردهای خودمختار مغز شامل تنظیم یا کنترل ریتمیک ضربان قلب و تعداد تنفس و حفظ هموستازی است.[۷۵]

فشار خون و ضربان قلب تحت تأثیر مرکز وازوموتور بصل النخاع است که باعث می‌شود سرخرگ‌ها و سیاهرگ‌ها در حالت استراحت تا حدودی منقبض شوند. این کار را با تأثیرگذاری بر سیستم عصبی سمپاتیک و پاراسمپاتیک از طریق عصب واگ انجام می‌دهد. اطلاعات مربوط به فشار خون توسط بارورسپتورها در اجسام آئورت در قوس آئورت تولید می‌شود و در امتداد رشته‌های آوران عصب واگ به مغز منتقل می‌شود.[۷۵] اطلاعات مربوط به تغییرات فشار در سینوس کاروتید از اجسام کاروتید واقع در نزدیکی سرخرگ کاروتید بدست می‌آید و از طریق یک عصب که به عصب گلوسوفارنکس می‌پیوندد منتقل می‌شود. این اطلاعات به سمت هسته منفرد در بصل النخاع می‌رود. سیگنال‌ها از اینجا بر مرکز وازوموتور تأثیر می‌گذارند تا انقباض سیاهرگ و سرخرگ را متناسب با آن تنظیم کند.[۷۶]

مغز سرعت تنفس را عمدتاً توسط مراکز تنفسی در مدولا و پونز کنترل می‌کند.[۷۷] مراکز تنفسی با تولید سیگنال‌های حرکتی که از طناب نخاعی، در امتداد عصب فرنیک به دیافراگم و سایر عضلات تنفسی منتقل می‌شوند، تنفس را کنترل می‌کنند. این یک عصب مختلط است که اطلاعات حسی را به مراکز برمی‌گرداند. چهار مرکز تنفسی وجود دارد، سه مرکز با عملکرد واضح‌تر و یک مرکز آپنوستی با عملکرد کمتر مشخص. در بصل النخاع، یک گروه تنفسی پشتی باعث میل به تنفس می‌شود و اطلاعات حسی را مستقیماً از بدن دریافت می‌کند. همچنین در بصل النخاع، گروه تنفسی شکمی بر بازدم در حین فعالیت تأثیر می‌گذارد. در پونز، مرکز پنوموتاکسیک بر مدت زمان هر تنفس تأثیر می‌گذارد،[۷۷] و به نظر می‌رسد مرکز آپنوستیک بر استنشاق تأثیر می‌گذارد. مراکز تنفسی به‌طور مستقیم کربن دی‌اکسید و pH خون را حس می‌کنند. اطلاعات مربوط به اکسیژن خون، دی‌اکسید کربن و سطوح pH نیز بر روی دیواره سرخرگ‌ها در گیرنده‌های شیمیایی محیطی بدن آئورت و کاروتید حس می‌شود. این اطلاعات از طریق اعصاب واگ و گلوسوفارنکس به مراکز تنفسی منتقل می‌شود.[۷۷] دی‌اکسید کربن بالا، PH اسیدی یا اکسیژن کم، مراکز تنفسی را تحریک می‌کند. میل به تنفس نیز تحت تأثیر گیرنده‌های کششی ریوی در شش‌ها قرار می‌گیرد که وقتی فعال می‌شوند، با انتقال اطلاعات به مراکز تنفسی از طریق عصب واگ، از باد کردن بیش از حد ریه‌ها جلوگیری می‌کنند.[۷۷]

هسته‌های مختلف هیپوتالاموس

هیپوتالاموس در دی انسفالون، در تنظیم بسیاری از عملکردهای بدن نقش دارد. عملکردها شامل تنظیم عصبی غدد درون ریز، تنظیم ریتم شبانه‌روزی، کنترل سیستم عصبی خودمختار، و تنظیم مایعات و مصرف غذا است. ریتم شبانه‌روزی توسط دو گروه سلولی اصلی در هیپوتالاموس کنترل می‌شود. هیپوتالاموس قدامی شامل هسته سوپراکیاسماتیک و هسته پره اپتیک بطنی جانبی است که از طریق چرخه‌های بیان ژن، یک ساعت شبانه‌روزی تقریباً ۲۴ ساعته ایجاد می‌کند. در روز شبانه‌روزی، یک ریتم اولترادیا کنترل الگوی خواب را به دست می‌گیرد. خواب یک نیاز ضروری برای بدن و مغز است و باعث بسته شدن و استراحت سیستم‌های بدن می‌شود.[۷۸] همچنین یافته‌هایی وجود دارد که نشان می‌دهد تجمع روزانه سموم در مغز در طول خواب حذف می‌شود. در هنگام بیداری مغز یک پنجم کل انرژی مورد نیاز بدن را مصرف می‌کند. خواب لزوماً این استفاده را کاهش می‌دهد و برای بازیابی ATP انرژی زا زمان می‌دهد. آثار کم خوابی نیاز مطلق به خواب را نشان می‌دهد.[۷۹]

هیپوتالاموس جانبی حاوی نورون‌های اورکسینرژیک است که اشتها و برانگیختگی را از طریق پیش‌بینی خود به سیستم فعال کننده شبکه صعودی کنترل می‌کنند.[۸۰][۸۱] هیپوتالاموس غده هیپوفیز را از طریق انتشار پپتیدهایی مانند اکسی توسین و وازوپرسین و همچنین دوپامین در برجستگی میانه کنترل می‌کند. از طریق برجستگی‌های اتونومیک، هیپوتالاموس در تنظیم عملکردهایی مانند فشار خون، ضربان قلب، تنفس، تعریق و سایر مکانیسم‌های هموستاتیک نقش دارد.[۸۲] هیپوتالاموس همچنین در تنظیم حرارتی نقش دارد و هنگامی که توسط سیستم ایمنی تحریک شود، قادر به ایجاد تب است. هیپوتالاموس تحت تأثیر کلیه‌ها قرار می‌گیرد: هنگامی که فشار خون کاهش می‌یابد، رنین آزاد شده توسط کلیه‌ها نیاز به نوشیدن را تحریک می‌کند. هیپوتالاموس همچنین مصرف غذا را از طریق سیگنال‌های خودمختار و ترشح هورمون توسط دستگاه گوارش تنظیم می‌کند.[۸۳]

زبان

نواحی بروکا و ورنیکه که در پردازش زبان نقش دارند.

در حالی که به گذشته تصور می‌شد که بخش پردازش کننده زبان در ناحیه ورنیکه و بروکا است،[۸۴] اکنون اکثراً پذیرفته شده‌است که شبکه گسترده‌تری از مناطق قشر مغز به عملکردهای زبان کمک می‌کند.[۸۵][۸۶][۸۷]

مطالعه در مورد چگونگی بازنمایی، پردازش و کسب زبان توسط مغز، عصب-زبان‌شناسی نامیده می‌شود که یک حوزه چندرشته‌ای بزرگ است که از علوم اعصاب شناختی، زبان‌شناسی شناختی، و روان‌زبان‌شناسی استخراج می‌شود.[۸۸]

تقسیم‌بندی وظایف

مخ دارای یک سازمان متقابل است که هر نیمکره مغز عمدتاً با نیمی از بدن در تعامل است، سمت چپ مغز با سمت راست بدن، اتصالات حرکتی از مغز به نخاع و اتصالات حسی از نخاع به مغز، هر دو طرف متقاطع در ساقه مغز با یکدیگر تعامل دارد و بالعکس. علت تکوینی این امر نامشخص است.[۸۹] . ورودی بصری از قانون پیچیده‌تری پیروی می‌کند: اعصاب بینایی از دو چشم در نقطه‌ای به نام کیاسما بینایی به هم می‌رسند و نیمی از رشته‌های هر عصب برای پیوستن به دیگری جدا می‌شوند.[۹۰] نتیجه این است که اتصالات نیمه چپ شبکیه، در هر دو چشم، به سمت چپ مغز می رود، در حالی که اتصالات از نیمه راست شبکیه به سمت راست مغز می رود.[۹۱] از آنجا که هر نیمه شبکیه نوری را دریافت می کند که از نیمه مخالف میدان بینایی می آید، نتیجه عملکردی این است که ورودی بصری از سمت چپ جهان به سمت راست مغز می رود و بالعکس.[۸۹] بنابراین، سمت راست مغز ورودی حسی جسمی را از سمت چپ بدن، و ورودی بینایی را از سمت چپ میدان بینایی دریافت می‌کند.[۹۲][۹۳]

سمت چپ و راست مغز متقارن به نظر می رسند، اما به صورت نامتقارن عمل می کنند.[۹۴] به عنوان مثال، همتای ناحیه حرکتی نیمکره چپ که دست راست را کنترل می کند، ناحیه نیمکره راست کنترل کننده دست چپ است. با این حال، چندین استثنا مهم وجود دارد که شامل زبان و شناخت فضایی می شود. لوب پیشانی چپ برای زبان غالب است. اگر یک ناحیه کلیدی زبان در نیمکره چپ آسیب ببیند، ممکن است قربانی را قادر به صحبت کردن یا درک نکند،[۹۴] در حالی که آسیب معادل به نیمکره راست تنها باعث آسیب جزئی در مهارت های زبانی می شود.

بخش قابل توجهی از درک کنونی از تعاملات بین دو نیمکره از مطالعه «بیماران دوشاخه مغز» افرادی که در تلاش برای کاهش شدت تشنج های صرع تحت عمل جراحی برش جسم پینه ای قرار گرفتند، به دست آمده است.[۹۵] این بیماران رفتار غیرمعمولی را نشان نمی‌دهند که بلافاصله آشکار شود، اما در برخی موارد می‌توانند تقریباً مانند دو فرد مختلف در یک بدن رفتار کنند، با دست راست و سپس دست چپ آن را باز می‌کند.[۹۶][۹۷] این بیماران هنگامی که به طور خلاصه تصویری در سمت راست نقطه تثبیت بینایی نشان داده می شود، قادر به توصیف شفاهی آن هستند، اما زمانی که تصویر در سمت چپ نشان داده می شود، قادر به توصیف آن نیستند، اما ممکن است قادر به ارائه نشانه باشند. با دست چپ ماهیت شی نشان داده شده است.[۹۸][۹۹]

چرخ احساسات پلانچیک

عواطف

عواطف عموماً به عنوان فرآیندهای چند جزئی دو مرحله ای شامل برانگیختن و به دنبال آن احساسات روانشناختی، ارزیابی، بیان، پاسخ های خودمختار و تمایلات عملی تعریف می شوند.[۱۰۰] تلاش برای بومی سازی احساسات اساسی در مناطق خاصی از مغز بحث برانگیز بوده است. برخی از تحقیقات هیچ مدرکی برای مکان های خاص مربوط به احساسات پیدا نکردند، اما در عوض مدارهایی را درگیر در فرآیندهای عاطفی عمومی یافتند. به نظر می رسد آمیگدال، قشر اوربیتوفرونتال، قشر اینسولا میانی و قدامی و قشر پیش پیشانی جانبی در ایجاد احساسات دخیل هستند، در حالی که شواهد ضعیف تری برای ناحیه تگمنتال شکمی، رنگ پریدگی شکمی و هسته اکومبنس در برجستگی انگیزشی یافت شد.[۱۰۱] با این حال، برخی دیگر شواهدی مبنی بر فعال شدن نواحی خاص، مانند عقده های قاعده ای در شادی، قشر سینگولیت ساب پینه ای در غم و آمیگدال در ترس یافته اند.[۱۰۲]

شناخت

مغز مسئول شناخت است،[۱۰۳][۱۰۴] که از طریق فرآیندهای متعدد و عملکردهای اجرایی عمل می کند.[۱۰۵][۱۰۶][۱۰۷] عملکردهای اجرایی شامل توانایی فیلتر کردن اطلاعات و تنظیم محرک های نامربوط با کنترل توجه و بازداری شناختی، توانایی پردازش و دستکاری اطلاعات ذخیره شده در حافظه کاری، توانایی فکر کردن به چندین مفهوم به طور همزمان و تغییر وظایف با انعطاف پذیری شناختی، توانایی با کنترل بازدارنده، و توانایی تعیین ارتباط اطلاعات یا تناسب یک عمل، از تکانه ها و پاسخ های قوی جلوگیری می کند.[۱۰۶][۱۰۷] کارکردهای اجرایی مرتبه بالاتر مستلزم استفاده همزمان از چندین کارکرد اجرایی اساسی است و شامل برنامه ریزی، آینده نگری و هوش سیال (یعنی استدلال و حل مسئله) می شود.[۱۰۷]

