هلیوم: تفاوت میان نسخه‌ها

از ویکی‌پدیا، دانشنامهٔ آزاد
[نسخهٔ بررسی‌نشده][نسخهٔ بررسی‌نشده]
محتوای حذف‌شده محتوای افزوده‌شده
←‏هلیوم II: افزودن تصویر
←‏ترکیبات: ترجمه محتوا
خط ۱۲۱: خط ۱۲۱:
== ترکیبات ==
== ترکیبات ==
{{اصلی|ترکیبات هلیوم}}
{{اصلی|ترکیبات هلیوم}}
هلیوم دارای ظرفیت صفر است و درنتیجه از لحاظ شیمیایی در شرایط معمول، یک عنصر واکنش ناپذیر است.<ref name="LANL.gov"/> هلیوم یک عایق الکتریسیته محسوب می‌شود، مگر این‌که یونیزه شود. همانند سایر گازهای نجیب، هلیوم نیز دارای سطوح انرژی شبه‌پایدار<ref group="lower-alpha">Metastable</ref> است که موجب می‌شود این عنصر در صورت وجود بار الکتریکی با ولتاژی کمتر از پتانسیل یونیزاسیون خود، یونیزه باقی بماند.<ref name=enc/> هلیوم می‌تواند در زمانی که تحت [[تخلیه تابشی]]، بمباران الکترونی یا تبدیل شدن به پلاسما تحت شرایط دیگر، قرار می‌گیرد با عناصری مانند [[تنگستن]]، [[فلورید]]، [[گوگرد]] و [[فسفر]] ترکیبات ناپایداری موسوم به [[برانگیخته‌پار]] تشکیل دهد. ترکیبات مولکولی مانند هلیم نئون (HeNe)، جیوه هلیوم (HgHe<sub>۱۰</sub>)، تنگستن هلیوم (WHe<sub>۲</sub>) و گونه‌های مولکولی یونی مانند He<sub>۲</sub><sup>+</sup> ،He<sub>۲</sub><sup>+</sup> ،HeH<sup>+</sup> و <sup>+</sup>HeD به‌این صورت ساخته می‌شوند.<ref>{{Cite journal|title = Massenspektrographische Untersuchungen an Wasserstoff- und Heliumkanalstrahlen ({{chem|H|3|+}}, {{chem|H|2|-}}, {{chem|HeH|+}}, {{chem|HeD|+}}, {{chem|He|-}}) |author = Hiby, Julius W. |journal = [[Annalen der Physik]] |volume = 426 |issue = 5 |pages = 473–487 |date = 1939 |doi = 10.1002/andp.19394260506 |bibcode = 1939AnP...426..473H }}</ref> ترکیب <sup>+</sup>HeH دارای حالت پایه پایدار است اما فوق العاده واکنش‌پذیر است، به‌طوری که قوی‌ترین اسید برونستد شناخته شده محسوب می‌شود و بنابراین می‌تواند تنها به صورت جداشده وجود داشته باشد، زیرا هرنوع مولکول یا یون مخالفی که در مجاورت آن قرار بگیرد، پروتون‌دار می‌شود. این روش همچنین موجب تولید مولکول هلیوم گازی (<sup>۲</sup>He) و مولکول جیوه هلیوم (HgHe) شده‌است.<ref name=enc/>

ترکیبات وان‌دروالسی هلیوم مانند لیتیم هلیوم (LiHe) و مولکول هلیوم (<sup>۲</sup>He)، می‌توانند با سرد کردن گاز هلیوم و اتم‌های برخی دیگر از مواد، تولید شوند.<ref name=fr13>{{cite journal|last1=Friedrich|first1=Bretislav|title=A Fragile Union Between Li and He Atoms|journal=Physics|date=8 April 2013|volume=6|page=42|doi=10.1103/Physics.6.42|bibcode=2013PhyOJ...6...42F|url=https://physics.aps.org/featured-article-pdf/10.1103/PhysRevLett.110.153201|access-date=24 August 2019|archive-url=https://web.archive.org/web/20170829154727/https://physics.aps.org/featured-article-pdf/10.1103/PhysRevLett.110.153201|archive-date=29 August 2017|url-status=live|hdl=11858/00-001M-0000-000E-F3CF-5|hdl-access=free}}</ref>

به صورت نظری، دیگر ترکیبات واقعی هلیوم مانند فلوئوروهیدرید (HHeF) که مشابه فلوئوروهیدرید آرگون است و در سال ۲۰۰ کشف شد، نیز ممکن هستند.<ref>{{Cite journal|title = Prediction of a Metastable Helium Compound: HHeF |author = Wong, Ming Wah|journal = [[Journal of the American Chemical Society]] |volume = 122 |issue = 26 |pages = 6289–6290 |date = 2000 |doi = 10.1021/ja9938175}}</ref> محاسبات نشان می‌دهد که دو ترکیب جدید حاوی پیوند هلیوم-اکسیژن می‌تواند پایدار باشد. دو گونه جدید مولکولی CsFHeO و N(CH<sub>۳</sub>)<sub>۴</sub>FHeO که به‌صورت نظری پیش‌بینی شدند، مشتق‌هایی از یک آنیون <sup>−</sup>FHeO ناپایدار هستند که برای اولین‌بار در سال ۲۰۰۵ به صورت نظری توسط یک گروه تحقیاتی تایوانی وجود آن پیش‌بینی شد. اگر تحقیقات آن را تایید نماید، تنها عنصری که هنوز هیچ ترکیب پایداری از آن گزارش نشده‌، عنصر [[نئون]] خواهد بود.<ref>{{cite web|url = http://www.uw.edu.pl/en/strony/news/chemist.pdf|archiveurl = https://web.archive.org/web/20090319180147/http://www.uw.edu.pl/en/strony/news/chemist.pdf|archivedate = 2009-03-19|title = Collapse of helium's chemical nobility predicted by Polish chemist|accessdate = 2009-05-15}}</ref>

اتم‌های هلیوم با کم حرارت و تحت فشار زیاد می‌توانند به درون ساختار توخالی قفس کربنی مولکول [[فولرن]] وارد شود. به این نوع مولکول‌های فولرن دارای گونه خارجی مانند اتم، یون یا خوشه مولکولی در داخل ساختار قفس مانند خود، اصطلاحا فولرن اندوهدرال<ref group="lower-alpha">Endohedral fullerene</ref> گفته می‌شود که در دماهای بالا نیز پایدار هستند. زمانی‌که مشتق‌های این نوع فولرن‌ها تشکیل می‌شوند، هلیوم در داخل ساختار قفس مانند فولرن باقی می‌ماند.<ref>{{Cite journal|title = Stable Compounds of Helium and Neon: He@C<sub>60</sub> and Ne@C<sub>60</sub> |author = Saunders, Martin |author2 = Jiménez-Vázquez, Hugo A. |author3 = Cross, R. James |author4 = Poreda, Robert J. |journal = Science |volume = 259 |issue = 5100 |pages = 1428–1430 |date = 1993 |doi = 10.1126/science.259.5100.1428 |pmid = 17801275|bibcode = 1993Sci...259.1428S }}</ref> اگر هلیوم-۳ برای این منظور استفاده شود، به‌آسانی می‌توان حضور آن را با کمک [[طیف‌سنجی تشدید مغناطیسی هسته‌ای]] مشخص کرد.<ref>{{Cite journal|title = Probing the interior of fullerenes by <sup>3</sup>He NMR spectroscopy of endohedral <sup>3</sup>He@C<sub>60</sub> and <sup>3</sup>He@C<sub>70</sub> |last1=Saunders|first1=Martin|journal = Nature |volume = 367|issue = 6460|pages = 256–258 |date = 1994 |doi = 10.1038/367256a0|bibcode = 1994Natur.367..256S|first2 = Hugo A.|last2=Jiménez-Vázquez|first3 = R. James|last3=Cross|first4 = Stanley|last4=Mroczkowski|first5 = Darón I.|last5=Freedberg|first6 = Frank A. L.|last6=Anet}}</ref> بسیاری از فولرن‌های حاوی هلیوم-۳ گزارش شده‌اند. اگرچه، اتم‌های هلیوم به صورت کووالانسی و یا یونی به ساختار فولرن متصل نشده‌اند، با این‌حال ترکیب فولرن حاصل، مانند تمامی ترکیب‌های شیمیایی استوکیومتری دارای خواص و ترکیب منحصر به‌فرد و مشخص است.

تح فشار زیاد، هلیوم می‌تواند ترکیباتی با عناصر مختلف را تشکیل دهد. کریستال‌های ترکیب کلاترات هلیوم-نیتروژن ((N<sub>۲</sub>)<sup>۱۱</sup>He) در دمای اتاق و تحت فشار ۱۰ گیگاپاسکال درون یک [[سلول سندان الماس]] رشد داده شده‌اند.<ref>{{cite journal|doi=10.1038/358046a0|title=A high-pressure van der Waals compound in solid nitrogen-helium mixtures|journal=Nature|volume=358|issue=6381|pages=46–48|year=1992|last1=Vos|first1=W. L.|last2=Finger|first2=L. W.|last3=Hemley|first3=R. J.|last4=Hu|first4=J. Z.|last5=Mao|first5=H. K.|last6=Schouten|first6=J. A.|bibcode=1992Natur.358...46V}}</ref> مشخص شده‌است که ترکیب الکترید<ref group="lower-alpha">Electride</ref><ref group="توضیح">ترکیبی یونی که الکترون به‌عنوان یون منفی آن است. ترکیب [[Na(NH<sub>۳</sub>)<sub>۶</sub>]<sup>+</sup>,e<sup>−</sup> یک الکترید است.</ref> سدیم هلیوم (Na<sub>۲</sub>He) که یک عایق الکتریسیته است، در فشار بالای ۱۱۳ گیگاپاسکال به‌صورت ترمودینامیکی پایدار است. این مولکول دارای ساختاری [[فلئوریت|فلئوریتی]] است.<ref name="DongOganov2017">{{cite journal |last1=Dong|first1=Xiao |last2=Oganov|first2=Artem R. |last3=Goncharov|first3=Alexander F. |last4=Stavrou|first4=Elissaios |last5=Lobanov|first5=Sergey |last6=Saleh|first6=Gabriele |last7=Qian|first7=Guang-Rui |last8=Zhu|first8=Qiang |last9=Gatti|first9=Carlo |last10=Deringer|first10=Volker L. |last11=Dronskowski|first11=Richard |last12=Zhou|first12=Xiang-Feng |last13=Prakapenka|first13=Vitali B. |last14=Konôpková|first14=Zuzana |last15=Popov|first15=Ivan A. |last16=Boldyrev|first16=Alexander I. |last17=Wang|first17=Hui-Tian |title=A stable compound of helium and sodium at high pressure |journal=Nature Chemistry |volume=9 |issue=5 |pages=440–445 |year=2017 |issn=1755-4330 |doi=10.1038/nchem.2716 |pmid=28430195 |bibcode=2017NatCh...9..440D|arxiv=1309.3827 }}</ref>