قشر جلوی مغز نقش مهمی در میانجیگری عملکردهای اجرایی دارد.[۱۰۵][۱۰۷][۱۰۸] برنامه‌ریزی شامل فعال‌سازی قشر پیش پیشانی پشتی جانبی (DLPFC)، قشر کمربندی قدامی، قشر جلوی پیشانی زاویه‌دار، قشر جلوی پیشانی راست و شکنج فوق‌مارژینال است.[۱۰۸] دستکاری حافظه کاری شامل DLPFC، شکنج فرونتال تحتانی و نواحی قشر جداری می شود.[۱۰۵][۱۰۸] کنترل مهاری شامل چندین نواحی از قشر جلوی مغز و همچنین هسته دمی و هسته زیر تالاموس می شود.[۱۰۷][۱۰۸][۱۰۹]

پژوهش

مغز به‌طور کامل درک نشده‌است و تحقیقات بر روی آن همچنان در حال انجام است.[۱۱۰] امروزه دانشمندان علوم اعصاب و محققانی از رشته‌های دیگر، چگونگی کارکرد مغز انسان را مطالعه می‌کنند. مرزهای بین تخصص‌های علوم اعصاب، عصب‌شناسی و سایر رشته‌ها مانند روانپزشکی، دیگر وجود ندارد زیرا همه آنها بخشی از پژوهش‌های بنیادی مرتبط با علوم اعصاب به‌شمار می‌آیند که به بررسی فرایندهای موجود در مغز می‌پردازد.[۱۱۱][۱۱۲]

پژوهش‌های علوم اعصاب در دهه‌های اخیر به‌طور قابل توجهی گسترش یافته‌است. «دهه مغز»[ای]، طرح پیشنهاد شده توسط ایالات متحده در دهه ۱۹۹۰ بود که موجب افزایش تحقیقات در این زمینه شد[۱۱۳] و در سال ۲۰۱۳ توسط «طرح ابتکار مغز» دنبال شد.[۱۱۴] پروژه ارتباط انسانی، از دیگر طرح‌های تحقیقاتی مرتبط با مغز، از سال ۲۰۰۹ به مدت پنج سال ادامه داشت و اطلاعات مفیدی در رابطه با اتصالات آناتومیکی و کارکردی بخش‌های مغز ارائه کرد.[۱۱۰]

روش‌ها

داده‌های مربوط به ساختار و کارکرد مغز انسان از روش‌های آزمایشی گوناگون، بر روی حیوانات و انسان‌ها به دست می‌آید. اطلاعات بیماران مبتلا به ضربه و سکته مغزی اطلاعاتی در مورد عملکرد بخش‌هایی از مغز و اثرات آسیب مغزی ارائه کرده‌است. تصویربرداری عصبی برای تجسم مغز و ثبت فعالیت مغز و الکتروفیزیولوژی برای اندازه‌گیری، ثبت و نظارت بر فعالیت الکتریکی قشر مغز مورد استفاده قرار می‌گیرد. اندازه‌گیری‌ها ممکن است بر روی پتانسیل میدانی موضعی قشر مغز یا بر روی تنها یک نورون صورت پذیرد. از الکتروانسفالوگرام نیز برای ثبت فعالیت الکتریکی قشر مغز استفاده می‌شود؛ در این روش با استفاده از الکترودهایی که به صورت غیر مخرب روی پوست سر قرار دارد، سیگنال‌های ارسالی، ناشی از کارکرد مغز، ثبت و آنالیز می‌شود.[۱۱۵] [۴۲]

روش‌های مخرب و آسیب زا نیز برای پژوهش بر روی مغز وجود دارد، یکی از این موارد الکتروکورتیکوگرافی (ECoG) است. در ECoG از الکترودهایی استفاده می‌شود که مستقیماً روی سطح مغز قرار می‌گیرند. از این روش برای نقشه‌برداری تحریکی قشر مغز (cortical stimulation mapping)، مطالعه رابطه بین نواحی قشر مغز و کارکرد سیستمیک آنها استفاده می‌شود.[۱۱۶] همچنین می‌توان با استفاده از میکروالکترودهای کوچک‌تری ضبط‌های تک واحدی (single-unit recordings) را از یک نورون منفرد انجام داد که وضوح فضایی و زمانی بالایی را از فعالیت مغز ارائه می‌دهند. این روشِ اسکن مغزی امکان بررسی ارتباطِ بین فعالیت مغز با رفتار و ایجاد نقشه‌های عصبی را فراهم کرده‌است.[۱۱۷] گسترش ارگانوئیدهای مغزی راه‌هایی را برای مطالعه بیشتر، بر روی فرایندهای مرتبط با مغز مانند رشد، تکامل، پلاستیسیته و بیماری‌هایی نظیر دمانس، ام‌اس، صرع و … ایجاد نموده‌است.[۱۱۸][۱۱۹]

تصویربرداری

نمونه ای از دستگاه پت اسکن

تکنیک‌های تصویربرداری عصبی کارکردی تغییراتی را در فعالیت مغز نشان می‌دهند که به عملکرد نواحی خاص مغز مربوط می‌شود. یکی از روش‌های اف‌ام‌آرآی است که نسبت به روش‌های پیشین چون مقطع‌نگاری رایانه‌ای تک‌فوتونی و برش‌نگاری با گسیل پوزیترون مزیت‌های بیشتری دارد که به استفاده از مواد رادیواکتیو نیاز ندارد و وضوح بالاتری از فعالیت‌ها و ساختارهای مغز ارائه می‌دهد.[۱۲۰] روش دیگر طیف‌نگاری کارکردی فروسرخ نزدیک است. این روش‌ها بر پاسخ همودینامیک (haemodynamic response) متکی هستند و اطلاعاتی از مغز که با تغییرات جریان خون مرتبط اند نشان می‌دهند.[۱۲۱] تصویر برداری مغز در نگاشت از عملکردهای مناطق مختلف مغز بسیار مفید است و اطلاعات مهمی را در اختیار محققان قرار می‌دهد.[۱۲۲] دیگر روش تصویر برداری، fMRI حالت استراحت، به بررسی تعامل بخش‌های مختلف مغز در زمان استراحت (زمانی که فعالیت خاصی انجام نمی‌دهد مانند خواب) می‌پردازد. این روش همچنین برای نشان دادن شبکه حالت پیش‌فرض نیز مورد استفاده قرار می‌گیرد.[۱۲۳]

هر جریان الکتریکی یک میدان مغناطیسی ایجاد می‌کند. نوسانات عصبی داخل مغز نیز، میدان‌های مغناطیسی ضعیفی را تشکیل می‌دهند که مگنتوانسفالوگرافی می‌تواند با استفاده از آن، تصویری از فعالیت موضعی مغز با وضوح بالا نشان دهد.[۴۲] تراکتوگرافی از MRI و آنالیز تصویر برای ایجاد تصاویر سه بعدی از تنه عصبی مغز استفاده می‌کند.[۱۲۴] کانکتوگرام دستگاه دیگری است که یک نمایش گرافیکی از اتصالات عصبی مغز را ارائه می‌دهند.[۱۲۵]

تفاوت در ساختار مغز[با] را می‌توان در برخی از اختلالات، به ویژه اسکیزوفرنی و زوال عقل، نسبت به حالت طبیعی به وسیلهٔ روش‌های تصویربرداری اندازه‌گیری کرد. یکی از منابع کلیدی جمع‌آوری اطلاعات در مورد عملکرد نواحی مغز، بررسی موارد آسیب دیده آن بخش‌ها است. همچنین رویکردهای بیولوژیکی مختلف با استفاده از تصویربرداری، درک بهتری را در مواردی مانند اختلالات افسردگی و اختلال وسواس فکری-جبری به محققان داده‌است. پیشرفت‌ها در تصویربرداری عصبی، بینش عینی را در مورد اختلالات روانی امکان‌پذیر کرده‌است که منجر به تشخیص سریع‌تر، پیش‌آگهی دقیق‌تر و نظارت بهتر می‌شود.[۱۲۶]

بیان ژن و پروتئین

بیوانفورماتیک رشته‌ای از مطالعات است که شامل ایجاد و پیشرفت پایگاه‌های اطلاعاتی و تکنیک‌های محاسباتی و آماری است که می‌تواند در مطالعات مغز انسان به‌ویژه در زمینه‌های بیان ژن و پروتئین مورد استفاده قرار گیرد. بیوانفورماتیک و مطالعات در ژنومیک، و ژنومیک عملکردی، نیاز به حاشیه نویسی DNA (DNA annotation)، یک فناوری رونویسی (transcriptome technology)، شناسایی ژن‌ها، مکان و عملکرد آنها را ایجاد کرد.[۱۲۷][۱۲۸] GeneCards (GeneCards) یک پایگاه داده بزرگ است.

تا سال ۲۰۱۷، کمتر از ۲۰۰۰۰ ژن کد کننده پروتئین در انسان بیان شد بود،[۱۲۷] و حدود ۴۰۰ مورد از این ژن‌ها مختص مغز هستند.[۱۲۹][۱۳۰] داده‌هایی که در مورد بیان ژن در مغز ارائه شده‌است به تحقیقات بیشتر در مورد تعدادی از اختلالات کمک کرده‌است. به عنوان مثال، استفاده طولانی مدت از الکل، بیان ژن تغییر یافته در مغز و تغییرات خاص نوع سلولی را نشان داده‌است که ممکن است به اختلال مصرف الکل وابستگی داشته باشد.[۱۳۱] این تغییرات در ترنسکریپتومیکس سیناپسی در قشر جلوی مغز مشاهده شده‌است و به عنوان عاملی برای وابستگی به الکل و همچنین سایر سوءمصرف مواد دیده می‌شود.[۱۳۲]

سایر مطالعات وابسته نیز شواهدی از تغییرات سیناپسی و از بین رفتن آنها در پیری مغز (ageing brain) نشان داده‌اند. تغییرات در بیان ژن، سطوح پروتئین‌ها را در مسیرهای عصبی مختلف تغییر می‌دهد و نشان داده شده‌است که در اختلال عملکرد یا از دست دادن تماس سیناپسی مشهود است. دیده شده که این اختلال بر بسیاری از ساختارهای مغز تأثیر می‌گذارد و تأثیر قابل توجهی بر نورون‌های بازدارنده دارد که منجر به کاهش سطح انتقال عصبی و به دنبال آن زوال شناختی و بیماری می‌شود.[۱۳۳][۱۳۴]

فیزیولوژی

انتقال عصبی

تصویری از فرایند انتقال پیام عصبی در فضای سیناپسی

فعالیت مغز در اثر تعامل و فعالیت‌های پیچیده نورون‌ها شکل گرفته‌است. این تعامل و هماهنگی موجب شده انسان غالب بر ۱۰۶ بیت اطلاعات را در هر ثانیه به صورت خود آگاه پردازش کند.[۱۳۵] در صورت ایجاد اختلال در فعالیت نورون‌ها، ممکن است اختلالاتی همچون صرع و آلودینیا ایجاد شود.[۱۳۶] نورون از جسم سلولی، آکسون و دندریت تشکیل شده‌است. دندریت‌ها اغلب شاخه‌های گسترده‌ای هستند که اطلاعات را به صورت پیام عصبی از پایانه‌های آکسون[بب] سایر نورون‌ها یا به صورت گیرنده پیام‌های محرک‌های محیطی را دریافت می‌کنند. (گیرنده‌های درد و فشار)[۱۳۷][۴۳] سیگنال‌های دریافتی ممکن است باعث شود، نورون یک پتانسیل عمل (سیگنال الکتروشیمیایی یا تکانه عصبی) را از طریق آکسون خود به پایانه آکسونی ارسال و از طریق فضایی به نام سیناپس آن را به دندریت‌ها یا جسم سلولی نورون بعد از خود منتقل کند.[۱۳۸][۱۳۹] یک پتانسیل عمل غالباً در بخش اولیه آکسون، که شامل مجموعه ای تخصصی از پروتئین‌ها است، آغاز می‌شود. هنگامی که یک پتانسیل عمل به پایانه آکسونی می‌رسد، باعث آزاد شدن انتقال دهنده‌های عصبی واقع در وزیکول‌هایی (ترشح به صورت اگزوسیتوز) در سیناپس شده و با اتصال به گیرنده‌هایشان در نورون‌های پس سیناپسی، اختلاف پتانسیل را در این نورون‌ها تغییر می‌دهند.[۱۴۰] این انتقال دهنده‌های عصبی شیمیایی (ناقلین عصبی) دوپامین، سروتونین، GABA، گلوتامات و استیل کولین را شامل می‌شوند.[۴۳][۱۴۱] GABA اصلی‌ترین انتقال دهنده عصبی بازدارنده و گلوتامات اصلی‌ترین انتقال دهنده عصبی تحریکی در مغز است.[۱۴۲] نورون‌ها در سیناپس‌ها با هم ارتباط بر قرار می‌کنند و مسیرهای عصبی، مدارهای عصبی و سیستم‌های پیچیده بزرگ مانند شبکه برجسته[بپ] و شبکه حالت پیش فرض[بت] را تشکیل می‌دهند که فعالیت بین آن‌ها توسط فرآیند انتقال عصبی هدایت می‌شود.[۱۴۳]