== پیدایش و تولید ==
== پیدایش و تولید ==

نسخهٔ ‏۱ ژوئیهٔ ۲۰۲۰، ساعت ۱۹:۴۸

هلیوم، 2He
هلیوم
تلفظ‎/ˈhliəm/‎ (HEE-lee-əm)
جرم اتمی استاندارد (Ar، استاندارد)۴٫۰۰۲۶۰۲(۲)[۱]
هلیوم در جدول تناوبی
Element 1: هیدروژن (H), Other non-metal
Element 2: هلیوم (He), Noble gas
Element 3: لیتیم (Li), Alkali metal
Element 4: برلیم (Be), Alkaline earth metal
Element 5: بور (B), Metalloid
Element 6: کربن (C), Other non-metal
Element 7: نیتروژن (N), Halogen
Element 8: اکسیژن (O), Halogen
Element 9: فلوئور (F), Halogen
Element 10: نئون (Ne), Noble gas
Element 11: سدیم (Na), Alkali metal
Element 12: منیزیم (Mg), Alkaline earth metal
Element 13: آلومینیم (Al), Other metal
Element 14: سیلسیم (Si), Metalloid
Element 15: فسفر (P), Other non-metal
Element 16: گوگرد (S), Other non-metal
Element 17: کلر (Cl), Halogen
Element 18: آرگون (Ar), Noble gas
Element 19: پتاسیم (K), Alkali metal
Element 20: کلسیم (Ca), Alkaline earth metal
Element 21: اسکاندیم (Sc), Transition metal
Element 22: تیتانیم (Ti), Transition metal
Element 23: وانادیم (V), Transition metal
Element 24: کروم (Cr), Transition metal
Element 25: منگنز (Mn), Transition metal
Element 26: آهن (Fe), Transition metal
Element 27: کبالت (Co), Transition metal
Element 28: نیکل (Ni), Transition metal
Element 29: مس (Cu), Transition metal
Element 30: روی (Zn), Other metal
Element 31: گالیم (Ga), Other metal
Element 32: ژرمانیم (Ge), Metalloid
Element 33: آرسنیک (As), Metalloid
Element 34: سلنیم (Se), Other non-metal
Element 35: برم (Br), Halogen
Element 36: کریپتون (Kr), Noble gas
Element 37: روبیدیم (Rb), Alkali metal
Element 38: استرانسیم (Sr), Alkaline earth metal
Element 39: ایتریم (Y), Transition metal
Element 40: زیرکونیم (Zr), Transition metal
Element 41: نیوبیم (Nb), Transition metal
Element 42: مولیبدن (Mo), Transition metal
Element 43: تکنسیم (Tc), Transition metal
Element 44: روتنیم (Ru), Transition metal
Element 45: رودیم (Rh), Transition metal
Element 46: پالادیم (Pd), Transition metal
Element 47: نقره (Ag), Transition metal
Element 48: کادمیم (Cd), Other metal
Element 49: ایندیم (In), Other metal
Element 50: قلع (Sn), Other metal
Element 51: آنتیموان (Sb), Metalloid
Element 52: تلوریم (Te), Metalloid
Element 53: ید (I), Halogen
Element 54: زنون (Xe), Noble gas
Element 55: سزیم (Cs), Alkali metal
Element 56: باریم (Ba), Alkaline earth metal
Element 57: لانتان (La), Lanthanoid
Element 58: سریم (Ce), Lanthanoid
Element 59: پرازئودیمیم (Pr), Lanthanoid
Element 60: نئودیمیم (Nd), Lanthanoid
Element 61: پرومتیم (Pm), Lanthanoid
Element 62: ساماریم (Sm), Lanthanoid
Element 63: اروپیم (Eu), Lanthanoid
Element 64: گادولینیم (Gd), Lanthanoid
Element 65: تربیم (Tb), Lanthanoid
Element 66: دیسپروزیم (Dy), Lanthanoid
Element 67: هولمیم (Ho), Lanthanoid
Element 68: اربیم (Er), Lanthanoid
Element 69: تولیم (Tm), Lanthanoid
Element 70: ایتربیم (Yb), Lanthanoid
Element 71: لوتتیم (Lu), Lanthanoid
Element 72: هافنیم (Hf), Transition metal
Element 73: تانتال (Ta), Transition metal
Element 74: تنگستن (W), Transition metal
Element 75: رنیم (Re), Transition metal
Element 76: اوسمیم (Os), Transition metal
Element 77: ایریدیم (Ir), Transition metal
Element 78: پلاتین (Pt), Transition metal
Element 79: طلا (Au), Transition metal
Element 80: جیوه (Hg), Other metal
Element 81: تالیم (Tl), Other metal
Element 82: سرب (Pb), Other metal
Element 83: بیسموت (Bi), Other metal
Element 84: پولونیم (Po), Other metal
Element 85: آستاتین (At), Metalloid
Element 86: رادون (Rn), Noble gas
Element 87: فرانسیم (Fr), Alkali metal
Element 88: رادیم (Ra), Alkaline earth metal
Element 89: آکتینیم (Ac), Actinoid
Element 90: توریم (Th), Actinoid
Element 91: پروتاکتینیم (Pa), Actinoid
Element 92: اورانیم (U), Actinoid
Element 93: نپتونیم (Np), Actinoid
Element 94: پلوتونیم (Pu), Actinoid
Element 95: امریسیم (Am), Actinoid
Element 96: کوریم (Cm), Actinoid
Element 97: برکلیم (Bk), Actinoid
Element 98: کالیفرنیم (Cf), Actinoid
Element 99: اینشتینیم (Es), Actinoid
Element 100: فرمیم (Fm), Actinoid
Element 101: مندلیفیم (Md), Actinoid
Element 102: نوبلیم (No), Actinoid
Element 103: لارنسیم (Lr), Actinoid
Element 104: رادرفوردیم (Rf), Transition metal
Element 105: دوبنیم (Db), Transition metal
Element 106: سیبورگیم (Sg), Transition metal
Element 107: بوهریم (Bh), Transition metal
Element 108: هاسیم (Hs), Transition metal
Element 109: مایتنریم (Mt)
Element 110: دارمشتادیم (Ds)
Element 111: رونتگنیم (Rg)
Element 112: کوپرنیسیم (Cn), Other metal
Element 113: نیهونیم (Nh)
Element 114: فلروویم (Fl)
Element 115: مسکوویم (Mc)
Element 116: لیورموریم (Lv)
Element 117: تنسین (Ts)
Element 118: اوگانسون (Og)


He

نئون
هیدروژنهلیوملیتیم
عدد اتمی (Z)2
گروه۱۸
دورهدوره ۱
بلوکبلوک-s
دسته گاز نجیب
آرایش الکترونی1s2
۲
ویژگی‌های فیزیکی
فاز در STPگاز
نقطه ذوب۰٫۹۵ K ​(۲۷۲٫۲۰− °C, ​۴۵۷٫۹۶− °F) (در ۲٫۵ مگاپاسکال)
نقطه جوش۴٫۲۲۲ K ​(۲۶۸٫۹۲۸− °C, ​−۴۵۲٫۰۷۰ °F)
چگالی (در STP)۰٫۱۷۸۶ g/L
در حالت مایع (at m.p.)۰٫۱۴۵ g/cm3
در حالت مایع (در نقطه جوش)۰٫۱۲۵ g/cm3
نقطه سه‌گانه۲٫۱۷۷ K, ​۵٫۰۴۳ kPa
نقطه بحرانی۵٫۱۹۵۳ K, ۰٫۲۲۷۴۶ MPa
حرارت همجوشی۰٫۰۱۳۸ kJ/mol
آنتالپی تبخیر ۰٫۰۸۲۹ kJ/mol
ظرفیت حرارتی مولی۲۰٫۷۸ J/(mol·K)[۲]
فشار بخار (براساس ITS-90)
فشار (Pa) ۱ ۱۰ ۱۰۰ ۱ K ۱۰ K ۱۰۰ K
در دمای (K) ۱٫۲۳ ۱٫۶۷ ۲٫۴۸ ۴٫۲۱
ویژگی‌های اتمی
عدد اکسایش0
الکترونگاتیویمقیاس پائولینگ: بدون اطلاعات
انرژی یونش
شعاع کووالانسی pm ۲۸
شعاع واندروالسی۱۴۰ pm
Color lines in a spectral range
خط طیف نوری هلیوم
دیگر ویژگی ها
ساختار بلوریhexagonal close-packed (hcp)
Hexagonal close-packed crystal structure for هلیوم
سرعت صوت۹۷۲ m/s
رسانندگی گرمایی۰٫۱۵۱۳ W/(m·K)
رسانش مغناطیسیدیامغناطیس[۳]
پذیرفتاری مغناطیسی۱۰−۶×۱٫۸۸− cm3/mol (۲۹۸ کلوین)[۴]
شماره ثبت سی‌ای‌اس۷۴۴۰-۵۹-۷
تاریخچه
نامگذاریاز واژهٔ یونانی هلیوس به معنای «ایزد خورشید» گرفته شده‌است
کشفژول ژانسن، نورمن لاکیر (۱۸۶۸)
انزوا اولویلیام رمزی، پر تئودر کلیو، نیلز آبراهام لانگلت (۱۸۹۵)
ایزوتوپ‌های هلیوم
ایزوتوپ فراوانی نیمه‌عمر (t۱/۲) حالت فروپاشی محصول
3He ۰٫۰۰۰۲٪ ضریب ایزوتوپ پایدار با ۱ نوترون
4He ۹۹٫۹۹۹۸٪ پایدار با ۲ نوترون
| منابع

هِلیوم یا هلیُم (به انگلیسی: Helium) با نشان شیمیایی He یک عنصر شیمیایی با عدد اتمی ۲ و وزن اتمی ۴٫۰۰۲۶۰۲ است. این عنصر، بی‌بو، بی‌رنگ، بی‌مزه، غیرسمّی، از دیدگاه شیمیایی بی‌اثر و تک اتمی است که در جدول تناوبی در بالای گروه گازهای نجیب جا دارد. دمای ذوب و جوش این ماده در میان دیگر عنصرها بسیار پایین است به همین دلیل در دمای اتاق و البته در بیشتر موارد به صورت گازی است مگر شرایط بسیار ویژه‌ای بر آن گذرانده شود.

هلیوم بعد از هیدروژن دومین عنصر سبک کیهان است و از لحاظ فراوانی هم باز بعد از هیدروژن در جایگاه دوم قرار می‌گیرد گرچه باوجود کاربردهای بسیار مهم و حیاتی که دارد بر روی زمین بسیار کمیاب است. نزدیک به ۲۴٪ از جرم گیتی سهم این عنصر است که این مقدار بیش از ۱۲ برابر ترکیب تمام عنصرهای سنگین است. هلیوم به همان صورت که در خورشید و مشتری یافت می‌شود در جهان پیدا می‌شود و این به دلیل انرژی بستگی (به ازای هر هسته) بسیار بالای هلیوم-۴ نسبت به سه عنصر دیگر پس از آن در جدول تناوبی است. بیشتر هلیوم موجود در گیتی، هلیوم-۴ است و گمان آن می‌رود که در جریان مه بانگ پدید آمده باشد. امروزه با کمک واکنش‌های همجوشی هسته‌ای در ستاره‌ها، گونه‌های تازه‌ای از هلیوم ساخته شده‌است.

واژهٔ هلیوم از واژهٔ یونانی هلیوس به معنای «ایزد خورشید» گرفته شده‌است. زمانی که هنوز هلیوم شناخته نشده بود، ستاره‌شناس فرانسوی ژول ژانسن در جریان خورشیدگرفتگی سال ۱۸۶۸ برای نخستین بار در طیف‌سنجی نور خورشید، خط زرد طیفی هلیوم را دید؛ برای همین، هنگامی که از نخستین کسانی که هلیوم را شناسایی کردند یاد می‌شود نام ژول ژانسن در کنار نام نورمن لاکیر جای می‌گیرد. در جریان همان خورشیدگرفتگی، نورمن لاکیر پیشنهاد کرد این خط زرد می‌تواند به دلیل یک عنصر تازه باشد. دو شیمیدان سوئدی با نام‌های پر تئودر کلیو و نیلز آبراهام لانگلت در سال ۱۸۹۵ این عنصر را شناسایی و اعلام کردند. آن‌ها هلیوم را از سنگ کلویت که معدن اورانیم است بدست آوردند. در سال ۱۹۰۳ منابع بزرگ هلیوم در میدان‌های گازی ایالات متحده پیدا شد که یکی از بزرگترین منابع این گاز است.

یکی از کاربردهای مهم هلیوم در سرماشناسی است. نزدیک به یک-چهارم هلیوم تولیدی در این زمینه بکار می‌رود. ویژگی خنک‌سازی هلیوم به ویژه در خنک کردن آهن‌رباهای ابررسانا مهم است. این آهن‌رباها به صورت تجاری در اسکنرهای ام آر آی کاربرد دارد. کاربرد صنعتی دیگر هلیوم در فشار وارد کردن برای نمونه به عنوان گاز تخلیه‌کننده‌است. همچنین به عنوان هوای محافظ در جوشکاری با قوس الکتریکی، در فرایندهایی مانند کشت بلورها در ساخت قرص‌های سیلیسیم از این گاز بهره برده می‌شود. نزدیک به نیمی از هلیوم تولیدی در این زمینه کاربرد دارد.

یکی دیگر از کاربردهای شناخته شدهٔ هلیوم در ویژگی بالابری در بالون‌ها و کشتی‌های هوایی است.[۵] تنفس حجم اندکی از گاز هلیوم می‌تواند برای چندی در کیفیت و زنگ صدای انسان تأثیر بگذارد. این اثرگذاری تنها از آن هلیوم نیست بلکه هر گازی که چگالی متفاوتی با هوا داشته باشد از این ویژگی برخوردار است. در پژوهش‌های دانشگاهی رفتار دو فاز سیال هلیوم-۴ (هلیومI و هلیومII) در بحث‌های مربوط به مکانیک کوانتوم یا پژوهش دربارهٔ پدیده‌هایی مانند ابررسانایی که با دماهای نزدیک به صفر مطلق در ماده کار می‌کند، مهم است.

هلیوم در هواکُرهٔ زمین بسیار کمیاب است (نزدیک به ۰٫۰۰۰۵۲٪ حجمی) بیشتر هلیومی که در خاک زمین پیدا می‌شود در اثر واپاشی هسته‌ای طبیعی در عنصرهای سنگین پرتوزا مانند اورانیم و توریم پدید آمده‌است؛ به این ترتیب که در اثر واپاشی، ذره‌های بتا از عنصر تابیده شده و هستهٔ هلیوم-۴ بدست آمده‌است. هلیوم بدست آمده از واپاشی به آسانی به صورت فشرده با درصدی نزدیک به ۷٪ حجمی، در دام گاز طبیعی گرفتار می‌شود. سپس می‌توان با روش‌های صنعتی و به صورت تجاری با کاهش دمای آمیختهٔ هلیوم و گاز طبیعی، هلیوم را از دیگر گازها جدا ساخت. این روش تقطیر جزء به جزء نام دارد.