متابولیسم

مغز بیش از ۲۰ درصد از انرژی مورد استفاده بدن انسان را، بیش از هر اندامی دیگر، مصرف می‌کند.[۱۴۴] در انسان، گلوکز موجود در خون منبع اصلی تأمین انرژی بیشتر سلول‌های بدن است و برای انجام عملکردهای طبیعی در بسیاری از بافت‌ها، از جمله مغز، حیاتی است.[۱۴۵] متابولیسم مغز به‌طور معمول به گلوکز خون به عنوان یک منبع انرژی متکی است، اما در زمان پایین بودن گلوکز خون (مانند ابتدای صبح، حین ورزش‌های استقامتی یا مصرف محدود کربوهیدرات)، مغز از اجسام کتونی و مقدار کمتری گلوکز به عنوان سوخت استفاده می‌کند؛ همچنین می‌تواند از لاکتات در حین ورزش برای تأمین انرژی خود استفاده کند.[۱۴۶] مغز گلوکز را به شکل گلیکوژن، در مقادیر بسیار کمتر نسبت به کبد و ماهیچه‌های اسکلتی، ذخیره می‌کند.[۱۴۷] اسیدهای چرب بلند زنجیر نمی‌توانند از سد خونی-مغزی عبور کنند، به همبن دلیل کبد آن‌ها را تجزیه کرده و اجسام کتونی تولید کند؛[۱۴۸] با این حال، اسیدهای چرب کوتاه زنجیر (به عنوان مثال اسید بوتیریک، پروپیونیک اسید و استیک اسید) و اسیدهای چرب با زنجیرهٔ متوسط (مانند اکتانوئیک اسید و هپتانوئیک اسید)، می‌توانند از سد خونی مغزی عبور کرده و توسط سلول‌های مغزی متابولیزه شوند.[۱۴۹][۱۵۰]

تصویربرداری PET از مغز انسان که مصرف انرژی را نشان می‌دهد.

اگرچه مغز انسان تنها ۲٪ از وزن بدن را شامل می‌شود، اما ۱۵٪ از حجم خون خروجی قلب، ۲۰٪ از کل اکسیژن مصرفی بدن و ۲۵٪ از کل گلوکز بدن را دریافت می‌کند.[۱۵۱] مغز بیشتر از گلوکز برای انرژی استفاده می‌کند و محرومیت از گلوکز، همان گونه که در هیپوگلیسمی اتفاق می‌افتد، می‌تواند منجر به از دست دادن هوشیاری شود.[۱۵۲] مصرف انرژیِ مغز در طول زمان تغییر زیادی نمی‌کند، اما مناطق فعال مغز، مانند کورتکس، انرژی بیشتری نسبت دیگر مناطق مغز مصرف می‌کنند؛ که اساس روش‌های تصویربرداریِ عصبیِ عملکردیِ برش‌نگاری با گسیل پوزیترون و FMRI است.[۱۵۳] این روش‌های تصویربرداری، تصویری سه بعدی از فعالیت متابولیک مغز ارائه می‌دهند.[۱۵۴] مطالعات اولیه نشان داد که فعالیت‌های متابولیکی مغزِ انسان در حدود پنج سالگی به حداکثر خود می‌رسد.[۱۵۵]

عملکرد خواب به‌طور کامل درک نشده‌است؛ با این حال، شواهدی وجود دارد که نشان می‌دهد خواب در پاکسازی مواد زائد متابولیکی، استراحت و ترمیم مغز، تثبیت حافظه و تنظیم ناقل‌های عصبی مؤثر است و بی خوابی بیش از حد می‌تواند، همانند نوشیدن الکل، فرایندهای عصبی را مختل کند.[۵۰][۱۵۶][۱۵۷] شواهد نشان می‌دهد که افزایش پاکسازی مواد زائد متابولیکی در طول خواب از طریق افزایش عملکرد سیستم گلیمپاتیک رخ می‌دهد.[۵۰]خواب همچنین ممکن است با تضعیف ارتباطات غیر ضروری (هرس سیناپسی) بر تنظیم و تثبیت عملکردهای شناختی تأثیر بگذارد.[۱۵۸]

اهمیت بالینی

آسیب مغز

آسیب به مغز می‌تواند به شکل‌های گوناگونی نمایان گردد. ضربه مغزی، به عنوان مثال در ورزشهای برخوردی، پس از سقوط، یا تصادف رانندگی یا کار، می‌تواند با مشکلات فوری و بلند مدت همراه باشد. مشکلات فوری ممکن است شامل خونریزی در مغز باشد، این اسیب‌دیدگی ممکن است بافت مغز را فشرده کرده یا به خونرسانی آن آسیب برساند. ممکن است کبودی در مغز ایجاد شود. کبودی ممکن است باعث آسیب گسترده به مجاری عصبی شود که می‌تواند منجر به وضعیت آسیب آکسون[بث] شود.[۱۵۹] شکستگی جمجمه[بج]، آسیب به ناحیه ای خاص، ناشنوایی و ضربه مغزی نیز از جمله آسیب‌های احتمالی هستند. علاوه بر محل آسیب، طرف مقابل مغز نیز ممکن است تحت تأثیر قرار گیرد که به آن آسیب پیشانی[بچ] می‌گویند. مسائل طولانی مدت که ممکن است ایجاد شوند شامل اختلال اضطراب پس از سانحه و هیدروسفالی است. انسفالوپاتی تروماتیک مزمن می‌تواند به دنبال آسیب‌های ترومای سر ایجاد شود.[۱۶۰]

زوال عصبی

بیماری‌های تخریب‌کننده عصبی منجر به آسیب پیشرونده به قسمتهای مختلف عملکرد مغز می‌شود و با افزایش سن بدتر می‌شود. نمونه‌های رایج شامل زوال عقل مانند بیماری آلزایمر، زوال عقل الکلی یا زوال عقل عروقی است. بیماری پارکینسون؛ و سایر علل نادر عفونی ، ژنتیکی یا متابولیک مانند بیماری هانتینگتون، بیماریهای نورون حرکتی، زوال عقل HIV، زوال عقل ناشی از سفلیس و بیماری ویلسون از دیگر بیماری‌های این دسته به‌شمار می‌روند. بیماریهای تخریب کننده عصبی می‌توانند قسمتهای مختلف مغز را تحت تأثیر قرار دهند و بر حرکت، حافظه و شناخت تأثیر بگذارند.[۱۶۱]

مغز، اگرچه توسط سد خونی - مغزی محافظت می‌شود، اما می‌تواند تحت تأثیر عفونت‌هایی از جمله ویروس‌ها، باکتری‌ها و قارچ‌ها قرار گیرد. عفونت ممکن است شامگان (مننژیت)، ماده مغز (آنسفالیت)، یا در داخل ماده مغز (مانند آبسه مغزی) باشد.[۱۶۲] بیماریهای نادر پریون از جمله بیماری کروتزفلد -یاکوب و سویه آن، و کورو نیز ممکن است بر مغز تأثیر بگذارد.[۱۶۲]

تومور مغزی

تومورهای مغزی می‌توانند خوش‌خیم یا سرطانی باشند. بیشتر تومورهای بدخیم از قسمت دیگری از بدن، بیشتر از ریه، سینه و پوست بوجود می‌آیند. سرطان بافت مغز نیز می‌تواند رخ دهد و از هر بافت داخل و اطراف مغز منشأ می‌گیرد. مننژیوما، سرطان مننژهای اطراف مغز، رایج‌تر از سرطان‌های بافت مغزی است. سرطان‌های درون مغز ممکن است علائم مربوط به اندازه یا موقعیت خود را ایجاد کنند، با علائمی از جمله سردرد و حالت تهوع، یا گسترش تدریجی نشانه‌های کانونی مانند مشکل در دیدن تدریجی، خوردن، صحبت کردن یا تغییر خلق و خو همراه است. سرطان‌ها به‌طور کلی با استفاده از سی تی اسکن و اسکن MRI بررسی می‌شوند. انواع گوناگونی آزمایش از جمله آزمایش خون و لامبر پانچر ممکن است برای بررسی علت سرطان و ارزیابی نوع و مرحله سرطان مورد استفاده قرار گیرد. کورتیکواستروئید دگزامتازون اغلب برای کاهش تورم بافت مغزی در اطراف تومور تجویز می‌شود. ممکن است جراحی در نظر گرفته شود، اما با توجه به ماهیت پیچیده بسیاری از تومورها یا بر اساس مرحله یا نوع تومور، پرتودرمانی یا شیمی درمانی مناسب تر تلقی می‌شود.[۱۶۳]

اختلالات روانی

اختلالات روانی مانند افسردگی، اسکیزوفرنی، اختلال دوقطبی، اختلال استرس پس از سانحه اختلال کم‌توجهی - بیش‌فعالی، اختلال وسواس فکری-عملی، سندرم تورت و اعتیاد، با عملکرد مغز ارتباط دارند.[۱۶۴][۱۶۵] درمان اختلالات روانی ممکن است شامل روان‌درمانی، روانپزشکی، مداخله اجتماعی و بازیابی شخصی یا رفتاردرمانی شناختی باشد. مسائل اساسی و پیش آگهی‌های مرتبط بین افراد به‌طور قابل توجهی متفاوت است.

صرع

تصور می‌شود که تشنج‌های صرعی مربوط به فعالیت‌های الکتریکی غیرطبیعی است. فعالیت تشنجی می‌تواند به صورت فقدان هوشیاری، اثرات کانونی مانند حرکت اندام یا موانع گفتاری نمایان گردد، یا ماهیتی کلی داشته باشد. بحران صرعی به تشنج یا مجموعه ای از حمله‌هایی گفته می‌شود که بیش از ۵ دقیقه ادامه پیدا کند.[۱۶۶] تشنج دلایل زیادی دارد، با این حال بسیاری از تشنج‌ها بدون یافتن علت قطعی رخ می‌دهند. در افراد مبتلا به صرع، عوامل خطر برای تشنج بیشتر ممکن است شامل بی خوابی، مصرف دارو و الکل و استرس باشد. تشنج‌ها ممکن است با استفاده از آزمایش خون، نوار مغزی یا EEG و تکنیک‌های مختلف تصویربرداری پزشکی بر اساس سابقه پزشکی و یافته‌های معاینه بالینی ارزیابی شوند. علاوه بر درمان علت زمینه ای و کاهش قرار گرفتن در معرض عوامل خطر، داروهای ضد تشنج می‌توانند در جلوگیری از تشنج بیشتر نقش داشته باشند.[۱۶۷]

اختلال مادرزادی

برخی از اختلالات مغزی مانند تی-سکس اختلال مادرزادی هستند، و با جهش‌های ژنتیکی و کروموزومی مرتبط هستند.[۱۶۸] گروه نادری از اختلالات مادرزادی چون سفالیک که به عنوان لیسنسفالی شناخته می‌شوند، با فقدان یا ناکافی شدن چین خوردگی قشر مشخص می‌شود. رشد طبیعی مغز می‌تواند در دوران بارداری تحت تأثیر کمبودهای تغذیه‌ای، تراتوژن‌ها، بیماری‌های عفونی، و استفاده از داروهای تفریحی، از جمله الکل که ممکن است منجر به ناهنجاری‌های جنینی ناشی از الکل شود گردد.[۱۶۹]

سکته مغزی

سی تی اسکن خونریزی مغزی، نشان دادن خونریزی داخل پارانشیمی (پیکان پایین) با ادم اطراف (پیکان بالا)

سکته مغزی کاهش خون رسانی به ناحیه ای از مغز است که باعث مرگ سلولی و آسیب مغزی می‌شود. این آسیب می‌تواند منجر به طیف وسیعی از علائم شود، از جمله علائم «سریع» افتادگی صورت، ضعف بازو و مشکلات گفتاری (از جمله در صحبت کردن و یافتن کلمات یا تشکیل جملات) هستند.[۱۷۰] علائم مربوط به عملکرد ناحیه آسیب دیده مغز است و می‌تواند به محل و علت احتمالی سکته مغزی اشاره کند. مشکلات حرکتی، گفتاری یا بینایی معمولاً مربوط به مخ است، در حالی که عدم تعادل، دوبینی، سرگیجه و علائم که بر بیش از یک طرف بدن تأثیر می‌گذارد معمولاً مربوط به ساقه مغز یا مخچه است.[۱۷۱]

بیشتر سکته‌های مغزی ناشی از از دست دادن خون است، معمولاً به دلیل آمبولی، پارگی پلاک چربی باعث ایجاد ترومبوز یا تنگ شدن شریان‌های کوچک می‌شود.[۱۷۲] سکته مغزی همچنین می‌تواند ناشی از خونریزی درون مغز باشد. حملات ایسکمیک گذرا (TIAs) سکته‌هایی هستند که علائم آنها در عرض ۲۴ ساعت برطرف می‌شود. بررسی سکته مغزی شامل یک معاینه پزشکی (از جمله معاینه عصبی) و گرفتن سابقه پزشکی، با تمرکز بر مدت زمان علائم و عوامل خطر (از جمله فشار خون بالا، فیبریلاسیون دهلیزی و سیگار کشیدن) خواهد بود.[۱۷۳] در بیماران جوانتر نیاز به بررسی بیشتر است. برای تشخیص فیبریلاسیون دهلیزی ممکن استنوار قلب و بیوتل متری انجام شود. سونوگرافی می‌تواند تنگی سرخرگ کاروتید را بررسی کند. از اکوکاردیوگرام می‌توان برای جستجوی لخته در قلب، نارسایی دریچه قلب یا وجود یک نقص دیواره بین‌دهلیزیتخمدان ثبت شده استفاده کرد. آزمایش خون به‌طور معمول به عنوان بخشی از تشخیص پزشکی شامل آزمایش دیابت و مشخصات چربی انجام می‌شود.[۱۷۴]

برخی از درمان‌های سکته مغزی از نظر زمانی بسیار مهم هستند. این موارد شامل انحلال لخته یا برداشتن لخته برای سکته‌های ایسکمیک و رفع فشار برای سکته‌های خونریزی مغزی است. [۱۷۵][۱۷۶] آنجایی که سکته مغزی از نظر زمانی بسیار مهم است،[۱۷۷] بیمارستان‌ها و حتی مراقبت‌های پیش از بیمارستان سکته مغزی شامل تحقیقات سریع است-معمولاً سی تی اسکن برای بررسی سکته مغزی دارای خونریزی و آنژیوگرافی یا سی‌تی برای ارزیابی شریان‌های تأمین کننده مغز استفاده می‌شود. اسکن‌های تصویرسازی تشدید مغناطیسی یا MRI، که به‌طور گسترده در دسترس نیستند، ممکن است بتوانند ناحیه آسیب دیده مغز را به ویژه در سکته مغزی ایسکمیک با دقت بیشتری نشان دهند.[۱۷۴]

با تجربه سکته مغزی، ممکن است فردی در واحد سکته مغزی بستری شود و درمانها به عنوان پیشگیری از سکته‌های مغزی در آینده، از جمله ضد انعقاد مداوم (مانند آسپرین یا کلوپیدوگرلداروهای ضد فشار خون بالا و داروهای کاهش دهنده چربی خون، مورد استفاده قرار گیرد. [۱۷۸] یک تیم میان‌رشته‌ای شامل آسیب شناسان گفتار، فیزیوتراپیست‌ها، کاردرمانگران و روانشناسان نقش مهمی در حمایت از فرد مبتلا به سکته مغزی و توانبخشی آنها ایفا می‌کند.[۱۷۹] [۱۷۴] سابقه سکته مغزی خطر ابتلا به زوال عقل را حدود ۷۰ درصد و سکته مغزی جدید خطر را حدود ۱۲۰ افزایش می‌دهد.[۱۸۰]

مرگ مغزی

مرگ مغزی به از بین رفتن کامل عملکرد مغزی اشاره می‌کند.[۱۸۱][۱۸۲] این آسیب با کما، از دست دادن واکنش غیرارادی و توقف تنفس مشخص می‌شود،[۱۸۱] با این حال، اعلام مرگ مغزی از نظر جغرافیایی متفاوت است و همیشه پذیرفته نمی‌شود.[۱۸۲] در برخی کشورها نیز سندرم مرگ ساقه مغز تعریف شده‌است.[۱۸۳] اعلان مرگ مغزی می‌تواند پیامدهای عمیقی داشته باشد زیرا اعلامیه، بر اساس اصل بیهودگی پزشکی، با قطع حمایت از زندگی همراه خواهد بود و افرادی که دارای مرگ مغزی هستند اغلب دارای اعضای مناسب برای اهداء عضو هستند.[۱۸۲] [۱۸۴] این فرایند اغلب با ارتباط ضعیف با خانواده بیماران مشکل‌تر می‌شود.

برای فرد مشکوک به مرگ مغزی تشخیص افتراقی مانند الکترولیت، عصبی و سرکوب شناختی مرتبط با دارو باید حذف شوند.[۱۸۵][۱۸۶] آزمایش‌های واکنش غیرارادی [بح] و همچنین عدم پاسخ و تنفس می‌تواند در تصمیم‌گیری کمک کننده باشد. [۱۸۵] مشاهدات بالینی، از جمله عدم پاسخگویی کامل، یک تشخیص شناخته شده و شواهد تصویربرداری عصبی، ممکن است همه در تصمیم‌گیری برای مرگ مغزی نقش داشته باشند.[۱۸۱]

تاریخچه

دوران باستان

هیروگلیف برای کلمه «مغز» (حدود ۱۷۰۰ قبل از میلاد)

پاپیروس ادوین اسمیت[بخ]، یک رساله پزشکی[بد] مصر باستان که در قرن هفدهم پیش از میلاد نوشته شده‌است، حاوی اولین اشاره ثبت شده به مغز است. هیروگلیف برای مغز، که هشت بار در این پاپیروس وجود دارد، نشانه‌ها، تشخیص و پیش آگهی دو آسیب ضربه‌ای به سر را توصیف می‌کند. پاپیروس سطح خارجی مغز، اثرات آسیب (از جمله تشنج و زبان‌پریشی)، مننژها و مایع مغزی نخاعی را ذکر می‌کند.

در قرن پنجم قبل از میلاد، الکمئون در مگنا گراسیا، برای اولین بار مغز را جایگاه ذهن[بذ] در نظر گرفت. همچنین در قرن پنجم پیش از میلاد در آتن، نویسنده ناشناخته دربارهٔ بیماری مقدس[بر]، یک رساله پزشکی که بخشی از مجموعه بقراط است و به‌طور سنتی به بقراط نسبت داده می‌شود، معتقد بود که مغز مقر هوش است. ارسطو در زیست‌شناسی خود[بز] ابتدا قلب را جایگاه هوش می‌دانست و مغز را مکانیزم خنک‌کننده خون می‌دانست. او استدلال کرد که انسان‌ها از جانوران منطقی‌تر هستند، زیرا در کنار دلایل دیگر، مغز بزرگ‌تری برای خنک کردن خون‌گرم خود دارند. ارسطو مننژها را توصیف کرد و بین مخ و مخچه تمایز قائل شد.[۱۸۸]

هروفیلوس از خلقیدون در قرن چهارم و سوم پیش از میلاد، مخ و مخچه را متمایز کرد و اولین توصیف واضح بطن‌ها را ارائه کرد. و با اراسیستراتوس سیئوس روی مغزهای زنده آزمایش کرد. آثار آنها در حال حاضر بیشتر از بین رفته‌است و ما از دستاوردهای آنها بیشتر به دلیل منابع ثانویه اطلاع داریم. برخی از اکتشافات آنها هزاره پس از مرگشان دوباره کشف شد. جالینوس پزشک آناتومیست در قرن دوم پس از میلاد، در زمان امپراتوری روم، مغز گوسفند، میمون، سگ و خوک را تشریح کرد. او نتیجه گرفت که از آنجایی که مخچه متراکم تر از مغز است، باید ماهیچه‌ها را کنترل کند، در حالی که مخ نرم است، باید جایی باشد که حواس پردازش شده‌است. جالینوس بیشتر این نظریه را مطرح کرد که مغز با حرکت ارواح حیوانی از طریق بطن‌ها عمل می‌کند.[۱۸۹]

جامعه و فرهنگ

انسان‌شناسی عصبی به مطالعه رابطه بین فرهنگ و مغز می‌پردازد. به بررسی این موضوع می‌پردازد که چگونه مغز باعث ایجاد فرهنگ می‌شود و چگونه فرهنگ بر رشد مغز تأثیر می‌گذارد. تفاوت‌های فرهنگی و ارتباط آنها با رشد و ساختار مغز در زمینه‌های مختلف مورد پژوهش قرار گرفته‌است.[۱۹۰]

ذهن

واژه‌نامه

  1. allocortext
  2. association areas، نواحی ارتباطی
  3. cerebellar peduncles
  4. Claustrum
  5. CircumVentricular Organs (CVO)
  6. neurotransmission
  7. Mind-Body Problem
  8. Donovan's Brain
  9. Sagittal plane
  10. precentral gyrus
  11. postcentral gyrus
  12. cerebellum، از زبان لاتین به معنای: مغزِ کوچک
  13. glia limitans
  14. longitudinal fissure
  15. petalia
  16. gyrus
  17. sulcus
  18. Brodmann's areas
  19. association areas
  20. septum pellucidum
  21. nucleus accumbens
  22. olfactory tubercle
  23. basal forebrain
  24. nucleus basalis
  25. diagonal band of Broca
  26. substantia innominata
  27. flocculondular lobe
  28. cerebellar peduncles
  29. Specifically the oculomotor, trochlear nerve, trigeminal nerve, abducens nerve, facial nerve, vestibulocochlear nerve, glossopharyngeal nerve, vagus nerve, accessory nerve and hypoglossal nerves.[۴۰]
  30. neural stem cells
  31. با وجود نقل قول‌های گسترده مبنی بر اینکه مغز انسان دارای ۱۰۰ میلیارد نورون و ده برابر سلول‌های گلیال است، تعداد مطلق نورون‌ها و سلول‌های گلیال در مغز انسان ناشناخته باقی مانده‌است. در اینجا ما این اعداد را با استفاده از تجزیه کننده همسانگرد تعیین می‌کنیم و آنها را با مقادیر مورد انتظار برای یک پستاندار به اندازه انسان مقایسه می‌کنیم. ما دریافتیم که مغز انسان بالغ به‌طور متوسط دارای ۸۶٫۱ ± ۸٫۱ میلیارد سلول نوین مثبت («نورون») و ۸۴٫۶ ± ۹٫۸ میلیارد سلول نوین منفی («غیر عصبی») است.
  32. با وجود نقل قول‌های گسترده مبنی بر اینکه مغز انسان دارای ۱۰۰ میلیارد نورون و ده برابر سلول‌های گلیال است، تعداد مطلق نورون‌ها و سلول‌های گلیال در مغز انسان ناشناخته باقی مانده‌است. در اینجا ما این اعداد را با استفاده از تجزیه کننده همسانگرد تعیین می‌کنیم و آنها را با مقادیر مورد انتظار برای یک پستاندار به اندازه انسان مقایسه می‌کنیم. ما دریافتیم که مغز انسان بالغ به‌طور متوسط دارای ۸۶٫۱ ± ۸٫۱ میلیارد سلول نوین مثبت («نورون») و ۸۴٫۶ ± ۹٫۸ میلیارد سلول نوین منفی («غیر عصبی») است.
  33. Bergmann glia
  34. tanycytes
  35. stellate cells
  36. glia limitans
  37. neuroimmune system
  38. effector cell
  39. ELAV-like protein 3
  40. Neurogranin
  41. Receptor expression-enhancing protein 2
  42. Glial fibrillary acidic protein
  43. S100 calcium-binding protein B
  44. Oligodendrocyte transcription factor
  45. Subarachnoid cisterns
  46. meningeal lymphatic vessels
  47. carotid canal
  48. cavernous sinus
  49. Cerebral veins
  50. Great cerebral vein
  51. Superior_sagittal_sinus
  52. Straight_sinus
  53. transverse sinuses
  54. sigmoid sinuses
  55. Pericytes
  56. circumventricular organs
  57. Motor cortex
  58. Precentral gyrus
  59. premotor area
  60. Supplementary motor area
  61. Corticospinal tract
  62. Medullary pyramids
  63. motor homunculus
  64. Decade of the Brain
  65. Brain morphometry
  66. Axon terminal
  67. Salience network
  68. Default mode network
  69. Diffuse_axonal_injury
  70. Skull_fracture
  71. Coup_contrecoup_injury
  72. از جمله رفلکس دهلیزی-چشمی، رفلکس قرنیه، بازتاب گگ و اتساع مردمک‌ها در پاسخ به نور، [۱۸۷]
  73. Edwin Smith Papyrus
  74. Medical_literature
  75. Sensorium
  76. On the Sacred Disease
  77. Aristotle's biology

جستارهای وابسته

پانویس

  • Hall, John (2011). Guyton and Hall Textbook of Medical Physiology (12th ed.). Philadelphia, PA: Saunders/Elsevier. ISBN 978-1-4160-4574-8.