پیشینه

اکتشافات علمی

نخستین نشانهٔ هلیوم در ۱۸ اوت سال ۱۸۶۸ به صورت یک میلهٔ زرد رنگ در طول موج ۵۸۷٫۴۹ نانومتر در طیف‌سنجی فام‌سپهر خورشید دیده شد. این خط زرد رنگ را ستاره‌شناس فرانسوی ژول ژانسن در هنگام یک خورشیدگرفتگی کامل در گونتور هند شناسایی کرد.[۶][۷] نخست گمان برده شد که شاید این خط زرد، سدیم است. در ۲۰ اکتبر همان سال، ستاره‌شناس انگلیسی، نورمن لاکیر یک خط زرد رنگ در طیف‌سنجی نور خورشید پیدا کرد و چون این خط نزدیک به خط‌های شناخته شدهٔ D۱ و D۲ سدیم بود، آن را D۳ خط‌های فرانهوفر نامید.[۸] او حدس زد که این خط باید توسط یک عنصر درون خورشید که در زمین ناشناخته‌است، پدید آمده باشد. لاکیر و شیمیدان انگلیسی ادوارد فرانکلند واژهٔ یونانی ἥλιος (هلیوس) به معنی «خورشید» را برای این عنصر برگزیدند.[۹][۱۰][۱۱]

خط‌های طیفی هلیوم
The cleveite sample from which Ramsay first purified helium.[۱۲]
Sir William Ramsay, the discoverer of terrestrial helium

در ۱۸۸۱، فیزیکدان ایتالیایی، لویجی پالمیری، هنگامی که خط‌های طیفی D۳ گدازههای آتشفشان وزوو را پردازش می‌کرد توانست برای نخستین بار هلیوم را در زمین شناسایی کند.[۱۳]

در ۲۶ مارس ۱۸۹۵ شیمیدان اسکاتلندی ویلیام رمزی توانست، هلیوم کانی کلویت را با کمک اسیدهای معدنی، به دام اندازد. کلویت آمیخته‌ای از اورانیت و دست کم ۱۰٪ عنصرهای خاکی کمیاب است. رمزی در جستجوی آرگون بود اما پس از جداسازی نیتروژن و اکسیژن از گاز آزاد شده با کمک اسید سولفوریک، در طیف‌سنجی خود به یک خط زرد روشن رسید که با خط D۳ دیده شده در طیف‌سنجی خورشید هماهنگ بود.[۸][۱۴][۱۵][۱۶] این نمونه‌ها از سوی لاکیر و فیزیکدان بریتانیایی، ویلیام کروکز به عنوان هلیوم شناسایی شد. در همان سال به صورت مستقل، دو شیمیدان با نام‌های پر تئودر کلیو و نیلز آبراهام لانگلت، در اوپسالای سوئد توانستند هلیوم کلویت را به دام اندازند. آن‌ها به اندازهٔ کافی این گاز را جمع‌آوری کردند که بشود وزن اتمی آن را دقیق بدست آورد.[۷][۱۷][۱۸] دانشمند آمریکایی زمین‌شیمی، ویلیام فرانسیس هیله‌براند پیش از دست‌آورد رمزی، هنگام طیف‌سنجی نمونه کانی‌های اورانیت دریافته بود که خط‌های طیفی غیرمعمولی در نتیجه‌هایش پیدا می‌شود. اما هیلبرند گمان کرد که این خط‌های طیفی مربوط به نیتروژن است. نامهٔ تبریک او به رمزی چیزی نزدیک به یک کشف علمی در نظر گرفته می‌شود.[۱۹]

در سال ۱۹۰۷ ارنست رادرفورد و توماس رویدز نشان دادند که ذره‌های آلفا همان هستهٔ هلیوم‌اند. آن‌ها برای این کار، اجازه دادند تا ذره‌ها در دیوار شیشه‌ای نازک یک لولهٔ تهی نفوذ کند. سپس لوله را تخلیه کردند تا گاز تازهٔ جمع شده در آن را طیف‌سنجی کنند. در سال ۱۹۰۸ یک فیزیکدان هلندی به نام هایک کامرلینگ اونس توانست دمای هلیوم را به زیر یک کلوین برساند و آن را مایع کند.[۲۰] او در ادامه تلاش کرد تا دمای هلیوم را پایین‌تر آورد و آن را جامد کند اما کامیاب نشد. دلیل ناکامی او این بود که هلیوم دارای نقطهٔ سه‌گانه نیست یعنی دارای دمایی نیست که در آن حالت‌های جامد، مایع و گازی در تعادل باشند. پس از چند سال، در ۱۹۲۶ ویلم هندریک کیزوم که دانشجوی اونس بود توانست 1 cm۳ هلیوم را با افزودن فشار، جامد کند.[۲۱]

در ۱۹۳۸، فیزیکدان روس، پیوتر کاپیتسا دریافت که در دمای نزدیک به صفر مطلق، هلیوم-۴ تقریباً هیچ گرانروی ندارد، امروزه به این پدیده ابرروانروی می‌گوییم.[۲۲] این پدیده با چگالش بوز-اینشتین مرتبط است. در ۱۹۷۲ همین پدیده در هلیوم-۳ هم دیده شد، اما این بار در دمایی بسیار نزدیک تر به صفر مطلق. دانشمندان آمریکایی داگلاس دین اشرفت، دیوید موریس لی و رابرت کلمن ریچاردسون کسانی بودند که به ابرروانروی در هلیوم-۳ پی بردند. گمان آن می‌رود که این پدیده در هلیوم-۳ به جفت فرمیونها در ساخت بوزون، در برابر جفت‌های کوپر الکترون‌ها که پدیدآورندهٔ ابررسانایی است، ارتباط داشته باشد.[۲۳]

استخراج و استفاده

بعد از یک عملیات حفاری نفت در سال ۱۹۰۳ در دکستر، کانزاس، فوران گازی مشاهده شد که فاقد قابلیت اشتعال بود. زمین‌شناسی به‌نام اراسموس هاورث[a] نمونه‌هایی از این گاز تهیه کرد و آنها را به دانشگاه کانزاس برد و با کمک شیمی‌دانان‌هایی به‌نام همیلتون کادی[b] و دیوید مک‌فارلاند[c] پی برد که گاز مورد نظر مخلوطی از ۷۲ درصد نیتروژن، ۱۵ درصد متان (گازی که در صورت وجود اکسیژن کافی، قابلیت اشتعال دارد)، ۱ درصد هیدروژن و ۱۲ درصد گازی غیرقابل شناسایی است[۷][۲۴]. با انجام تجزیه و تحلیل‌های بیشتر، کادی و مک‌فارلاند کشف کردند که ۱/۸۴ درصد از مخلوط گازی جمع آوری شده، متشکل از هلیوم است.[۲۵][۲۶] این کشف نشان داد که با وجود فراوانی بسیار اندک هلیوم بر روی زمین، هلیوم می‌تواند در مقادیر زیادی در زیر مناطق مربوط به دشت بزرگ (آمریکا) وجود داشته باشد و در زمان استخراج گاز طبیعی به‌صورت محصول جانبی به‌دست بیاید.[۲۷]

این کشف موجب شد که ایالات متحده آمریکا به بزرگ‌ترین تامین کننده هلیوم دنیا تبدیل شود. بعد از پیشنهاد ریچارد ترلفال[d]، نیروی دریایی ایالات متحده، سه کارخانه آزمایشی هلیوم را در طول جنگ جهانی اول راه‌اندازی کرد. هدف از آغاز چنین پروژه‌ای تامین گازی غیرقابل اشتعال و سبک‌تر از هوا برای بالن‌های هوایی مورد استفاده در جنگ[e] بود. مقداری از این هلیوم تولید شده برای پرکردن اولین کشتی هوایی پرشده با هلیوم، کشتی هوایی بادکنکی غیرصلب کلاس سی، مورد استفاده قرار گرفت. اولین پرواز این بالن هوایی در تاریخ ۱ دسامبر ۱۹۲۱، از همپتون رودز[f] در ویرجینیا به پایگاه نیروی هوایی بولینگ[g] در واشینگتن، دی.سی. بود.[۲۸] حدود دو سال بعد، پرواز اولین کشتی هوایی بادکنکی صلب و پرشده با هلیوم که توسط شرکت هواپیماسازی نیروی دریایی ساخته شده بود و نامش یواس‌اس[h] بود در سپتامبر ۱۹۲۳ انجام شد.

اگرچه فرایند استخراج با استفاده از مایع‌سازی گاز در دمای پایین در آن زمان حساس در جنگ جهانی اول هنوز توسعه نیافته بود، با‌این‌حال تولید هلیوم ادامه داشت. هلیوم در ابتدا به‌عنوان گازی بالابرنده[i][توضیح ۱] در کشتی‌های هوایی مورد استفاده قرار گرفت. در طول جنگ جهانی دوم، تقاضا برای هلیوم به‌عنوان گاز بالابرنده و همچنین برای جوشکاری قوس پوشش‌دار[j] افزایش یافت. طیف سنجی جرمی هلیوم دارای نقشی حیاتی در تولید بمب اتمی در پروژه منهتن داشت.[۲۹]

دولت ایالات متحده، محلی را برای ذخیره‌ استراتژیک هلیوم با عنوان ذخیره هلیوم ملی[k] را با هدف تامین گاز مورد نیاز برای کشتی‌‌های هوایی نظامی در زمان جنگ و کشتی‌های هوایی تفریحی در زمان صلح در سال ۱۹۲۵ در آماریلو، تگزاس احداث کرد.[۸] به‌خاطر مصوبه کنگره موسوم به مصوبه همیلتون ۱۹۲۵[l] که صادرات هلیوم کمیاب را در آن زمان که آمریکا تنها تولید کننده هلیوم بود، ممنوع می‌کرد و همچنین قیمت بالای گاز، کشتی هیندنبورگ ال‌زد ۱۲۹ مانند سایر کشتی‌های هوایی آلمان زپلین، مجبور به استفاده از هیدروژن به‌جای هلیوم شدند. بازار هلیوم پس از جنگ جهانی دوم دچار رکود شد اما ذخایر هلیوم در دهه ۱۹۵۰ میلادی توسعه داده شد تا از تامین هلیوم به‌عنوان یک خنک کننده برای تولید اکسیژن و هیدروژن مورد نیاز برای سوخت موشک (و همچنین مورد استفاده برای سایر اهداف) در طول دوران رقابت فضایی و جنگ سرد اطمینان حاصل شود. میزان هلیوم مورد استفاده در آمریکا در سال ۱۹۶۵ بیش از هشت برابر بیشینه مصرف در زمان جنگ بود.[۳۰]

پس از اصلاح مصوبه کنگره در مورد هلیوم در سال ۱۹۶۰ (قانون عمومی ۸۶-۷۷۷)، اداره معادن ایالات متحده آمریکا[m] طرح تاسیس پنج کارخانه خصوصی برای بازیابی هلیوم از منابع گاز طبیعی را تصویب کرد. براساس این برنامه حفظ منابع هلیوم، اداره معادن یک خط لوله به طول ۴۲۵ مایل (۶۸۴ کیلومتر) به‌منظور متصل کردن کارخانه‌های دولتی میدان گازی کلیف‌ساید[n] از شهر بوشتون، کانزاس تا آماریلو، تگزاس احداث کرد. مخلوط هلیوم-نیتروژن تزریق شد و میدان گازی کلیف‌ساید ذخیره شد تا زمان نیاز به هلیوم، این مخلوط تحت خاص سازی بیشتر قرار بگیرد.[۳۱]

تا سال ۱۹۹۵، یک میلیارد متر مکعب از گاز ذخیره شده بود با این‌حال مجموعه دارای ۱/۴ میلیارد دلار بدهی بود. این موجب شد که کنگره ایالات متحده آمریکا در سال ۱۹۹۶ اقدام به متوقف کردن طرح ذخیره هلیوم نمود.[۷][۳۲] مصوبه خصوصی‌سازی هلیوم سال ۱۹۹۶ (قانون عمومی ۱۰۴-۲۷۳)[۳۳]، وزارت کشور ایالات متحده آمریکا را بر آن داشت که ذخایر هلیوم را تخلیه نماید و فروش از سال ۲۰۰۵ آغاز شد.[۳۴]

هلیوم تولید شده بین سال‌های ۱۹۳۰ تا ۱۹۴۵ دارای خلوص حدود ۹۸/۳ درصد بود (۲ درصد نیتروژن) که این میزان خلوص برای کشتی‌های هوایی کافی بود. در سال ۱۹۴۵، یک مقدار کمی از هلیوم ۹۹/۹ درصد برای استفاده در جوشکاری تولید شد. تا سال ۱۹۴۹، دسترسی به مقادیر تجاری از هلیوم با خلوص ۹۹/۹۵ درصد از نوع درجه آ در ممکن بود.[۳۵]