منابع

  1. "Cerebrum Etymology". dictionary.com. Archived from the original on October 24, 2015. Retrieved October 24, 2015.
  2. "Encephalo- Etymology". واژه‌نامه برخط ریشه‌شناسی. Archived from the original on October 2, 2017. Retrieved October 24, 2015.
  3. Fan, Xue; Markram, Henry (2019-05-07). "A Brief History of Simulation Neuroscience". Frontiers in Neuroinformatics. 13: 32. doi:10.3389/fninf.2019.00032. ISSN 1662-5196. PMC 6513977. PMID 31133838.
  4. Parent, A.; Carpenter, M.B. (1995). "Ch. 1". Carpenter's Human Neuroanatomy. Williams & Wilkins. ISBN 978-0-683-06752-1.
  5. Bigos, K.L.; Hariri, A.; Weinberger, D. (2015). Neuroimaging Genetics: Principles and Practices. Oxford University Press. p. 157. ISBN 978-0-19-992022-8.
  6. ۶٫۰ ۶٫۱ Cosgrove, K.P.; Mazure, C.M.; Staley, J.K. (2007). "Evolving knowledge of sex differences in brain structure, function, and chemistry". Biol Psychiatry. 62 (8): 847–855. doi:10.1016/j.biopsych.2007.03.001. PMC 2711771. PMID 17544382.
  7. Molina, D. Kimberley; DiMaio, Vincent J.M. (2012). "Normal Organ Weights in Men". The American Journal of Forensic Medicine and Pathology. 33 (4): 368–372. doi:10.1097/PAF.0b013e31823d29ad. ISSN 0195-7910. PMID 22182984. S2CID 32174574.
  8. Molina, D. Kimberley; DiMaio, Vincent J. M. (2015). "Normal Organ Weights in Women". The American Journal of Forensic Medicine and Pathology. 36 (3): 182–187. doi:10.1097/PAF.0000000000000175. ISSN 0195-7910. PMID 26108038. S2CID 25319215.
  9. ۹٫۰ ۹٫۱ ۹٫۲ ۹٫۳ ۹٫۴ Gray's Anatomy 2008, pp. 227–9.
  10. ۱۰٫۰ ۱۰٫۱ Gray's Anatomy 2008, pp. 335–7.
  11. ۱۱٫۰ ۱۱٫۱ Ribas, G. C. (2010). "The cerebral sulci and gyri". Neurosurgical Focus. 28 (2): 7. doi:10.3171/2009.11.FOCUS09245. PMID 20121437.
  12. Frigeri, T.; Paglioli, E.; De Oliveira, E.; Rhoton Jr, A. L. (2015). "Microsurgical anatomy of the central lobe". Journal of Neurosurgery. 122 (3): 483–98. doi:10.3171/2014.11.JNS14315. PMID 25555079.
  13. Purves 2012, p. 724.
  14. Cipolla, M.J. (January 1, 2009). Anatomy and Ultrastructure. Morgan & Claypool Life Sciences. Archived from the original on October 1, 2017.
  15. "A Surgeon's-Eye View of the Brain". NPR.org. Archived from the original on November 7, 2017.
  16. Sampaio-Baptista, C; Johansen-Berg, H (December 20, 2017). "White Matter Plasticity in the Adult Brain". Neuron. 96 (6): 1239–1251. doi:10.1016/j.neuron.2017.11.026. PMC 5766826. PMID 29268094.
  17. Davey, G. (2011). Applied Psychology. John Wiley & Sons. p. 153. ISBN 978-1-4443-3121-9.
  18. Arsava, E. Y.; Arsava, E. M.; Oguz, K. K.; Topcuoglu, M. A. (2019). "Occipital petalia as a predictive imaging sign for transverse sinus dominance". Neurological Research. 41 (4): 306–311. doi:10.1080/01616412.2018.1560643. PMID 30601110. S2CID 58546404.
  19. Ackerman, S. (1992). Discovering the brain. Washington, D.C.: National Academy Press. pp. 22–25. ISBN 978-0-309-04529-2.
  20. Larsen 2001, pp. 455–456.
  21. Kandel, E.R.; Schwartz, J.H.; Jessel T.M. (2000). -9780838577011/page/324 Principles of Neural Science. McGraw-Hill Professional. p. -9780838577011/page/324 324. ISBN 978-0-8385-7701-1. {{cite book}}: Check |url= value (help)
  22. Guyton & Hall 2011, p. 574.
  23. Guyton & Hall 2011, p. 667.
  24. Principles of Anatomy and Physiology 12th Edition – Tortora, p. 519.
  25. ۲۵٫۰ ۲۵٫۱ ۲۵٫۲ Freberg, L. (2009). Discovering Biological Psychology. Cengage Learning. pp. 44–46. ISBN 978-0-547-17779-3.
  26. ۲۶٫۰ ۲۶٫۱ Kolb, B.; Whishaw, I. (2009). Fundamentals of Human Neuropsychology. Macmillan. pp. 73–75. ISBN 978-0-7167-9586-5.
  27. ۲۷٫۰ ۲۷٫۱ Haldane, Morgan; Cunningham, Giles; Androutsos, Chris; Frangou, Sophia (March 2008). "Structural brain correlates of response inhibition in Bipolar Disorder I". Journal of Psychopharmacology (Oxford, England). 22 (2): 138–143. doi:10.1177/0269881107082955. ISSN 0269-8811. PMID 18308812.
  28. Pocock 2006, p. 64.
  29. ۲۹٫۰ ۲۹٫۱ Purves 2012, p. 399.
  30. Gray's Anatomy 2008, pp. 325–6.
  31. Goll, Y.; Atlan, G.; Citri, A. (August 2015). "Attention: the claustrum". Trends in Neurosciences. 38 (8): 486–95. doi:10.1016/j.tins.2015.05.006. PMID 26116988. S2CID 38353825.
  32. Goard, M.; Dan, Y. (October 4, 2009). "Basal forebrain activation enhances cortical coding of natural scenes". Nature Neuroscience. 12 (11): 1444–1449. doi:10.1038/nn.2402. PMC 3576925. PMID 19801988.
  33. Guyton & Hall 2011, p. 699.
  34. ۳۴٫۰ ۳۴٫۱ ۳۴٫۲ Gray's Anatomy 2008, p. 298.
  35. Netter, F. (2014). Atlas of Human Anatomy Including Student Consult Interactive Ancillaries and Guides (6th ed.). Philadelphia, Penn.: W B Saunders Co. p. 114. ISBN 978-1-4557-0418-7.
  36. ۳۶٫۰ ۳۶٫۱ Gray's Anatomy 2008, p. 297.
  37. Guyton & Hall 2011, pp. 698–9.
  38. Squire 2013, pp. 761–763.
  39. ۳۹٫۰۰ ۳۹٫۰۱ ۳۹٫۰۲ ۳۹٫۰۳ ۳۹٫۰۴ ۳۹٫۰۵ ۳۹٫۰۶ ۳۹٫۰۷ ۳۹٫۰۸ ۳۹٫۰۹ ۳۹٫۱۰ ۳۹٫۱۱ ۳۹٫۱۲ ۳۹٫۱۳ ۳۹٫۱۴ ۳۹٫۱۵ ۳۹٫۱۶ ۳۹٫۱۷ ۳۹٫۱۸ ۳۹٫۱۹ ۳۹٫۲۰ ۳۹٫۲۱ Gray's Anatomy 2008.
  40. Gray's Anatomy 2008, p. 275.
  41. ۴۱٫۰ ۴۱٫۱ ۴۱٫۲ ۴۱٫۳ ۴۱٫۴ ۴۱٫۵ Guyton & Hall 2011.
  42. ۴۲٫۰ ۴۲٫۱ ۴۲٫۲ ۴۲٫۳ Purves 2012.
  43. ۴۳٫۰ ۴۳٫۱ ۴۳٫۲ ۴۳٫۳ Azevedo, Frederico A. C.; Carvalho, Ludmila R. B.; Grinberg, Lea T.; Farfel, José Marcelo; Ferretti, Renata E. L.; Leite, Renata E. P.; Jacob Filho, Wilson; Lent, Roberto; Herculano-Houzel, Suzana (2009-04-10). "Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain". The Journal of Comparative Neurology. 513 (5): 532–541. doi:10.1002/cne.21974. ISSN 1096-9861. PMID 19226510.
  44. ۴۴٫۰ ۴۴٫۱ ۴۴٫۲ ۴۴٫۳ Polyzoidis, S.; Koletsa, T.; Panagiotidou, S.; Ashkan, K.; Theoharides, T.C. (2015). "Mast cells in meningiomas and brain inflammation". Journal of Neuroinflammation. 12 (1): 170. doi:10.1186/s12974-015-0388-3. PMC 4573939. PMID 26377554.
  45. Budzyński, J; Kłopocka, M. (2014). "Brain-gut axis in the pathogenesis of Helicobacter pylori infection". World J. Gastroenterol. 20 (18): 5212–25. doi:10.3748/wjg.v20.i18.5212. PMC 4017036. PMID 24833851.
  46. Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. (2015). "The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems". Ann Gastroenterol. 28 (2): 203–209. PMC 4367209. PMID 25830558.
  47. Sjöstedt, Evelina; Fagerberg, Linn; Hallström, Björn M.; Häggmark, Anna; Mitsios, Nicholas; Nilsson, Peter; Pontén, Fredrik; Hökfelt, Tomas; Uhlén, Mathias (June 15, 2015). "Defining the human brain proteome using transcriptomics and antibody-based profiling with a focus on the cerebral cortex". PLOS ONE. 10 (6): e0130028. Bibcode:2015PLoSO..1030028S. doi:10.1371/journal.pone.0130028. ISSN 1932-6203. PMC 4468152. PMID 26076492.
  48. Iliff, JJ; Nedergaard, M (June 2013). "Is there a cerebral lymphatic system?". Stroke. 44 (6 Suppl 1): S93-5. doi:10.1161/STROKEAHA.112.678698. PMC 3699410. PMID 23709744.
  49. Gaillard, F. "Glymphatic pathway". radiopaedia.org. Archived from the original on October 30, 2017.
  50. ۵۰٫۰ ۵۰٫۱ ۵۰٫۲ Bacyinski, Andrew; Xu, Maosheng; Wang, Wei; Hu, Jiani (2017). "The Paravascular Pathway for Brain Waste Clearance: Current Understanding, Significance and Controversy". Frontiers in Neuroanatomy. 11: 101. doi:10.3389/fnana.2017.00101. ISSN 1662-5129. PMC 5681909. PMID 29163074.
  51. Dissing-Olesen, L.; Hong, S.; Stevens, B. (August 2015). "New brain lymphatic vessels drain old concepts". EBioMedicine. 2 (8): 776–7. doi:10.1016/j.ebiom.2015.08.019. PMC 4563157. PMID 26425672.
  52. ۵۲٫۰ ۵۲٫۱ Sun, BL; Wang, LH; Yang, T; Sun, JY; Mao, LL; Yang, MF; Yuan, H; Colvin, RA; Yang, XY (April 2018). "Lymphatic drainage system of the brain: A novel target for intervention of neurological diseases". Progress in Neurobiology. 163–164: 118–143. doi:10.1016/j.pneurobio.2017.08.007. PMID 28903061.
  53. ۵۳٫۰ ۵۳٫۱ ۵۳٫۲ ۵۳٫۳ ۵۳٫۴ Elsevier's 2007.
  54. Daneman, R.; Zhou, L.; Kebede, A.A.; Barres, B.A. (November 25, 2010). "Pericytes are required for blood-brain barrier integrity during embryogenesis". Nature. 468 (7323): 562–6. Bibcode:2010Natur.468..562D. doi:10.1038/nature09513. PMC 3241506. PMID 20944625.
  55. "Brain Anatomy and How the Brain Works". www.hopkinsmedicine.org (به انگلیسی). Retrieved 2021-10-18.
  56. انجمن علوم اعصاب، مترجم رضا پناهی. بهنام سور، علی شهبازی، عباس حق‌پرست، حقایق مغز. تهران: مؤسسه انتشارات ستایش هستی، ۱۳۹۸ شابک ‎۹۷۸−۶۲۲−۶۴۴۵−۶۳−۴، ص ۱۱.
  57. «Brain anatomy, Anatomy of the human brain | Mayfield Brain & Spine Cincinnati, Ohio». mayfieldclinic.com (به انگلیسی). دریافت‌شده در ۲۰۲۱-۱۰-۱۸.
  58. «Parts of the Brain | Introduction to Psychology». courses.lumenlearning.com (به انگلیسی). دریافت‌شده در ۲۰۲۱-۱۰-۱۸.
  59. انجمن علوم اعصاب، مترجم رضا پناهی. بهنام سور، علی شهبازی، عباس حق‌پرست، حقایق مغز. تهران: مؤسسه انتشارات ستایش هستی، ۱۳۹۸ شابک ‎۹۷۸−۶۲۲−۶۴۴۵−۶۳−۴، ص ۸۱.
  60. Guyton & Hall 2011, p. 685.
  61. Guyton & Hall 2011, p. 687.
  62. ۶۲٫۰ ۶۲٫۱ Guyton & Hall 2011, p. 686.
  63. Genc, Baris; Gozutok, Oge; Ozdinler, P. Hande (2019-08-07). "Complexity of Generating Mouse Models to Study the Upper Motor Neurons: Let Us Shift Focus from Mice to Neurons". International Journal of Molecular Sciences. 20 (16): E3848. doi:10.3390/ijms20163848. ISSN 1422-0067. PMC 6720674. PMID 31394733.
  64. Marieb, E.; Hoehn, K. (2007). Human Anatomy and Physiology (7th ed.). Pearson Benjamin Cummings. ISBN 978-0-8053-5909-1.
  65. Guyton & Hall 2011, pp. 698, 708.
  66. Diaz, Eric; Morales, Humberto (2016-10). "Spinal Cord Anatomy and Clinical Syndromes". Seminars in ultrasound, CT, and MR. 37 (5): 360–371. doi:10.1053/j.sult.2016.05.002. ISSN 1558-5034. PMID 27616310. {{cite journal}}: Check date values in: |date= (help)
  67. ۶۷٫۰ ۶۷٫۱ Hellier, J. (2014). The Brain, the Nervous System, and Their Diseases [3 volumes]. ABC-CLIO. pp. 300–303. ISBN 978-1-61069-338-7.
  68. ۶۸٫۰ ۶۸٫۱ Guyton & Hall 2011, pp. 571–576.
  69. Guyton & Hall 2011, pp. 573–574.
  70. Guyton & Hall 2011, pp. 623–631.
  71. Guyton & Hall 2011, pp. 739–740.
  72. Pocock 2006, pp. 138–139.
  73. Squire 2013, pp. 525–526.
  74. Guyton & Hall 2011, pp. 647–648.
  75. ۷۵٫۰ ۷۵٫۱ Guyton & Hall 2011, pp. 202–203.
  76. Guyton & Hall 2011, pp. 205–208.
  77. ۷۷٫۰ ۷۷٫۱ ۷۷٫۲ ۷۷٫۳ Guyton & Hall 2011, pp. 505–509.
  78. "Brain Basics: Understanding Sleep | National Institute of Neurological Disorders and Stroke". www.ninds.nih.gov. Archived from the original on December 22, 2017.
  79. Guyton & Hall 2011, p. 723.
  80. Davis, J.F.; Choi, D.L.; Benoit, S.C. (2011). "24. Orexigenic Hypothalamic Peptides Behavior and Feeding – 24.5 Orexin". In Preedy, V.R.; Watson, R.R.; Martin, C.R. (eds.). Handbook of Behavior, Food and Nutrition. Springer. pp. 361–362. ISBN 978-0-387-92271-3.
  81. Squire 2013, p. 800.
  82. Squire 2013, p. 803.
  83. Squire 2013, p. 805.
  84. Guyton & Hall 2011, pp. 720–2.
  85. Poeppel, D.; Emmorey, K.; Hickok, G.; Pylkkänen, L. (October 10, 2012). "Towards a new neurobiology of language". The Journal of Neuroscience. 32 (41): 14125–14131. doi:10.1523/JNEUROSCI.3244-12.2012. PMC 3495005. PMID 23055482.
  86. Poeppel, D.; Emmorey, K.; Hickok, G.; Pylkkänen, L. (October 10, 2012). "Towards a new neurobiology of language". The Journal of Neuroscience. 32 (41): 14125–14131. doi:10.1523/JNEUROSCI.3244-12.2012. PMC 3495005. PMID 23055482.
  87. Fedorenko, E.; Kanwisher, N. (2009). "Neuroimaging of language: why hasn't a clearer picture emerged?". Language and Linguistics Compass. 3 (4): 839–865. doi:10.1111/j.1749-818x.2009.00143.x. S2CID 2833893.
  88. Damasio, H. (2001). "Neural basis of language disorders". In Chapey, Roberta (ed.). Language intervention strategies in aphasia and related neurogenic communication disorders (4th ed.). Lippincott Williams & Wilkins. pp. 18–36. ISBN 978-0-7817-2133-2. OCLC 45952164.
  89. ۸۹٫۰ ۸۹٫۱ Berntson, G.; Cacioppo, J. (2009). Handbook of Neuroscience for the Behavioral Sciences, Volume 1. John Wiley & Sons. p. 145. ISBN 978-0-470-08355-0.
  90. Hellier, J. (2014). The Brain, the Nervous System, and Their Diseases [3 volumes]. ABC-CLIO. p. 1135. ISBN 978-1-61069-338-7.
  91. Kolb, B.; Whishaw, I.Q. (2013). Introduction to Brain and Behavior. Macmillan Higher Education. p. 296. ISBN 978-1-4641-3960-4.
  92. Sherwood, L. (2012). Human Physiology: From Cells to Systems. Cengage Learning. p. 181. ISBN 978-1-133-70853-7.
  93. Kalat, J (2015). Biological Psychology. Cengage Learning. p. 425. ISBN 978-1-305-46529-9.
  94. ۹۴٫۰ ۹۴٫۱ Cowin, S.C.; Doty, S.B. (2007). Tissue Mechanics. Springer Science & Business Media. p. 4. ISBN 978-0-387-49985-7.
  95. Morris, C.G.; Maisto, A.A. (2011). Understanding Psychology. Prentice Hall. p. 56. ISBN 978-0-205-76906-3.
  96. Morris, C.G.; Maisto, A.A. (2011). Understanding Psychology. Prentice Hall. p. 56. ISBN 978-0-205-76906-3.
  97. Kolb, B.; Whishaw, I.Q. (2013). Introduction to Brain and Behavior (Loose-Leaf). Macmillan Higher Education. pp. 524–549. ISBN 978-1-4641-3960-4.
  98. Kolb, B.; Whishaw, I.Q. (2013). Introduction to Brain and Behavior (Loose-Leaf). Macmillan Higher Education. pp. 524–549. ISBN 978-1-4641-3960-4.
  99. Schacter, D.L.; Gilbert, D.T.; Wegner, D.M. (2009). Introducing Psychology. Macmillan. p. 80. ISBN 978-1-4292-1821-4.
  100. Sander, David (2013). Armony, J.; Vuilleumier, Patrik (eds.). The Cambridge handbook of human affective neuroscience. Cambridge: Cambridge Univ. Press. p. 16. ISBN 978-0-521-17155-7.
  101. Lindquist, KA.; Wager, TD.; Kober, H; Bliss-Moreau, E; Barrett, LF (May 23, 2012). "The brain basis of emotion: A meta-analytic review". Behavioral and Brain Sciences. 35 (3): 121–143. doi:10.1017/S0140525X11000446. PMC 4329228. PMID 22617651.
  102. Phan, K. Luan; Wager, Tor; Taylor, Stephan F.; Liberzon, Israel (June 2002). "Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI". NeuroImage. 16 (2): 331–348. doi:10.1006/nimg.2002.1087. ISSN 1053-8119. PMID 12030820.
  103. Malenka, RC; Nestler, EJ; Hyman, SE (2009). "Preface". In Sydor, A; Brown, RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. p. xiii. ISBN 978-0-07-148127-4.
  104. Malenka RC, Nestler EJ, Hyman SE, Holtzman DM (2015). "Chapter 14: Higher Cognitive Function and Behavioral Control". Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (3rd ed.). New York: McGraw-Hill Medical. ISBN 978-0-07-182770-6.
  105. ۱۰۵٫۰ ۱۰۵٫۱ ۱۰۵٫۲ Malenka RC, Nestler EJ, Hyman SE, Holtzman DM (2015). "Chapter 14: Higher Cognitive Function and Behavioral Control". Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (3rd ed.). New York: McGraw-Hill Medical. ISBN 978-0-07-182770-6.
  106. ۱۰۶٫۰ ۱۰۶٫۱ Malenka RC, Nestler EJ, Hyman SE, Holtzman DM (2015). "Chapter 6: Widely Projecting Systems: Monoamines, Acetylcholine, and Orexin". Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (3rd ed.). New York: McGraw-Hill Medical. ISBN 978-0-07-182770-6.
  107. ۱۰۷٫۰ ۱۰۷٫۱ ۱۰۷٫۲ ۱۰۷٫۳ ۱۰۷٫۴ Diamond, A (2013). "Executive functions". Annual Review of Psychology. 64: 135–168. doi:10.1146/annurev-psych-113011-143750. PMC 4084861. PMID 23020641.Figure 4: Executive functions and related terms بایگانی‌شده در مه ۹, ۲۰۱۸ توسط Wayback Machine
  108. ۱۰۸٫۰ ۱۰۸٫۱ ۱۰۸٫۲ ۱۰۸٫۳ Hyun, J.C.; Weyandt, L.L.; Swentosky, A. (2014). "Chapter 2: The Physiology of Executive Functioning". In Goldstein, S.; Naglieri, J. (eds.). Handbook of Executive Functioning. New York: Springer. pp. 13–23. ISBN 978-1-4614-8106-5.
  109. Malenka RC, Nestler EJ, Hyman SE, Holtzman DM (2015). "Chapter 14: Higher Cognitive Function and Behavioral Control". Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (3rd ed.). New York: McGraw-Hill Medical. ISBN 978-0-07-182770-6. In conditions in which prepotent responses tend to dominate behavior, such as in drug addiction, where drug cues can elicit drug seeking (Chapter 16), or in attention deficit hyperactivity disorder (ADHD; described below), significant negative consequences can result. ... ADHD can be conceptualized as a disorder of executive function; specifically, ADHD is characterized by reduced ability to exert and maintain cognitive control of behavior. Compared with healthy individuals, those with ADHD have diminished ability to suppress inappropriate prepotent responses to stimuli (impaired response inhibition) and diminished ability to inhibit responses to irrelevant stimuli (impaired interference suppression). ... Functional neuroimaging in humans demonstrates activation of the prefrontal cortex and caudate nucleus (part of the dorsal striatum) in tasks that demand inhibitory control of behavior. ... Early results with structural MRI show a thinner cerebral cortex, across much of the cerebrum, in ADHD subjects compared with age-matched controls, including areas of [the] prefrontal cortex involved in working memory and attention.
  110. ۱۱۰٫۰ ۱۱۰٫۱ Van Essen, D. C.; Ugurbil, K.; Auerbach, E.; Barch, D.; Behrens, T. E. J.; Bucholz, R.; Chang, A.; Chen, L.; Corbetta, M. (2012-10-01). "The Human Connectome Project: a data acquisition perspective". NeuroImage. 62 (4): 2222–2231. doi:10.1016/j.neuroimage.2012.02.018. ISSN 1095-9572. PMC 3606888. PMID 22366334.
  111. Tanner, Kimberly D. (2006-01-01). "Issues in Neuroscience Education: Making Connections". CBE: Life Sciences Education. 5 (2): 85. doi:10.1187/cbe.06-04-0156. ISSN 1931-7913. PMC 1618510.
  112. Shulman, Robert G. (2013). "Neuroscience: A Multidisciplinary, Multilevel Field". Brain Imaging: What it Can (and Cannot) Tell Us About Consciousness. Oxford University Press. p. 59. ISBN 978-0-19-983872-1.
  113. Jones, E.G.; Mendell, L.M. (April 30, 1999). "Assessing the Decade of the Brain". Science. 284 (5415): 739. Bibcode:1999Sci...284..739J. doi:10.1126/science.284.5415.739. PMID 10336393.
  114. "A $4.5 Billion Price Tag for the BRAIN Initiative?". Science | AAAS. June 5, 2014. Archived from the original on June 18, 2017.
  115. Towle, V.L. (January 1993). "The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy". Electroencephalography and Clinical Neurophysiology. 86 (1): 1–6. doi:10.1016/0013-4694(93)90061-y. PMID 7678386. {{cite journal}}: Unknown parameter |displayauthors= ignored (|display-authors= suggested) (help)
  116. Silverstein, J. (2012). "Mapping the Motor and Sensory Cortices: A Historical Look and a Current Case Study in Sensorimotor Localization and Direct Cortical Motor Stimulation". The Neurodiagnostic Journal. 52 (1): 54–68. PMID 22558647. Archived from the original on November 17, 2012.
  117. Boraud, T.; Bezard, E. (2002). "From single extracellular unit recording in experimental and human Parkinsonism to the development of a functional concept of the role played by the basal ganglia in motor control". Progress in Neurobiology. 66 (4): 265–283. doi:10.1016/s0301-0082(01)00033-8. PMID 11960681. {{cite journal}}: Unknown parameter |displayauthors= ignored (|display-authors= suggested) (help)
  118. Lancaster, MA; Renner, M; Martin, CA; Wenzel, D; Bicknell, LS; Hurles, ME; Homfray, T; Penninger, JM; Jackson, AP (September 19, 2013). "Cerebral organoids model human brain development and microcephaly". Nature. 501 (7467): 373–9. Bibcode:2013Natur.501..373L. doi:10.1038/nature12517. PMC 3817409. PMID 23995685.