برای سال‌های زیادی، ایالات متحده آمریکا،بیش از ۹۰ درصد مقادیر هلیوم دارای قابلیت استفاده به‌صورت تجاری در دنیا را تولید کرد در حالی‌که درصد باقی مانده توسط کارخانه‌های موجود در کانادا، هلند، روسیه و دیگر کشورها ۱۰ تولید شد. در اواسط دهه ۱۹۹۰ میلادی، یک کارخانه جدید در ارزیو در الجزایر، تولید بیش از ۱۷ میلیون متر مکعب (۶۰۰ میلیون فوت مکعب) را آغاز کرد که این مقدار برای تامین تمام نیاز اروپا کافی بود. در همین‌حال، تا سال ۲۰۰۰، مصرف هلیوم درون ایالات متحده آمریکا، به ۱۵ میلیون کیلوگرم در سال افزایش یافت.[۳۶] بین سال‌های ۲۰۰۴-۲۰۰۶، کارخانه‌های بیش‌تری در راس لفان، قطر و سکیکده، الجزایر ساخته شد. الجزایر به‌سرعت به دومین تولید کننده هلیوم دنیا تبدیل شد.[۳۷] در این زمان، هم مصرف هلیوم و هم هزینه تولید هلیوم افزایش یافت.[۳۸] از سال ۲۰۰۲ تا ۲۰۰۷، قیمت هلیوم دو برابر شد.[۳۹]

تا سال ۲۰۱۲، ذخیره ملی هلیوم ایالات متحده آمریکا، برابر با ۳۰ درصد کل هلیوم دنیا بوده‌است.[۴۰] انتظار می‌رفت که این ذخیره هلیوم، تا سال ۲۰۱۸ به اتمام برسد،[۴۰] با این‌حال، یک لایحه پیشنهادی در سنای ایالات متحده آمریکا، اجازه ادامه فروش هلیوم موجود در ذخیره ملی آمریکا را صادر کرد. دیگر ذخایر بزرگ هلیوم آمریکا در میدان گازی هیوگوتون[o] در کانزاس، تگزاس و اوکلاهاما قرار داشتند. کارخانه‌های جدی هلیوم بر اساس برنامه قرار بودهاست که در سال ۲۰۱۲ در قطر، روسیه ایالت وایومینگ آمریکا شروع به کار کنند، اما انتظار نمی‌رفت‌ که این کارخانه‌ها به کمبود هلیوم کمک زیادی کنند.[۴۰]

در سال ۲۰۱۳، قطر شروع به سخت بزرگ‌ترین واحد هلیوم دنیا نمود،[۴۱] با‌این‌حال بحران دیپلماتیک قطر در سال ۲۰۱۷، به‌طور شدیدی تولید هلیوم در این کشور را تحت تاثیر قرار داد.[۴۲] غالبا گفته می‌شود که پس از سالها کمبود هلیوم، در سال ۲۰۱۴ میزان تولید هلیوم بیشتر از تقاضای آن بوده‌است.[۴۳] بازار سهام بورس نزدک در سال ۲۰۱۵ گزارش کرد که برای شرکتی مانند مواد شیمیایی و محصولات هوایی[p] که شرکتی بین‌المللی و فروشنده گاز با کاربردهای صنعتی، میزان هلیوم به دلیل محدودیت عرضه مواد اولیه، تحت فشار اقتصادی قرار دارد.[۴۴]

ویژگی

اتم هلیوم

اتم هلیم. در تصویر به‌نمایش درآمده، رنگ صورتی نمایان‌گر هسته اتم است و رنگ سیاه اشاره به توزیع ابر الکترونی دارد. تصویر کوچک موجود در بالای سمت راست، تصویر بزرگ‌نمایی شده از هسته اتم هلیوم-۴ است، هسته‌ای که دارای تقارن کروی و دارای ظاهری شبیه به ابر الکترونی است. البته برای هسته‌های سنگین‌تر که دارای ذره‌های هسته‌ای بیش‌تری هستند، همواره چنین شباهتی وجود ندارد.

هلیوم در مکانیک کوانتومی

از نقطه نظر مکانیک کوانتومی، هلیوم دومین اتم ساده (پس از هیدروژن) برای ساخت مدل کوانتومی است. هلیوم متشکل از دو الکترون در حال چرخش در اوربیتالهای اتمی است که حول یک هسته دارای ‌دو پروتون و (معمولا) دو نوترون قرار دارند. در مکانیک نیوتونی، برای سیستم‌های بیش از دو ذره، امکان یافتن آنالیز دقیق ریاضی وجود ندارد (برای این موضوع به مسئله سه جسم رجوع کنید) و هلیوم نیز با داشن دو الکترون و یک هسته یک سیستم سه‌ذره‌ای محسوب می‌شود و در نتیجه امکان انجام محاسبات ریاضی با کمک مکانیک نیوتونی برای آن وجود ندارد و بنابراین، روش‌های عددی ریاضی برای آنالیز آن نیاز است. روش‌های محاسباتی متداول در شیمی که برای ایجاد تصویری کوانتومی از الکترون استفاده می‌شوند دارای خطایی در حدود کمتر از ۲ درصد در برخی از مراحل محاسبه نسبت به مقادیر واقعی هستند.[۴۵] چنین مدل‌هایی نشان می‌دهند که هر الکترون در اتم هلیوم بخشی از هسته را پوشش می‌دهند که در نتیجه چنین پوششی، بار موثر هسته‌ای که هر الکترون با آن مواجه است حدود ۱٫۶۹ واحد است و نه ۲ واحد، که به‌طور کلاسیک از یک هسته نپوشیده هلیوم انتظار می‌رود.

پایداری مربوط به هسته هلیوم-۴ و قشر الکترونی

هسته اتم هلیوم-۴ معادل یک ذره آلفا است. آزمایش‌های انرژی بالای تفرق الکترونی[q] نشان می‌دهد که بار هسته همانند چگالی ابر الکترون هرچه از مرکز اتم دور شویم کمتر می‌شود. این تقارن در توزیع بار نمایان‌گر یکی از اصول زیربنایی فیزیک است، اصلی که می‌گوید، دو نوترون و دو پروتون موجود در هسته اتم هلیوم همانند دو الکترونی که به دور هسته می‌چرخند، از قواعد یکسان کوانتومی پیروی می‌کنند (اگرچه نوع پتانسیل پیوندی هسته‌ای برای ذره‌های هسته‌ای متفاوت است)، به‌طوری که همه این فرمیون‌ها به‌شکل کامل اوربیتال‌های 1s را اشغال می‌کنند و هیچ کدام دارای ممان زاویه‌ای اوربیتالی نیستند، چراکه هریک اسپین ذاتی دیگری را خنثی می‌کنند. افزودن به هرکدام از این ذره‌ها، نیازمند ممان زاویه‌ای است و در نتیجه آن انرژی کمتری آزاد می‌کند (در حقیقت، هیچ هسته‌ای با پنج ذره هسته‌ای پایدار نیست). این آرایش از لحاظ انرژی برای همه این ذره‌ها بسیار پایدار است و این پایداری عامل حقایق بسیار مهمی در مورد ذات و طبیعت هلیوم است.

برای مثال پایداری و انرژی کم ابر الکترونی در هلیوم عامل بی‌میلی و واکنش پذیری بسیار کم این اتم است. همچنین، عدم برهم‌کنش اتم‌های هلیوم با یک‌دیگر، موجب می‌شود که هلیوم دارای پایین‌ترین نقطه ذوب و جوش در بین تمامی عناصر باشد.

به‌صورت مشابهی، پایداری ویژه ذره‌های هسته‌ای هلیوم-۴ از لحاظ انرژی، موجب ایجاد اثرات مشابهی می‌شود که در نتیجه آن، تولید هلیوم-۴ بر اثر واکنش‌های اتمی در فرایندهای هم‌جوشی و یا شکافت ذره‌های سنگین را تسهیل می‌شود. برخی از اتم‌های پایدار هلیوم-۳ (۲ پروتون و ۱ نوترون)، در واکنش هم‌جوشی هیدروژن تولید می‌شوند، با ‌این‌حال، مقدار تولید شده در مقایسه با هلیوم-۴ که محصول بسیار مطلوب‌تری است، بسیار کم است و کسر بسیار کوچکی را شامل می‌شود.

انرژی بستگی برای هر ذره‌های هسته‌ای ایزوتوپ‌های متداول. انرژی بستگی برای هر ذره هلیوم-۴ به‌صورت قابل ملاحظه‌ای بزرگ‌تر از تمامی هسته‌های نزدیک است.

پایداری غیرمعمولی هسته هلیوم-۴ از لحاظ کیهان‌شناسی دارای اهمیت است، چراکه این پایداری، این حقیقت را توضیح می‌دهد که در چند دقیقه اول پس از مهبانگ، سوپ اولیه کیهانی مملو از پروتون‌ها و نوترون‌ها با نسبت ۶ به ۱، تا دمایی سرد شد که امکان تشکیل پیوندهای هسته‌ای فراهم شد و تقریبا تمامی ترکیب‌های اتمی اولیه مصرف شدند تا هسته هلیوم-۴ تشکیل شود. قدرت اتصال اجزای هلیوم-۴ و میزان پایداری کلی آن به قدری زیاد بود که موجب شد تقریبا تمامی نوترون‌های آزاد ظرف همان چند دقیقه ابتدایی و قبل از این‌که بتوانند دچار فروپاشی بتا شوند، مصرف شوند. علاوه‌بر این، مقدار کمی از نوترون‌های باقی مانده در تولید اتم‌های سنگین‌تر مانند لیتیم، بریلیم یا بور مصرف شدند. انرژی بستگی هسته هلیوم-۴ برای هر ذره هسته‌ای قوی‌تر از هرکدام از این عناصر سنگین‌تر تولید شده است (برای مقایسه به هسته‌زایی و انرژی بستگی رجوع کنید) که این پایداری موجب شد زمانی که اتم‌های هلیوم در دقایق اولیه تشکیل کیهان تشکیل شدند، انرژی کافی برای هم‌جوشی اتم‌های هلیوم و ساخته شدن اتم‌های سنگین‌تر مانند لیتیم، بریلیم و بور در دسترس قرار نداشته باشد. انجام هم‌جوشی هسته‌ای و تبدیل هلیوم به عنصری سنگین‌تر مانند کربن که در مقایسه با هلیوم دارای انرژی کمتری به‌ازای هر ذره هسته‌ای است، واکنشی نامطلوب و نیازمند انرژی زیاد است. با این‌حال، به‌علت عدم وجود عناصر واسطه، این فرایند نیازمند این است که سه هسته هلیوم تقریبا به‌طور همزمان با یکدیگر برخورد کنند (فرایند آلفا سه‌گانه). در دقایق اولیه تشکیل کیهان و قبل از این که دما و فشار کیهان بر اثر انبساط به‌حدی کاهش یابد که دیگر امکان تبدیل هلیوم به کربن وجود نداشته باشد، زمان زیادی برای شکل گیری مقدار زیادی کربن وجود نداشته‌است. این موضوع موجب شد که نسبت هیدروژن به هلیوم در اوایل شکل گیری کیهان عددی بسیار نزدیک باشد، همان عددی که امروزه نیز مشاهده می‌شود (مجموع جرم هیدروژن سه برابر مجموع جرم هلیوم-۴ موجود در کیهان است.).

تمام عناصر سنگین‌تر (از جمله آنهایی که برای تشکیل سیاره‌های سنگی مانند زمین و تشکیل حیات کربنی لازم هستند) پس از مهبانگ در ستارگان ساخته می‌شوند، مکانی که میزان هلیوم، دما و فشار کافی وجود دارد. تمامی عناصر دیگر به‌جز هیدروژن و هلیوم، امروزه مجموعا تنها ۲ درصد از کل جرم اتمی مواد موجود در کیهان را تشکیل می‌دهند هلیوم-۴ تشکیل دهنده ۲۳ درصد از جرم ماده معمولی (به‌جز هیدروژن،) موجود در کیهان است.

حالت گاز و پلاسما

لولهٔ هلیوم که به شکل نماد شیمیایی این عنصر درآورده شده‌است.