  119. Lee, CT; Bendriem, RM; Wu, WW; Shen, RF (August 20, 2017). "3D brain Organoids derived from pluripotent stem cells: promising experimental models for brain development and neurodegenerative disorders". Journal of Biomedical Science. 24 (1): 59. doi:10.1186/s12929-017-0362-8. PMC 5563385. PMID 28822354.
  120. "Magnetic Resonance, a critical peer-reviewed introduction; functional MRI". European Magnetic Resonance Forum. Archived from the original on June 2, 2017. Retrieved June 30, 2017.
  121. Buxton, R.; Uludag, K.; Liu, T. (2004). "Modeling the haemodynamic response to brain activation". NeuroImage. 23: S220–S233. CiteSeerX 10.1.1.329.29. doi:10.1016/j.neuroimage.2004.07.013. PMID 15501093.
  122. Irimia, Andrei; Chambers, Micah C.; Torgerson, Carinna M.; Van Horn, John D. (2012-04-02). "Circular representation of human cortical networks for subject and population-level connectomic visualization". NeuroImage. 60 (2): 1340–1351. doi:10.1016/j.neuroimage.2012.01.107. ISSN 1095-9572. PMC 3594415. PMID 22305988.
  123. Biswal, Bharat B. (2012-08-15). "Resting state fMRI: a personal history". NeuroImage. 62 (2): 938–944. doi:10.1016/j.neuroimage.2012.01.090. ISSN 1095-9572. PMID 22326802.
  124. Basser, P. J.; Pajevic, S.; Pierpaoli, C.; Duda, J.; Aldroubi, A. (October 2000). "In vivo fiber tractography using DT-MRI data". Magnetic Resonance in Medicine. 44 (4): 625–632. doi:10.1002/1522-2594(200010)44:4<625::aid-mrm17>3.0.co;2-o. ISSN 0740-3194. PMID 11025519.
  125. Irimia, Andrei; Chambers, Micah C.; Torgerson, Carinna M.; Van Horn, John D. (2012-04-02). "Circular representation of human cortical networks for subject and population-level connectomic visualization". NeuroImage. 60 (2): 1340–1351. doi:10.1016/j.neuroimage.2012.01.107. ISSN 1095-9572. PMC 3594415. PMID 22305988.
  126. Lepage, M. (2010). "Research at the Brain Imaging Centre". Douglas Mental Health University Institute. Archived from the original on March 5, 2012.
  127. ۱۲۷٫۰ ۱۲۷٫۱ Steward, Charles A.; Parker, Alasdair P. J.; Minassian, Berge A.; Sisodiya, Sanjay M.; Frankish, Adam; Harrow, Jennifer (2017-05-30). "Genome annotation for clinical genomic diagnostics: strengths and weaknesses". Genome Medicine. 9 (1): 49. doi:10.1186/s13073-017-0441-1. ISSN 1756-994X. PMC 5448149. PMID 28558813.
  128. Harrow, J. (September 2012). "GENCODE: the reference human genome annotation for The ENCODE Project". Genome Res. 22 (9): 1760–74. doi:10.1101/gr.135350.111. PMC 3431492. PMID 22955987. {{cite journal}}: Unknown parameter |displayauthors= ignored (|display-authors= suggested) (help)
  129. "The human proteome in brain – The Human Protein Atlas". www.proteinatlas.org. Archived from the original on September 29, 2017. Retrieved September 29, 2017.
  130. Uhlén, Mathias; Fagerberg, Linn; Hallström, Björn M.; Lindskog, Cecilia; Oksvold, Per; Mardinoglu, Adil; Sivertsson, Åsa; Kampf, Caroline; Sjöstedt, Evelina (January 23, 2015). "Tissue-based map of the human proteome". Science. 347 (6220): 1260419. doi:10.1126/science.1260419. ISSN 0036-8075. PMID 25613900.
  131. Warden, A (2017). "Gene expression profiling in the human alcoholic brain". Neuropharmacology. 122: 161–174. doi:10.1016/j.neuropharm.2017.02.017. PMC 5479716. PMID 28254370.
  132. Farris, S.P. (2015). "Applying the new genomics to alcohol dependence". Alcohol. 49 (8): 825–36. doi:10.1016/j.alcohol.2015.03.001. PMC 4586299. PMID 25896098. {{cite journal}}: Unknown parameter |displayauthors= ignored (|display-authors= suggested) (help)
  133. Rozycka, A; Liguz-Lecznar, M (August 2017). "The space where aging acts: focus on the GABAergic synapse". Aging Cell. 16 (4): 634–643. doi:10.1111/acel.12605. PMC 5506442. PMID 28497576.
  134. Flores, CE; Méndez, P (2014). "Shaping inhibition: activity dependent structural plasticity of GABAergic synapses". Frontiers in Cellular Neuroscience. 8: 327. doi:10.3389/fncel.2014.00327. PMC 4209871. PMID 25386117.
  135. Miller, G. A. (1956-03). "The magical number seven plus or minus two: some limits on our capacity for processing information". Psychological Review. 63 (2): 81–97. ISSN 0033-295X. PMID 13310704. {{cite journal}}: Check date values in: |date= (help)
  136. Pocock, G. ; Richards, C. (2006). Human Physiology: The Basis of Medicine (3rd ed.). Oxford: Oxford University Press. ISBN 978-0-19-856878-0. p 68.
  137. Flores A, Maldonado R, Berrendero F (December 2013). "Cannabinoid-hypocretin cross-talk in the central nervous system: what we know so far". Frontiers in Neuroscience. 7: 256. doi:10.3389/fnins.2013.00256. PMC 3868890. PMID 24391536. Direct CB1-HcrtR1 interaction was first proposed in 2003 (Hilairet et al. , 2003). Indeed, a 100-fold increase in the potency of hypocretin-1 to activate the ERK signaling was observed when CB1 and HcrtR1 were co-expressed ... In this study, a higher potency of hypocretin-1 to regulate CB1-HcrtR1 heteromer compared with the HcrtR1-HcrtR1 homomer was reported (Ward et al. , 2011b). These data provide unambiguous identification of CB1-HcrtR1 heteromerization, which has a substantial functional impact.  ... The existence of a cross-talk between the hypocretinergic and endocannabinoid systems is strongly supported by their partially overlapping anatomical distribution and common role in several physiological and pathological processes. However, little is known about the mechanisms underlying this interaction.  ... Acting as a retrograde messenger, endocannabinoids modulate the glutamatergic excitatory and GABAergic inhibitory synaptic inputs into the dopaminergic neurons of the VTA and the glutamate transmission in the NAc. Thus, the activation of CB1 receptors present on axon terminals of GABAergic neurons in the VTA inhibits GABA transmission, removing this inhibitory input on dopaminergic neurons (Riegel and Lupica, 2004). Glutamate synaptic transmission in the VTA and NAc, mainly from neurons of the PFC, is similarly modulated by the activation of CB1 receptors (Melis et al. , 2004).Figure 1: Schematic of brain CB1 expression and orexinergic neurons expressing OX1 (HcrtR1) or OX2 (HcrtR2)Figure 2: Synaptic signaling mechanisms in cannabinoid and orexin systemsFigure 3: Schematic of brain pathways involved in food intake
  138. Clark, B.D.; Goldberg, E.M.; Rudy, B. (December 2009). "Electrogenic tuning of the axon initial segment". The Neuroscientist. 15 (6): 651–68. doi:10.1177/1073858409341973. PMC 2951114. PMID 20007821.
  139. Freund TF, Katona I, Piomelli D (July 2003). "Role of endogenous cannabinoids in synaptic signaling". Physiological Reviews. 83 (3): 1017–66. doi:10.1152/physrev.00004.2003. PMID 12843414.
  140. Pocock, G. ; Richards, C. (2006). Human Physiology: The Basis of Medicine (3rd ed.). Oxford: Oxford University Press. ISBN 978-0-19-856878-0. p 70-74.
  141. "NIMH " Brain Basics". www.nimh.nih.gov. Archived from the original on March 26, 2017. Retrieved March 26, 2017.
  142. Purves, Dale (2011). Neuroscience (5. ed.). Sunderland, Mass.: Sinauer. p. 139. ISBN 978-0-87893-695-3.
  143. Melis M, Pistis M (December 2007). "Endocannabinoid signaling in midbrain dopamine neurons: more than physiology?". Current Neuropharmacology. 5 (4): 268–77. doi:10.2174/157015907782793612. PMC 2644494. PMID 19305743. Thus, it is conceivable that low levels of CB1 receptors are located on glutamatergic and GABAergic terminals impinging on DA neurons [127, 214], where they can fine-tune the release of inhibitory and excitatory neurotransmitter and regulate DA neuron firing.
    Consistently, in vitro electrophysiological experiments from independent laboratories have provided evidence of CB1 receptor localization on glutamatergic and GABAergic axon terminals in the VTA and SNc.
  144. Swaminathan, N (April 29, 2008). "Why Does the Brain Need So Much Power?". Scientific American. Archived from the original on January 27, 2014. Retrieved November 19, 2010.
  145. Wasserman DH (January 2009). "Four grams of glucose". American Journal of Physiology. Endocrinology and Metabolism. 296 (1): E11–21. doi:10.1152/ajpendo.90563.2008. PMC 2636990. PMID 18840763. Four grams of glucose circulates in the blood of a person weighing 70 kg. This glucose is critical for normal function in many cell types. In accordance with the importance of these 4 g of glucose, a sophisticated control system is in place to maintain blood glucose constant. Our focus has been on the mechanisms by which the flux of glucose from liver to blood and from blood to skeletal muscle is regulated.  ... The brain consumes ∼60% of the blood glucose used in the sedentary, fasted person.  ... The amount of glucose in the blood is preserved at the expense of glycogen reservoirs (Fig. 2). In postabsorptive humans, there are ∼100 g of glycogen in the liver and ∼400 g of glycogen in muscle. Carbohydrate oxidation by the working muscle can go up by ∼10-fold with exercise, and yet after 1 h, blood glucose is maintained at ∼4 g.  ... It is now well established that both insulin and exercise cause translocation of GLUT4 to the plasma membrane. Except for the fundamental process of GLUT4 translocation, [muscle glucose uptake (MGU)] is controlled differently with exercise and insulin. Contraction-stimulated intracellular signaling (52, 80) and MGU (34, 75, 77, 88, 91, 98) are insulin independent. Moreover, the fate of glucose extracted from the blood is different in response to exercise and insulin (91, 105). For these reasons, barriers to glucose flux from blood to muscle must be defined independently for these two controllers of MGU.