هلیوم، پس از نئون، کم واکنش‌ترین گاز نجیب و البته دومین عنصر کم واکنش پذیر در میان همهٔ عنصرها است.[۴۶] این گاز کم واکنش، در همهٔ شرایط استاندارد به صورت تک‌اتمی باقی می‌ماند. هلیوم به دلیل داشتن جرم مولی نسبتاً پایین، دارای رسانش گرمایی و ظرفیت گرمایی بالایی است و سرعت صدا هم در آن، در حالت گازی، از هر گاز دیگری به جز هیدروژن، بالاتر است. همچنین به دلیل همانند و به دلیل کوچکی اندازهٔ اتم هلیوم، نرخ پخش در اجسام جامد، سه برابر بیشتر از نرخ پخش هوا و برابر با ۶۵٪ نرخ پخش هیدروژن است.[۸]

هلیوم نسبت به دیگر گازهای تک اتمی از همه کمتر در آب حل می‌شود.[۴۷] و نسبت به دیگر گازها، می‌توان گفت یکی از کم حل شدنی‌ترین گازها است؛ ضریب حلالیت این گاز 0.70797 x۲/۱۰−۵ است که از CF۴ و SF۶ و C۴F۸ که به ترتیب دارای میزان حلالیت‌های ۰٫۳۸۰۲ و ۰٫۴۳۹۴ و 0.2372 x۲/۱۰−۵ اند، بیشتر است (مول).[۴۸] ضریب شکست هلیوم بیش از هر گاز دیگری به یک نزدیک است.[۴۹] ضریب ژول-تامسون هلیوم در دمای معمولی پیرامونش، منفی است به این معنی که اگر اجازه دهیم این گاز آزادانه افزایش حجم پیدا کند، گرم تر می‌شود. اما اگر هلیوم در زیر دمای واژگون ژول-تامسون (در حدود ۳۲ تا ۵۰ کلوین در یک اتمسفر) باشد، اگر اجازه داشته باشد آزادانه افزایش حجم پیدا کند، دمای آن پایین می‌آید.[۸] با توجه به این ویژگی اگر دمای هلیوم از این دما پایین‌تر آماده باشد، می‌توان با افزایش حجم، آن را خنک و مایع کرد.

بیشتر هلیوم فرازمینی (بیرون از کرهٔ زمین) در حالت پلاسما یافت می‌شود. در این حالت، ویژگی‌های ماده بسیار متفاوت از ویژگی‌های حالت اتمی آن است. در حالت پلاسما، الکترون‌ها دیگر در بند هسته نیستند در نتیجه دارای رسانایی الکتریکی بسیار بالایی خواهد بود حتی اگر تنها بخشی از آن یونی شده باشد. ذره‌های باردار به شدت از میدان مغناطیسی و الکتریکی پیرامون تأثیر می‌پذیرند. برای نمونه در بادهای خورشیدی با هیدروژن یونی، ذره‌ها با مغناط‌کرهٔ زمین اندرکنش پیدا می‌کند و باعث پدید آمدن شفق قطبی و جریان بیرکلند می‌شود.[۵۰]

هلیوم مایع

هلیوم مایع شده. هلیوم به‌تصویر کشیده شده نه تنها مایع است بلکه تا دمای ابرشارگی سرد شده‌است. روان شدن هلیوم از زیر ظرف شیشه‌ای به تصویر کشیده شده، نشان‌دهنده فرار خودبخودی هلیوم تا زمان خالی شدن ظرف است. انرژی پیش‌برنده این اتفاق، از انرژی پتاسیل هلیوم در حال سقوط تامین می‌شود.

برخلاف دیگر عنصرها در فشار معمولی، هلیوم تا دمای صفر مطلق، همچنان مایع باقی می‌ماند. دلیل این پدیده را می‌توان با مکانیک کوانتوم توضیح داد: به ویژه انرژی نقطهٔ صفر این سامانه بسیار بالا است برای اینکه بخواهد اجازه دهد هلیوم جامد شود. هلیوم برای جامد شدن باید به دمایی میان ۱ تا ۱٫۵ کلوین (۴۵۷- فارنهایت یا ۲۷۲- سلسیوس) و فشاری نزدیک به ۲٫۵ مگاپاسکال برسد.[۵۱] معمولاً شناسایی هلیوم جامد از مایع کمی دشوار است چون ضریب شکست هر دو بسیار نزدیک است. هلیوم در حالت جامد دارای نقطهٔ ذوب دقیق است، ساختار بلوری دارد و بسیار تراکم پذیر است تا حدی که با وارد کردن فشار بر آن می‌توان تا بیش از ۳۰ درصد حجم آن را کاهش داد.[۵۲] ضریب کشسانی حجمی آن نزدیک به ۲۷ مگاپاسکال است[۵۳] که تقریباً ۱۰۰ برابر بیشتر از آب تراکم پذیر است. چگالی هلیوم جامد در دمای ۱٫۱ کلوین و فشار ۶۶ اتمسفر، ۰٫۲۱۴ ± ۰٫۰۰۶ g/cm۳ و در دمای صفر کلوین و فشار ۲۵ بار (۲٫۵ مگاپاسکال)، ۰٫۱۸۷ ± ۰٫۰۰۹ g/cm۳ است.[۵۴]

هلیوم I

ایزوتوپ هلیوم-۴ به‌صورت یک مایع بی‌رنگ در زیر دمای نقطه جوش در ۴٫۲۲ درجه کلوین و بالای نقطه لاندا در دمای ۲٫۱۷۶۸ درجه کلوین وجود دارد که به آن هلیوم-۱ گفته می‌شود.[۸] همانند دیگر مایعات سرمازا[r]، هلیوم-۱ نیز زمانی که گرم شود، به جوش می‌آید و زمانی دمایش کاهش پیدا کند، دچار انقباض می‌شود. در زیر نقطه لاندا، با این‌حال، هلیوم نمی‌جوشد و هرچه دما کاهش پیدا کند، منبسط می‌شود.

هلیوم I دارای یک ضریب شکست برابر با ۱٫۰۲۶ است که موجب می‌شود سطح آن به‌قدری سخت شود که شناوری یونولیت بر روی آن را دیده شود و اغلب از این روش، به‌عنوان روشی برای پیدا کردن سطح هلیوم-۱ به‌کار می‌رود.[۸] هلیوم I که مایعی بی‌رنگ است، گرا‌ن‌روی آن در گستره دمایی ۰ تا ۴ درجه کلوین بسیار کم و در حدود ۰٫۱۴۵ تا ۰٫۱۲۵ گرم بر میلی‌لیتر است،[۵۵] که این مقدار، یک چهارم مقداری است که توسط فیزیک کلاسیک پیش‌بینی می‌شود.[۸] برای توضیح این خاصیت هلیوم I، به مکانیک کوانتومی نیاز است و در نتیجه هر دو حالت هلیوم مایع شناخته شده (هلیوم I و هلیوم II)، مایعات کوانتومی نامیده می‌شوند، به این معنی که آنها در سطح ماکروسکوپی، خواص اتمی از خود نشان می‌دهند. این موضوع ممکن است به‌خاطر نزدیکی بیش از حد نقطه جوش هلیوم به صفر مطلق باشد، که موجب می‌شود جنبش تصادفی مولکولی نتواند بر روی خاص اتمی سایه افکند و مانع از بروز آن‌ها شود.[۸]

هلیوم II

برخلاف مایعات معمولی، هلیوم II، در امتداد سطوح می‌خزد تا به یک تراز یکسان در تمام سطح خود دست پیدا کند. پس از زمان کوتاهی، تراز مایع در هردو سمت محفظه، برابر می‌شود. فیلم رولین همچنین بخش داخلی محفظه بزرگ‌تر را پوشش می‌دهد. اگر محفظه بسته نباشد، هلیوم II از محفظه به بیرون فرار می‌کند.

هلیوم مایع در دمای پایین‌تر از نقطه لاندا (که هلیوم II نامیده می‌شود)، رفتار بسیار عجیب و غیرمعمولی از خود نشان می‌دهد. به‌علت هدایت گرمایی بالا، زمانی‌که به نقطه جوش می‌رسد، به‌جای این که شروع به جوشیدن و تولید حباب کند، مستقیما از سطح خود تبخیر می‌شود. هلیوم-۳، دارای یک فاز ابرشارگی اما فقط در دماهای خیلی کمتر است، در نتیجه، اطلاعات کمی در مورد خواص ایزوتوپ شناخته شده‌است.[۸]

هلیوم II یک ابرشاره است، حالتی از ماده در مکانیک کوانتومی (برای اطلاعات بیش‌تر به پدیده‌های کوانتومی در مقیاس ماکروسکوپی رجوع کنید.) که دارای خواص غیرمعمول و عجیبی است. به‌عنوان مثال زمانی که درون یک لوله موئین به ضخامت ۷-۱۰ تا ۸-۱۰ جاری می‌شود، هیچ میزان گران‌روی قابل اندازه‌گیری از خود نشان نمی‌دهد.[۷] با این‌حال، موقعی‌که اندازه‌گیری گران‌روی هلیوم قرار گرفته میان دو دیسک متحرک انجام می‌شود، مقدار گران‌روی به‌دست آمده با مقدار گران‌روی به‌دست آمده برای هلیوم گازی، قابل مقایسه است. تئوری با استفاده از مدل دوجریانی[s] برای هلیوم II این پدیده را توضیح می‌دهد. در این مدل، در نظر گرفته می‌شود که هلیوم مایع در زیر نقطه لاندا دارای یک نسبتی از اتم‌های هلیوم در حالت پایه است که ابرشاره هستند و دقیقا با گران‌روی صفر جریان پیدا می‌کنند و همچنین دارای یک نسبتی از اتم‌های هلیوم در حالت برانگیخته است که مانند یک سیال معمولی رفتار می‌کنند.[۵۶]

در اثر چشمه[t][توضیح ۲]، محفظه‌ای ساخته می‌شود که به یک مخزن هلیوم II متصل است و از طریق یک دیسک تف‌جوش شده[u] که هلیوم ابرشاره به‌آسانی از آن چکیده می‌شود، اما هلیوم غیرشاره نمی‌تواند از آن عبور کند. اگر قسمت داخلی محفظه حرارت داده شود، هلیوم ابرشاره به هلیوم غیرابرشاره تبدیل می‌شود. به‌منظور حفظ کسر تعادل هلیوم ابرشاره، هلیوم ابرشاره از محفظه عبور داده می‌شود و فشار افزایش داده می‌شود که موجب ایجاد یک چشمه به سمت بیرون محفظه نگهدارنده می‌شود.[۵۷]

هدایت گرمایی هلیوم II بیشتر از هر نوع ماده شناخته شده دیگری است، به‌طوری که مقدار به یک میلیون برابر هدایت گرمایی هلیوم I و چندصد برابر فلزی مانند مس می‌رسد.[۸] این ویژگی به این خاطر رخ می‌دهد که هدایت گرمایی از طریق سازوکارهای کوانتومی انجام می‌شود. اغلب موادی که هادی خوب گرما هستند، دارای یک نوار ظرفیت از الکترون‌های آزاد هستند که به انتقال گرما کمک می‌کنند. هلیوم II فاقد چنین لایه ظرفیتی است، اما با این‌حال، گرما را به‌خوبی هدایت می‌کند. جریان گرما از معادله‌ای پیروی می‌کند که مشابه معادله موجی است که برای توصیف نحوه انتشار صوت در هوا استفاده می‌شود. زمانی که گرما آغاز می‌شود، با سرعتی برابر با ۲۰ متر ثانیه در دمای ۱٫۸ کلوین در هلیوم II منتقل می‌شود، همانند انتقال امواج در پدیده‌ای معروف به‌نام موج دوم.[۸][v][توضیح ۳]

هلیوم II رفتار و خواص عجیبی از خود بروز می‌دهد. به‌عنوان مثال زمانی‌که سطح هلیوم II از تراز آن پیشی بگیرد، هلیوم II، برخلاف نیروی جاذبه وارده به نمونه، در امتداد سطح حرکت می‌کند. چنان‌چه ظرف نمونه روباز باشد، هلیوم II به‌شکل عجیبی از کناره‌ها از ظرف خارج می‌شود تا این که خود را به نواحی گرم‌تر برساند و در آن‌جا شروع به تبخیر شدن می‌کند. نمونه هلیم II فارغ از سطح ماده، در یک فیلم دارای ضخامت ۳۰ نانومتری حرکت می‌کند. به این فیلم، اصطلاحا فیلم رولین[w] گفته می‌شود و نام آن به افتخار برنارد وی. رولین[x] گذاشته شده‌است که برای اولین بار این خصیصه را توصیف کرده‌است.[۸][۵۸][۵۹] درنتیجه این رفتار عجیب و غریب، هلیوم II قادر است تا به سرعت از طریق یک روزنه‌های کوچک تراوش کند و برهمین مبنا، نگهداری هلیوم مایع بسیار دشوار است. اگر محفظه‌های نگهداری هلیوم با دقت بالایی ساخته نشوند و دارای روزنه حتی در ابعاد کوچک باشند، هلیوم می‌تواند خود را از طریق آن‌ها خارج کند تا سطوح گرم‌تر برسد و در ان‌جا تبخیر شود.امواج منتشر شونده در طول فیلم رولینگ از همان معادله‌ای که برای توصیف امواج گرانشی در آب کم عمق به‌کار می‌رود، تبعیت می‌کنند، اما برخلاف جاذبه، نیرویی که در اینجا عامل پیش‌برنده ماجرا است، نیروی وان‌دروالسی است.[۶۰] این امواج به صوت سوم[y] معروف هستند.[۶۱]

ایزوتوپ‌ها

تا کنون ۸ ایزوتوپ برای هلیوم پیدا شده‌است؛ که از میان آن‌ها هلیوم-۳ و هلیوم-۴ تنها ایزوتوپ‌های پایدار آن‌اند. در هواکرهٔ زمین در برابر هر یک اتم هلیوم-۳ یک میلیون هلیوم-۴ وجود دارد.[۷] برخلاف بیشتر عنصرها، فراوانی ایزوتوپ‌های هلیوم بسته به منبع تولید و فرایند پدیداری شان بسیار متفاوت است. فراوان‌ترین ایزوتوپ آن، هلیوم-۴ در زمین از راه واپاشی آلفای عنصرهای پرتوزای سنگین تر تولید می‌شود. پرتوهای آلفای تابیده شده همگی هسته‌های یونیزه شدهٔ هلیوم-۴اند. هلیوم-۴ به طرز غیرمعمولی هستهٔ پایداری دارد چون ذره‌های هسته‌ای آن از آرایش الکترونی پایداری برخوردارند. این ایزوتوپ‌ها در جریان هسته‌زایی مهبانگ به فراوانی تولید شدند.

هلیوم-۳ به مقدار بسیار ناچیز یافت می‌شود که بیشتر آن از هنگامهٔ ساخت زمین به جای مانده. گاهی هم هلیوم گیر افتاده در گرد و غبار کیهانی هم وارد زمین شده‌است.[۶۲] همچنین در اثر واپاشی بتای تریتیوم هم اندکی هلیوم-۳ تولید می‌شود.[۶۳] در سنگ‌های پوستهٔ زمین ایزوتوپ‌هایی از هلیوم پیدا می‌شود که نسبت یک به ده دارد با توجه به این نسبت‌ها می‌توان دربارهٔ منشأ سنگ‌ها و ساختار گوشتهٔ زمین پژوهش کرد.[۶۲] هلیوم بیش از همه به عنوان محصول واکنش‌های همجوشی در ستاره‌ها پیدا می‌شود؛ بنابراین در محیط‌های میان ستاره‌ای نسبت هلیوم-۳ به هلیوم-۴ نزدیک به صد برابر بیشتر از نسبت آن در زمین است.[۶۴] در ماده‌های فرازمینی مانند سنگ‌های موجود در ماه یا سیارکها می‌توان ردّ پای هلیوم-۳ را از هنگامی که در اثر بادهای خورشیدی پرتاب شدند، پیدا کرد. غلظت هلیوم-۳ موجود در ماه، ۰٫۰۱ ppm است (یک بخش در میلیون) که بسیار بالاتر از مقدار آن، ۵ ppt در هواکرهٔ زمین است (یک بخش در تریلیون).[۶۵][۶۶] دسته‌ای از جملهٔ آن‌ها جرالد کالسینسکی در سال ۱۹۸۶ پیشنهاد دادند[۶۷] که در سطح ماه جستجو شود و از معدن‌های هلیوم-۳ آن برای واکنش همجوشی هسته‌ای بهره‌برداری شود.

هلیوم-۴ مایع را می‌توان با کمک کولرهای آبی ویژه تا نزدیک به ۱ کلوین سرد کرد. روش سردسازی هلیوم-۳ مانند هلیوم-۴ است با این تفاوت که هلیوم-۳ نقطهٔ جوش پایین‌تری، نزدیک به ۰٫۲ کلوین دارد و این فرایند در سردساز هلیوم-۳ روی می‌دهد. اگر بخواهیم مخلوطی از هلیوم-۳ و هلیوم-۴ با نسبت‌های برابر در زیر ۰٫۸ کلوین داشته باشیم این دو به به دلیل ناهمانندی به صورت دو بخش مخلوط نشدنی از هم جدا می‌شوند (اتم‌های هلیوم-۴ را بوزونها تشکیل می‌دهد در حالی که در هلیوم-۳ فرمیونها سازندهٔ اتم‌هایند.[۸]) این ویژگی هلیوم در یخچال‌های رقیق‌سازی برای رسیدن به دمای چند میلی کلوین به کار می‌آید.

می‌توان به صورت آزمایشگاهی هم ایزوتوپ هلیوم درست کرد اما این ایزوتوپ‌ها خیلی زود به دیگر ماده‌ها دگرگون می‌شوند. برای نمونه می‌توان از هلیوم-۵ یاد کرد که دارای کوتاه‌ترین نیمه‌عمر، ۷٫۶×۱۰−۲۲ ثانیه‌است. پس از آن هلیوم-۶ است که تابش بتا و نیمه عمر ۰٫۸ ثانیه دارد. هلیوم-۷ ذرات بتا و پرتوی گاما می‌تاباند. هلیوم-۷ و هلیوم-۸ هر دو در شرایط ویژهٔ واکنش‌های هسته‌ای پدید می‌آیند.[۸] هلیوم-۶ و هلیوم-۸ هر دو با نام Nuclear halo هم شناخته شده‌اند. به این معنی که شعاع بدست آمده برای آن‌ها بسیار بیشتر از مقدار پیش‌بینی شده توسط مدل‌های اندازه‌گیری (برای نمونه liquid drop model) است.[۸]

ترکیبات

هلیوم دارای ظرفیت صفر است و درنتیجه از لحاظ شیمیایی در شرایط معمول، یک عنصر واکنش ناپذیر است.[۵۲] هلیوم یک عایق الکتریسیته محسوب می‌شود، مگر این‌که یونیزه شود. همانند سایر گازهای نجیب، هلیوم نیز دارای سطوح انرژی شبه‌پایدار[z] است که موجب می‌شود این عنصر در صورت وجود بار الکتریکی با ولتاژی کمتر از پتانسیل یونیزاسیون خود، یونیزه باقی بماند.[۸] هلیوم می‌تواند در زمانی که تحت تخلیه تابشی، بمباران الکترونی یا تبدیل شدن به پلاسما تحت شرایط دیگر، قرار می‌گیرد با عناصری مانند تنگستن، فلورید، گوگرد و فسفر ترکیبات ناپایداری موسوم به برانگیخته‌پار تشکیل دهد. ترکیبات مولکولی مانند هلیم نئون (HeNe)، جیوه هلیوم (HgHe۱۰)، تنگستن هلیوم (WHe۲) و گونه‌های مولکولی یونی مانند He۲+ ،He۲+ ،HeH+ و +HeD به‌این صورت ساخته می‌شوند.[۶۸] ترکیب +HeH دارای حالت پایه پایدار است اما فوق العاده واکنش‌پذیر است، به‌طوری که قوی‌ترین اسید برونستد شناخته شده محسوب می‌شود و بنابراین می‌تواند تنها به صورت جداشده وجود داشته باشد، زیرا هرنوع مولکول یا یون مخالفی که در مجاورت آن قرار بگیرد، پروتون‌دار می‌شود. این روش همچنین موجب تولید مولکول هلیوم گازی (۲He) و مولکول جیوه هلیوم (HgHe) شده‌است.[۸]

ترکیبات وان‌دروالسی هلیوم مانند لیتیم هلیوم (LiHe) و مولکول هلیوم (۲He)، می‌توانند با سرد کردن گاز هلیوم و اتم‌های برخی دیگر از مواد، تولید شوند.[۶۹]

به صورت نظری، دیگر ترکیبات واقعی هلیوم مانند فلوئوروهیدرید (HHeF) که مشابه فلوئوروهیدرید آرگون است و در سال ۲۰۰ کشف شد، نیز ممکن هستند.[۷۰] محاسبات نشان می‌دهد که دو ترکیب جدید حاوی پیوند هلیوم-اکسیژن می‌تواند پایدار باشد. دو گونه جدید مولکولی CsFHeO و N(CH۳)۴FHeO که به‌صورت نظری پیش‌بینی شدند، مشتق‌هایی از یک آنیون FHeO ناپایدار هستند که برای اولین‌بار در سال ۲۰۰۵ به صورت نظری توسط یک گروه تحقیاتی تایوانی وجود آن پیش‌بینی شد. اگر تحقیقات آن را تایید نماید، تنها عنصری که هنوز هیچ ترکیب پایداری از آن گزارش نشده‌، عنصر نئون خواهد بود.[۷۱]

اتم‌های هلیوم با کم حرارت و تحت فشار زیاد می‌توانند به درون ساختار توخالی قفس کربنی مولکول فولرن وارد شود. به این نوع مولکول‌های فولرن دارای گونه خارجی مانند اتم، یون یا خوشه مولکولی در داخل ساختار قفس مانند خود، اصطلاحا فولرن اندوهدرال[aa] گفته می‌شود که در دماهای بالا نیز پایدار هستند. زمانی‌که مشتق‌های این نوع فولرن‌ها تشکیل می‌شوند، هلیوم در داخل ساختار قفس مانند فولرن باقی می‌ماند.[۷۲] اگر هلیوم-۳ برای این منظور استفاده شود، به‌آسانی می‌توان حضور آن را با کمک طیف‌سنجی تشدید مغناطیسی هسته‌ای مشخص کرد.[۷۳] بسیاری از فولرن‌های حاوی هلیوم-۳ گزارش شده‌اند. اگرچه، اتم‌های هلیوم به صورت کووالانسی و یا یونی به ساختار فولرن متصل نشده‌اند، با این‌حال ترکیب فولرن حاصل، مانند تمامی ترکیب‌های شیمیایی استوکیومتری دارای خواص و ترکیب منحصر به‌فرد و مشخص است.

تح فشار زیاد، هلیوم می‌تواند ترکیباتی با عناصر مختلف را تشکیل دهد. کریستال‌های ترکیب کلاترات هلیوم-نیتروژن ((N۲)۱۱He) در دمای اتاق و تحت فشار ۱۰ گیگاپاسکال درون یک سلول سندان الماس رشد داده شده‌اند.[۷۴] مشخص شده‌است که ترکیب الکترید[ab][توضیح ۴] سدیم هلیوم (Na۲He) که یک عایق الکتریسیته است، در فشار بالای ۱۱۳ گیگاپاسکال به‌صورت ترمودینامیکی پایدار است. این مولکول دارای ساختاری فلئوریتی است.[۷۵]

پیدایش و تولید

هلیوم دومین گاز فراوان در کیهان است اما روی زمین نایاب است به‌طوری‌که قیمت هلیوم در ۱۵ سال اخیر ۵۰۰ درصد افزایش پیدا کرده‌است. در ژوئن ۲۰۱۶ (تیر ۱۳۹۵) مقادیر بزرگی از هلیوم در صحرای موسوم به «ریفت ولی» تانزانیا در شرق آفریقا کشف شد. براساس برآوردها، میزان ذخیره این میدان ۵۴ میلیارد متر مکعب است که می‌تواند نیاز چندین سال بشر را تأمین کند. فعالیت آتشفشانی در «ریفت ولی» باعث انتشار گاز هلیوم در صخره‌های کهن می‌شود که در نهایت در میدان‌های کم‌عمق‌تر گاز به تله می‌افتد.[۷۶]

فراوانی طبیعی

استخراج و توزیع مدرن

اثرات زیستی

سرعت صدا در هلیوم نزدیک به سه برابر بیشتر از سرعت آن در هوا است. چون بسامد پایه در گاز با سرعت صدا در گاز متناسب است. هنگامی که هلیوم را تنفس می‌کنیم در بسامد تولیدی توسط مجرای صوتی، تشدید رخ می‌دهد و کیفیت صدا را تغییر می‌دهد.[۷][۷۷] برعکس این اثر و رسیدن به بسامدهای پایین‌تر هم ممکن است به شرطی که گازهای سنگین تر مانند هگزا فلوراید گوگرد یا زنون را تنفس کنیم.

تنفس هلیوم می‌تواند خطرناک باشد چون این گاز می‌تواند خود را جایگزین اکسیژن مورد نیاز در تنفس معمولی کند.[۷][۷۸] تنفس هلیوم به تنهایی هم باعث خفگی در چند دقیقه می‌شود. از این ویژگی در طراحی کیف‌های خودکشی بهره برده می‌شود.