  146. Quistorff, B; Secher, N; Van Lieshout, J (July 24, 2008). "Lactate fuels the human brain during exercise". The FASEB Journal. 22 (10): 3443–3449. doi:10.1096/fj.08-106104. PMID 18653766. S2CID 15394163.
  147. Obel, L.F.; Müller, M.S.; Walls, A.B.; Sickmann, H.M.; Bak, L.K.; Waagepetersen, H.S.; Schousboe, A. (2012). "Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level". Frontiers in Neuroenergetics. 4: 3. doi:10.3389/fnene.2012.00003. PMC 3291878. PMID 22403540.
  148. Marin-Valencia, I.; et al. (February 2013). "Heptanoate as a neural fuel: energetic and neurotransmitter precursors in normal and glucose transporter I-deficient (G1D) brain". Journal of Cerebral Blood Flow and Metabolism. 33 (2): 175–82. doi:10.1038/jcbfm.2012.151. PMC 3564188. PMID 23072752.
  149. Tsuji, A. (2005). "Small molecular drug transfer across the blood-brain barrier via carrier-mediated transport systems". NeuroRx. 2 (1): 54–62. doi:10.1602/neurorx.2.1.54. PMC 539320. PMID 15717057. Uptake of valproic acid was reduced in the presence of medium-chain fatty acids such as hexanoate, octanoate, and decanoate, but not propionate or butyrate, indicating that valproic acid is taken up into the brain via a transport system for medium-chain fatty acids, not short-chain fatty acids.  ... Based on these reports, valproic acid is thought to be transported bidirectionally between blood and brain across the BBB via two distinct mechanisms, monocarboxylic acid-sensitive and medium-chain fatty acid-sensitive transporters, for efflux and uptake, respectively.
  150. Vijay, N.; Morris, M.E. (2014). "Role of monocarboxylate transporters in drug delivery to the brain". Curr. Pharm. Des. 20 (10): 1487–98. doi:10.2174/13816128113199990462. PMC 4084603. PMID 23789956. Monocarboxylate transporters (MCTs) are known to mediate the transport of short chain monocarboxylates such as lactate, pyruvate and butyrate.  ... MCT1 and MCT4 have also been associated with the transport of short chain fatty acids such as acetate and formate which are then metabolized in the astrocytes [78].
  151. Clark, D.D.; Sokoloff. L. (1999). Siegel, G.J.; Agranoff, B.W.; Albers, R.W.; Fisher, S.K.; Uhler, M.D. (eds.). Basic Neurochemistry: Molecular, Cellular and Medical Aspects. Philadelphia: Lippincott. pp. 637–670. ISBN 978-0-397-51820-3.
  152. Mrsulja, B.B. (2012). Pathophysiology of Cerebral Energy Metabolism. Springer Science & Business Media. pp. 2–3. ISBN 978-1-4684-3348-7.
  153. Raichle, M.; Gusnard, DA (2002). "Appraising the brain's energy budget". Proc. Natl. Acad. Sci. U.S.A. 99 (16): 10237–10239. Bibcode:2002PNAS...9910237R. doi:10.1073/pnas.172399499. PMC 124895. PMID 12149485.
  154. Gianaros, Peter J.; Gray, Marcus A.; Onyewuenyi, Ikechukwu; Critchley, Hugo D. (2010). "Chapter 50. Neuroimaging methods in behavioral medicine". In Steptoe, A. (ed.). Handbook of Behavioral Medicine: Methods and Applications. Springer Science & Business Media. p. 770. doi:10.1007/978-0-387-09488-5_50. ISBN 978-0-387-09488-5.
  155. Kuzawa, C. W.; Chugani, H. T.; Grossman, L. I.; Lipovich, L.; Muzik, O.; Hof, P. R.; Wildman, D. E.; Sherwood, C. C.; Leonard, W. R.; Lange, N. (2014-09-09). "Metabolic costs and evolutionary implications of human brain development". Proceedings of the National Academy of Sciences. 111 (36): 13010–13015. Bibcode:2014PNAS..11113010K. doi:10.1073/pnas.1323099111. ISSN 0027-8424. PMC 4246958. PMID 25157149.
  156. Bacyinski A, Xu M, Wang W, Hu J (November 2017). "The Paravascular Pathway for Brain Waste Clearance: Current Understanding, Significance and Controversy". Frontiers in Neuroanatomy. 11: 101. doi:10.3389/fnana.2017.00101. PMC 5681909. PMID 29163074. The paravascular pathway, also known as the “glymphatic” pathway, is a recently described system for waste clearance in the brain. According to this model, cerebrospinal fluid (CSF) enters the paravascular spaces surrounding penetrating arteries of the brain, mixes with interstitial fluid (ISF) and solutes in the parenchyma, and exits along paravascular spaces of draining veins.  ... In addition to Aβ clearance, the glymphatic system may be involved in the removal of other interstitial solutes and metabolites. By measuring the lactate concentration in the brains and cervical lymph nodes of awake and sleeping mice, Lundgaard et al. (2017) demonstrated that lactate can exit the CNS via the paravascular pathway. Their analysis took advantage of the substantiated hypothesis that glymphatic function is promoted during sleep (Xie et al. , 2013; Lee et al. , 2015; Liu et al. , 2017).
  157. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O'Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (October 2013). "Sleep drives metabolite clearance from the adult brain". Science. 342 (6156): 373–377. Bibcode:2013Sci...342..373X. doi:10.1126/science.1241224. PMC 3880190. PMID 24136970. Thus, the restorative function of sleep may be a consequence of the enhanced removal of potentially neurotoxic waste products that accumulate in the awake central nervous system.
  158. Tononi, Guilio; Cirelli, Chiara (August 2013). "Perchance to Prune" (PDF). Scientific American. 309 (2): 34–39. Bibcode:2013SciAm.309b..34T. doi:10.1038/scientificamerican0813-34. PMID 23923204. S2CID 54052089. Archived from the original (PDF) on 2018-12-26.
  159. "Brain Injury, Traumatic". Medcyclopaedia. GE. Archived from the original on May 26, 2011.
  160. Dawodu, S.T. (March 9, 2017). "Traumatic Brain Injury (TBI) – Definition and Pathophysiology: Overview, Epidemiology, Primary Injury". Archived from the original on April 9, 2017. {{cite journal}}: Cite journal requires |journal= (help)
  161. Davidson's 2010, pp. 1196–7.
  162. ۱۶۲٫۰ ۱۶۲٫۱ Davidson's 2010, pp. 1205–15.
  163. Davidson's 2010, pp. 1216–7.
  164. "NIMH " Brain Basics". www.nimh.nih.gov. Archived from the original on March 26, 2017. Retrieved March 26, 2017.
  165. Volkow, N.D.; Koob, G.F.; McLellan, A.T. (January 2016). "Neurobiologic advances from the brain disease model of addiction". The New England Journal of Medicine. 374 (4): 363–371. doi:10.1056/NEJMra1511480. PMC 6135257. PMID 26816013.
  166. "Status Epilepticus". Epilepsy Foundation.
  167. Davidson's 2010, pp. 1172–9.
  168. Pennington, B.F. (2008). Diagnosing Learning Disorders, Second Edition: A Neuropsychological Framework. Guilford Press.
  169. Perese, E.F. (2012). Psychiatric Advanced Practice Nursing: A Biopsychsocial Foundation for Practice. F.A. Davis. pp. 82–88.
  170. Harbison, J.; Massey, A.; Barnett, L.; Hodge, D.; Ford, G.A. (June 1999). "Rapid ambulance protocol for acute stroke". Lancet. 353 (9168): 1935. doi:10.1016/S0140-6736(99)00966-6. PMID 10371574.
  171. Davidson's 2010, p. 1183.
  172. Davidson's 2010, pp. 1180–1.
  173. Davidson's 2010, pp. 1181, 1183–1185.
  174. ۱۷۴٫۰ ۱۷۴٫۱ ۱۷۴٫۲ Davidson's 2010, pp. 1183–1185.
  175. Davidson's 2010, pp. 1185-1189.
  176. Goyal, M. (April 2016). "Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials". The Lancet. 387 (10029): 1723–1731. doi:10.1016/S0140-6736(16)00163-X. PMID 26898852. {{cite journal}}: Unknown parameter |displayauthors= ignored (|display-authors= suggested) (help)
  177. Saver, J. L. (December 8, 2005). "Time is brain—quantified". Stroke. 37 (1): 263–266. doi:10.1161/01.STR.0000196957.55928.ab. PMID 16339467.
  178. Davidson's 2010, pp. 1185–1189.
  179. Winstein, C.J. (June 2016). "Guidelines for adult stroke rehabilitation and recovery". Stroke. 47 (6): e98–e169. doi:10.1161/STR.0000000000000098. PMID 27145936. {{cite journal}}: Unknown parameter |displayauthors= ignored (|display-authors= suggested) (help)
  180. Kuźma, Elżbieta; Lourida, Ilianna; Moore, Sarah F.; Levine, Deborah A.; Ukoumunne, Obioha C.; Llewellyn, David J. (November 2018). "Stroke and dementia risk: A systematic review and meta-analysis". Alzheimer's & Dementia. 14 (11): 1416–1426. doi:10.1016/j.jalz.2018.06.3061. ISSN 1552-5260. PMC 6231970. PMID 30177276.
  181. ۱۸۱٫۰ ۱۸۱٫۱ ۱۸۱٫۲ Goila, AK; Pawar, M (2009). "The diagnosis of brain death". Indian Journal of Critical Care Medicine. 13 (1): 7–11. doi:10.4103/0972-5229.53108. PMC 2772257. PMID 19881172.
  182. ۱۸۲٫۰ ۱۸۲٫۱ ۱۸۲٫۲ Wijdicks, EFM (January 8, 2002). "Brain death worldwide: accepted fact but no global consensus in diagnostic criteria". Neurology. 58 (1): 20–25. doi:10.1212/wnl.58.1.20. PMID 11781400.
  183. Dhanwate, AD (September 2014). "Brainstem death: A comprehensive review in Indian perspective". Indian Journal of Critical Care Medicine. 18 (9): 596–605. doi:10.4103/0972-5229.140151. PMC 4166875. PMID 25249744.
  184. Davidson's 2010, p. 200.
  185. ۱۸۵٫۰ ۱۸۵٫۱ Davidson's 2010.
  186. Pawar, Mridula; Goila, Ajay Kumar (2009-03). "The diagnosis of brain death". Indian Journal of Critical Care Medicine (به انگلیسی). 13 (1): 7–11. doi:10.4103/0972-5229.53108. ISSN 0972-5229. PMC 2772257. PMID 19881172. {{cite journal}}: Check date values in: |date= (help)نگهداری یادکرد:فرمت پارامتر PMC (link)
  187. Davidson's 2010, p. 1158.
  188. von Staden, p.157
  189. Gross, Charles G. (1987). Adelman, George (ed.). Encyclopedia of neuroscience (PDF) (2. ed.). Boston: Birkhäeuser. pp. 843–847. ISBN 978-0-8176-3335-6. Archived (PDF) from the original on May 5, 2013.
  190. "Cultural Environment Influences Brain Function | Psych Central News". Psych Central News. August 4, 2010. Archived from the original on January 17, 2017.