تنفس هلیومی که در کپسول فشرده شده بسیار خطرناک است چون شدت جریان آن بالا است و می‌تواند باعث فشارزدگی گوش میانی و پارگی ناگهانی شش‌ها شود.[۷۸][۷۹] البته شمار مرگ به خاطر پارگی شش‌ها بسیار کم بوده‌است برای نمونه از سال ۲۰۰۰ تا ۲۰۰۴ تنها دو مورد مرگ در آمریکا گزارش شده‌است.[۷۹] در سال ۲۰۱۰ هم دو مورد مرگ گزارش شده‌است که یکی در آمریکا[۸۰] و دیگری در ایرلند شمالی رخ داده بود.[۸۱]

در فشارهای بالا (بیش از ۲۰ اتمسفر یا ۲ مگاپاسکال) آمیخته‌ای از هلیوم و اکسیژن (هلیوکس) می‌تواند باعث مشکل در دستگاه عصبی شود (سندرم اعصاب در فشار بالا) که با افزودن مقدار اندکی نیتروژن به این آمیخته می‌توان مشکل را کاهش داد.[۸۲][۸۳]

کاربردها

هلیوم به دلیل برخی از خواص منحصر به فرد آن، مانند نقطه جوش کم، چگالی پایین، انحلال‌پذیری کم، رسانندگی گرمایی بالا و واکنش ناپذیر بودن آن برای بسیاری از موارد مورد استفاده قرار می‌گیرد. هلیوم منبع تجدید ناپذیر است و با آزاد شدن آن به اتمسفر دیگر امکان بازیابی آن وجود ندارد. در حال حاضر عمر منابع هلیوم به ذخایر گاز طبیعی وابسته است و پیش‌بینی می‌شود بهای هلیوم در آینده همچنان سیر صعودی داشته باشد. از کل تولید هلیوم جهانی سال ۲۰۱۴ حدود ۳۲ میلیون کیلوگرم (۱۸۰ میلیون متر مکعب استاندارد) هلیوم در سال، بیشترین میزان مصرف (حدود ۳۲٪ از کل در سال ۲۰۱۴) در کاربردهای کرایوژنیک است که بیشتر آنها شامل خنک شدن آهنرباهای ابررسانا در اسکنرهای MRI پزشکی و طیف‌سنج‌های NMR است.[۸۴] سایر کاربردهای اصلی در سیستم‌های فشار و پاکسازی، نگهداری اتمسفرهای کنترل شده و تشخیص نشت است. سایر کاربردها براساس طبقه‌بندی کسری نسبتاً جزئی بودند. دیگر کاربردهای مهم آن (۷۸ درصد کل در سال ۱۹۹۶) برای ایجاد فشار، هوای پیرامونی کنترل شده و جوشکاری بوده‌است. از گاز هلیوم در فضاپیماها، تلسکوپ‌ها و دستگاه نظارت بر پرتونگاری هسته‌ای استفاده می‌شود.

اتمسفرهای کنترل شده

هلیوم به دلیل ویژگی واکنش ناپذیری، به عنوان گاز محافظ برای رشد کریستال‌های سیلیسیم و ژرمانیوم، در تولید تیتانیوم و زیرکونیوم و در کروماتوگرافی گازی مورد استفاده قرار می‌گیرد.[۵۲] همچنین به دلیل داشتن ویژگی‌های نزدیک به طبیعت گاز ایده‌آل، سرعت بالای صدا در آن و نسبت ظرفیت گرمایی بالا، برای کاربرد در تونل باد فراصوتی و ابزارهای آزمون افزایش ناگهانی آنتالپی (Impulse facility) مورد نیاز است.[۸۵][۸۶]

جوش قوس تنگستن گازی

هلیوم، در فرایند جوشکاری با قوس الکتریکی بر روی موادی که در دمای جوشکاری در اثر تماس با هوا یا نیتروژن دچار آسیب می‌شوند به عنوان لایهٔ محافظ یا پوشش عمل می‌کند.[۷] تعدادی از گازهای محافظ بی اثر در جوش قوس الکتریکی تنگستن گازی استفاده می‌شود، اما هلیوم به جای گاز ارزان‌تر آرگون به خصوص برای جوشکاری‌هایی که رسانندگی گرمایی بیشتری دارند مانند آلومینیوم یا مس استفاده می‌شود.

کاربردهای جزئی

تشخیص نشت صنعتی

یکی از کاربردهای صنعتی هلیوم، تشخیص نشت است. از آنجا که هلیوم سه برابر سریعتر از هوا از طریق مواد جامد واپخش می‌شود، از آن به عنوان گاز ردیاب برای تشخیص نشت در تجهیزات با خلاء بالا (مانند مخازن کرایوژنیک) و ظروف با فشار بالا استفاده می‌شود.[۸۷] شی مورد آزمایش در یک محفظه قرار می‌گیرد که سپس تخلیه می‌شود و با هلیوم پر می‌شود. هلیوم که از طریق نشتی فرار می‌کند توسط یک دستگاه حساس (طیف‌سنجی جرمی هلیوم)en شناسایی می‌شود، دقت این ابزار بسیار دقیق است و دقت آن به ۱۰−۹ mbar·L/s یا 10−۱۰ Pa·m3/s هم می‌رسد. روش اندازه‌گیری معمولاً اتوماتیک است و تست انتگرال هلیوم (helium integral test) نامیده می‌شود. یک روش ساده‌تر پر کردن جسم آزمایش شده با هلیوم و جستجوی دستی نشت‌ها با یک وسیله دستی است.[۸۸]

هلیومی که از ترک‌های یک وسیله می‌گذرد را نباید با نفوذ گاز از بدنهٔ ماده اشتباه گرفت. ثابت نفوذ هلیوم از بدنهٔ مواد (شیشه، سرامیک و مواد آزمایشگاهی)، مشخص است و ضریب گذر آن قابل محاسبه‌است. البته بیشتر گازهای بی‌اثر مانند گازهای نجیب و نیتروژن و البته هلیوم، از بدنهٔ بیشتر مواد نمی‌توانند بگذرند.[۸۹]

پرواز

از آنجا که این عنصر از هوا سبک‌تر است، برای به هوا رفتن کشتی‌های هوایی و بالون‌ها به گاز هلیوم رو آورده‌اند. در حالی که گاز هیدروژن بسیار شناور است و با سرعت کمتری از نفوذ به درون غشاء فرار می‌کند، هلیوم این مزیت را دارد که قابل اشتعال نیست و در واقع پیشگیرنده آتش است. با اینکه کاربرد هلیوم در بالون‌ها بسیار شناخته‌است اما این مطلب تنها بخش کوچکی از کاربردهای این گاز است. کاربرد دیگر هلیوم در ساخت راکت است که در آن هلیوم به عنوان یک ماده تخلیه کننده برای جابجایی سوخت و اکسید کننده‌ها در مخازن ذخیره‌سازی و چگالش کردن هیدروژن و اکسیژن برای ساختن پیشران راکت استفاده می‌شود. فضای خالی بالای جایی که سوخت قرار دارد را از هلیوم پر می‌کنند؛ این کار باعث می‌شود تا هم جابجایی سوخت و اکسیدکننده‌ها آسان‌تر شود و هم بتوان با آن هیدروژن و اکسیژن را فشرده کرد تا سوخت موشک بدست آید. همچنین برای پاک کردن سوخت و اکسید کننده از تجهیزات پشتیبانی زمین قبل از پرتاب و برای خنک کردن هیدروژن مایع در وسایل نقلیه فضایی استفاده می‌شود. به عنوان مثال، موشک سترن ۵ که در برنامه آپولو مورد استفاده قرار گرفت، حدود 370,000 m۳ هلیوم نیاز داشت.[۵۲]

کاربردهای تجاری و تفریحی

به این دلیل که هلیوم به سختی در بافت عصبی حل می‌شود، از آمیخته‌هایی مانند تریمیکس، هلیوکس و هلی ایر یا هوای هلیومی، برای غواصی در عمق‌های بالای آب بهره برده می‌شود تا اثر فشار نیتروژن بر دستگاه عصبی بدن کاهش یابد.[۹۰][۹۱] در عمق‌های بیشتر از ۱۵۰ متر (۴۹۰ پا) اندکی هیدروژن هم به آمیختهٔ هلیوم-اکسیژن افزوده می‌شود.[۹۲] چگالی بسیار پایین هلیوم در این عمق‌ها کمک می‌کند تا سختی تنفس کاهش یابد.[۹۳]

لیزر هلیوم-نئون، گونه‌ای لیزر با توان کم است با پرتوی قرمز رنگ است که کاربردهای عملی بسیاری دارد. از جملهٔ آن‌ها می‌توان، بارکدخوان و اشاره‌گر لیزری را نام برد. البته پس از چندی این لیزر با لیزر دیودی که ارزان‌تر بود، جایگزین شد.[۷]

هلیوم به دلیل داشتن ویژگی‌هایی چون: رسانش گرمایی بالا، واکنش ناپذیر بودن، neutron transparency و نساختن ایزوتوپ‌های پرتوزا در شرایط درون یک رآکتور، در برخی راکتورهای هسته‌ای به عنوان گاز خنک‌کننده و رسانندهٔ گرما، کاربرد دارد.[۸۷]

آمیختهٔ هلیوم با برخی گازهای سنگین تر مانند زنون دارای ضریب ظرفیت گرمایی بالا و عدد پرنتل پایین است و در سردکننده‌های گرمایی صوتی (ترمواکوستیک) کاربرد دارد. ویژگی بی‌اثر بودن هلیوم باعث شده تا برای کاهش آسیب‌های زیست‌محیطی در سردکننده‌های معمولی که اوزون تولید می‌کنند و باعث گرمایش زمین می‌شوند بکار رود.[۹۴]

کاربردهای علمی

استفاده از هلیوم به دلیل ضریب شکست بسیار پایین، اثرات تحریف کننده تغییرات دما در فضای بین لنزها را در بعضی از تلسکوپ‌ها کاهش می‌دهد.[۸] این روش به ویژه در تلسکوپ‌های خورشیدی که در آن لوله تلسکوپ خلاء خیلی سنگین است استفاده می‌شود.[۹۵][۹۶]

هلیوم یک گاز حامل متداول برای کروماتوگرافی گازی است.

سن سنگها و مواد معدنی حاوی اورانیوم و توریم را می‌توان با اندازه‌گیری سطح هلیوم با فرآیندی موسوم به قدمت هلیوم تخمین زد.

هلیوم در دماهای پایین در بیماری‌های کرایوژنیک و در برخی از کاربردهای خاص بیماری کرایوژنیک استفاده می‌شود. به عنوان نمونه کاربردی، هلیوم مایع برای خنک کردن فلزات خاص به دمای بسیار کم مورد نیاز برای ابررسانایی، از جمله در آهنرباهای ابررسانا برای تصویرسازی تشدید مغناطیسی استفاده می‌شود. برخورددهنده هادرونی بزرگ در سرن از ۹۶ تن هلیوم مایع برای حفظ دما در ۱٫۹ کلوین استفاده می‌کند.[۹۷]

کاربردهای پزشکی

هلیوم در آوریل ۲۰۲۰ برای استفاده‌های پزشکی در ایالات متحده برای انسان و حیوانات مورد تأیید قرار گرفت.[۹۸][۹۹]

آلایش

بوییدن و ایمنی

هلیوم طبیعی در شرایط استاندارد، آسیب‌رسان نیست. اندازه‌های بسیار اندکی از این ماده در خون انسان پیدا می‌شود. اگر به جای اکسیژن مورد نیاز بدن، هلیوم را تنفس کنیم امکان خفگی پیش می‌آید. نکته‌های ایمنی گفته شده دربارهٔ هلیوم مایع و کار با آن همانند کار با دیگر نیتروژن مایع است. چون دمای آن بسیار پایین است و ممکن است فرد دچار سوختگی در اثر سرما شود.[۵۲]

اثرات

خطرات

توضیحات

  1. .گازی که به‌خاطر داشتن چگالی کمتر از گازهای موجود در جو زمین، در جو زمین به بالا می‌رود
  2. زمانی که یک ماده ابرشاره توسط امواج گرم می‌‌شود، انبساط موجب افزایش و توسعه سطح مایع و در نتیجه ایجاد یک چشمه می‌شود.
  3. پدیده‌ای در مکانیک کوانتومی که در آن انتقال گرما، برخلاف روش معمول و متداول واپخش، به‌صورت موج‌مانند انجام می‌شود.
  4. ترکیبی یونی که الکترون به‌عنوان یون منفی آن است. ترکیب [[Na(NH۳)۶]+,e یک الکترید است.

واژه‌نامه

  1. Erasmus Haworth
  2. Hamilton Cady
  3. David McFarland
  4. Richard Threlfall
  5. Barrage Balloon
  6. Hampton Roads
  7. Bolling Air Force Base
  8. USS Shenandoah
  9. Lifting gas
  10. Shielded Arc Welding
  11. National Helium Reserve
  12. Helium Act of 1925
  13. United States Bureau of Mines
  14. Cliffside
  15. Hugoton Gas Field
  16. Air Products & Chemicals
  17. High-energy electron-scattering experiments
  18. Cryogenic liquids
  19. Two-fluid model
  20. Fountain effect
  21. Sintered disc
  22. Second sound
  23. Rollin film
  24. Bernard V. Rollin
  25. Third sound
  26. Metastable
  27. Endohedral fullerene
  28. Electride

جستارهای وابسته

منابع

  1. Meija, J.; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". شیمی محض و کاربردی(نشریه). 88 (3): 265–91. doi:10.1515/pac-2015-0305.
  2. Shuen-Chen Hwang, Robert D. Lein, Daniel A. Morgan (2005). "Noble Gases". Kirk Othmer Encyclopedia of Chemical Technology. Wiley. pp. 343–383. doi:10.1002/0471238961.0701190508230114.a01.
  3. Magnetic susceptibility of the elements and inorganic compounds, in Handbook of Chemistry and Physics 81st edition, CRC press.
  4. Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.
  5. Helium: Up, Up and Away? بایگانی‌شده در ۲۲ اوت ۲۰۱۰ توسط Wayback Machine Melinda Rose, Photonics Spectra, Oct. 2008. Accessed Feb 27, 2010. For a more authoritative but older 1996 pie chart showing U.S. helium use by sector, showing much the same result, see the chart reproduced in "Applications" section of this article.
  6. Kochhar, R. K. (1991). "French astronomers in India during the 17th – 19th centuries". Journal of the British Astronomical Association. ۱۰۱ (۲): ۹۵–۱۰۰. Bibcode:1991JBAA..101...95K.
  7. ۷٫۰۰ ۷٫۰۱ ۷٫۰۲ ۷٫۰۳ ۷٫۰۴ ۷٫۰۵ ۷٫۰۶ ۷٫۰۷ ۷٫۰۸ ۷٫۰۹ Emsley, John (2001). Nature's Building Blocks. Oxford: Oxford University Press. pp. ۱۷۵–۱۷۹. ISBN 0-19-850341-5. خطای یادکرد: برچسب <ref> نامعتبر؛ نام «nbb» چندین بار با محتوای متفاوت تعریف شده است. (صفحهٔ راهنما را مطالعه کنید.).
  8. ۸٫۰۰ ۸٫۰۱ ۸٫۰۲ ۸٫۰۳ ۸٫۰۴ ۸٫۰۵ ۸٫۰۶ ۸٫۰۷ ۸٫۰۸ ۸٫۰۹ ۸٫۱۰ ۸٫۱۱ ۸٫۱۲ ۸٫۱۳ ۸٫۱۴ ۸٫۱۵ ۸٫۱۶ ۸٫۱۷ ۸٫۱۸ Clifford A. Hampel (1968). The Encyclopedia of the Chemical Elements. New York: Van Nostrand Reinhold. pp. ۲۵۶–۲۶۸. ISBN 0-442-15598-0. خطای یادکرد: برچسب <ref> نامعتبر؛ نام «enc» چندین بار با محتوای متفاوت تعریف شده است. (صفحهٔ راهنما را مطالعه کنید.).
  9. Sir Norman Lockyer – discovery of the element that he named helium بایگانی‌شده در ۲۱ سپتامبر ۲۰۰۹ توسط Wayback Machine" Balloon Professional Magazine, 7 August 2009.
  10. "Helium". Oxford English Dictionary. 2008. Archived from the original on 7 April 2020. Retrieved 2008-07-20.
  11. Thomson, William (Aug. 3, 1871). "Inaugural Address of Sir William Thompson". Nature. ۴: ۲۶۱–۲۷۸ [۲۶۸]. Bibcode:1871Natur...4..261.. doi:10.1038/004261a0. Archived from the original on 14 June 2013. Retrieved 21 July 2012. Frankland and Lockyer find the yellow prominences to give a very decided bright line not far from D, but hitherto not identified with any terrestrial flame. It seems to indicate a new substance, which they propose to call Helium {{cite journal}}: Check date values in: |date= (help)
  12. Kirk, Wendy L. "Cleveite [not Clevite] and helium". Museums & Collections Blog. University College London. Archived from the original on 18 October 2018. Retrieved 18 August 2017.
  13. Stewart, Alfred Walter (2008). Recent Advances in Physical and Inorganic Chemistry. BiblioBazaar, LLC. p. ۲۰۱. ISBN 0-554-80513-8.
  14. Ramsay, William (1895). "On a Gas Showing the Spectrum of Helium, the Reputed Cause of D3 , One of the Lines in the Coronal Spectrum. Preliminary Note". Proceedings of the Royal Society of London. ۵۸ (۳۴۷–۳۵۲): ۶۵–۶۷. doi:10.1098/rspl.1895.0006.
  15. Ramsay, William (1895). "Helium, a Gaseous Constituent of Certain Minerals. Part I". Proceedings of the Royal Society of London. ۵۸ (۳۴۷–۳۵۲): ۸۰–۸۹. doi:10.1098/rspl.1895.0010.
  16. Ramsay, William (1895). "Helium, a Gaseous Constituent of Certain Minerals. Part II--". Proceedings of the Royal Society of London. ۵۹ (۱): ۳۲۵–۳۳۰. doi:10.1098/rspl.1895.0097.
  17. (آلمانی) Langlet, N. A. (1895). "Das Atomgewicht des Heliums". Zeitschrift für anorganische Chemie (به آلمانی). ۱۰ (۱): ۲۸۹–۲۹۲. doi:10.1002/zaac.18950100130.
  18. Weaver, E.R. (1919). "Bibliography of Helium Literature". Industrial & Engineering Chemistry.
  19. Munday, Pat (1999). John A. Garraty and Mark C. Carnes (ed.). Biographical entry for W.F. Hillebrand (1853–1925), geochemist and U.S. Bureau of Standards administrator in American National Biography. Vol. ۱۰–۱۱. Oxford University Press. pp. ۸۰۸–۹, ۲۲۷–۸.
  20. van Delft, Dirk (2008). "Little cup of Helium, big Science" (PDF). Physics today: ۳۶–۴۲. Archived from the original (PDF) on 25 June 2008. Retrieved 2008-07-20.
  21. "Coldest Cold". Time Inc. ۱۹۲۹-۰۶-۱۰. Archived from the original on 21 July 2013. Retrieved 2008-07-27.
  22. Kapitza, P. (1938). "Viscosity of Liquid Helium below the λ-Point". Nature. ۱۴۱ (۳۵۵۸): ۷۴. Bibcode:1938Natur.141...74K. doi:10.1038/141074a0.
  23. Osheroff, D. D. ; Richardson, R. C. ; Lee, D. M. (1972). "Evidence for a New Phase of Solid He۳". Phys. Rev. Lett. ۲۸ (۱۴): ۸۸۵–۸۸۸. Bibcode:1972PhRvL..28..885O. doi:10.1103/PhysRevLett.28.885.{{cite journal}}: نگهداری یادکرد:نام‌های متعدد:فهرست نویسندگان (link)
  24. McFarland, D. F. (1903). "Composition of Gas from a Well at Dexter, Kan". Transactions of the Kansas Academy of Science. 19: 60–62. doi:10.2307/3624173. JSTOR 3624173.
  25. "Discovery of Helium in Natural Gas at the University of Kansas". National Historic Chemical Landmarks. American Chemical Society. Archived from the original on 2014-02-26. Retrieved 2014-02-21.
  26. Cady, H. P.; McFarland, D. F. (1906). "Helium in Natural Gas". Science. 24 (611): 344. Bibcode:1906Sci....24..344D. doi:10.1126/science.24.611.344. PMID 17772798.
  27. Cady, H. P.; McFarland, D. F. (1906). "Helium in Kansas Natural Gas". Transactions of the Kansas Academy of Science. 20: 80–81. doi:10.2307/3624645. JSTOR 3624645.
  28. Emme, Eugene M. comp., ed. (1961). "Aeronautics and Astronautics Chronology, 1920–1924". Aeronautics and Astronautics: An American Chronology of Science and Technology in the Exploration of Space, 1915–1960. Washington, D.C.: NASA. pp. 11–19.
  29. Hilleret, N. (1999). "Leak Detection" (PDF). In S. Turner (ed.). CERN Accelerator School, vacuum technology: proceedings: Scanticon Conference Centre, Snekersten, Denmark, 28 May – 3 June 1999. Geneva, Switzerland: CERN. pp. 203–212. At the origin of the helium leak detection method was the Manhattan Project and the unprecedented leak-tightness requirements needed by the uranium enrichment plants. The required sensitivity needed for the leak checking led to the choice of a mass spectrometer designed by Dr. A.O.C. Nier tuned on the helium mass.
  30. Williamson, John G. (1968). "Energy for Kansas". Transactions of the Kansas Academy of Science. 71 (4): 432–438. doi:10.2307/3627447. JSTOR 3627447.
  31. "Conservation Helium Sale" (PDF). Federal Register. 70 (193): 58464. 2005-10-06. Archived (PDF) from the original on 2008-10-31. Retrieved 2008-07-20.
  32. Stwertka, Albert (1998). Guide to the Elements: Revised Edition. New York; Oxford University Press, p. 24. شابک ‎۰−۱۹−۵۱۲۷۰۸−۰
  33. Helium Privatization Act of 1996 Pub.L. 104-273
  34. Executive Summary. nap.edu. 2000. doi:10.17226/9860. ISBN 978-0-309-07038-6. Archived from the original on 2008-03-27. Retrieved 2008-07-20.
  35. Mullins, P. V.; Goodling, R. M. (1951). Helium. Bureau of Mines / Minerals yearbook 1949. pp. 599–602. Archived from the original on 2008-12-06. Retrieved 2008-07-20.
  36. "Helium End User Statistic" (PDF). U.S. Geological Survey. Archived (PDF) from the original on 2008-09-21. Retrieved 2008-07-20.
  37. Smith, E. M.; Goodwin, T. W.; Schillinger, J. (2003). "Challenges to the Worldwide Supply of Helium in the Next Decade". Advances in Cryogenic Engineering. 49. A (710): 119–138. Bibcode:2004AIPC..710..119S. doi:10.1063/1.1774674.
  38. Kaplan, Karen H. (June 2007). "Helium shortage hampers research and industry". Physics Today. American Institute of Physics. 60 (6): 31–32. Bibcode:2007PhT....60f..31K. doi:10.1063/1.2754594.
  39. Basu, Sourish (October 2007). Yam, Philip (ed.). "Updates: Into Thin Air". Scientific American. Vol. 297, no. 4. Scientific American, Inc. p. 18. Archived from the original on 2008-12-06. Retrieved 2008-08-04.
  40. ۴۰٫۰ ۴۰٫۱ ۴۰٫۲ Newcomb, Tim (21 August 2012). "There's a Helium Shortage On—and It's Affecting More than Just Balloons". Time.com. Archived from the original on 29 December 2013. Retrieved 2013-09-16.
  41. "Air Liquide | the world leader in gases, technologies and services for Industry and Health". 19 February 2015. Archived from the original on 2014-09-14. Retrieved 2015-05-25. Air Liquide Press Release.
  42. "Middle East turmoil is disrupting a vital resource for nuclear energy, space flight and birthday balloons". washingtonpost.com. 26 June 2017. Archived from the original on 26 June 2017. Retrieved 26 June 2017.
  43. http://www.gasworld.com/2015-what-lies-ahead-part-1/2004706.article بایگانی‌شده در ۲۰۱۵-۰۱-۱۷ توسط Wayback Machine Gasworld, 25 Dec 2014.
  44. "Will Air Products' (APD) Earnings Surprise Estimates in Q2? - Analyst Blog". NASDAQ.com. April 28, 2015. Archived from the original on July 15, 2019. Retrieved August 4, 2019.
  45. Watkins, Thayer. "The Old Quantum Physics of Niels Bohr and the Spectrum of Helium: A Modified Version of the Bohr Model". San Jose State University. Archived from the original on 2009-05-26. Retrieved 2009-06-24.
  46. Lewars, Errol G. (2008). Modelling Marvels. Springer. pp. ۷۰–۷۱. ISBN 1-4020-6972-3.
  47. Weiss, Ray F. (1971). "Solubility of helium and neon in water and seawater". J. Chem. Eng. Data. ۱۶ (۲): ۲۳۵–۲۴۱. doi:10.1021/je60049a019.
  48. Scharlin, P. ; Battino, R. Silla, E. ; Tuñón, I. ; Pascual-Ahuir, J. L. (1998). "Solubility of gases in water: Correlation between solubility and the number of water molecules in the first solvation shell". Pure & Appl. Chem. ۷۰ (۱۰): ۱۸۹۵–۱۹۰۴. doi:10.1351/pac199870101895.{{cite journal}}: نگهداری یادکرد:نام‌های متعدد:فهرست نویسندگان (link)
  49. Stone, Jack A. ; Stejskal, Alois (2004). "Using helium as a standard of refractive index: correcting errors in a gas refractometer". Metrologia. ۴۱ (۳): ۱۸۹–۱۹۷. Bibcode:2004Metro..41..189S. doi:10.1088/0026-1394/41/3/012.{{cite journal}}: نگهداری یادکرد:نام‌های متعدد:فهرست نویسندگان (link)
  50. Buhler, F. ; Axford, W. I. ; Chivers, H. J. A. ; Martin, K. (1976). "Helium isotopes in an aurora". J. Geophys. Res. ۸۱ (۱): ۱۱۱–۱۱۵. Bibcode:1976JGR....81..111B. doi:10.1029/JA081i001p00111.{{cite journal}}: نگهداری یادکرد:نام‌های متعدد:فهرست نویسندگان (link)
  51. "Solid Helium". Department of Physics دانشگاه آلبرتا. ۲۰۰۵-۱۰-۰۵. Archived from the original on 31 May 2008. Retrieved 2008-07-20.
  52. ۵۲٫۰ ۵۲٫۱ ۵۲٫۲ ۵۲٫۳ ۵۲٫۴ Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.
  53. Grilly, E. R. (1973). "Pressure-volume-temperature relations in liquid and solid 4He". Journal of Low Temperature Physics. ۱۱ (۱–۲): ۳۳–۵۲. Bibcode:1973JLTP...11...33G. doi:10.1007/BF00655035.
  54. Henshaw, D. B. (1958). "Structure of Solid Helium by Neutron Diffraction". Physical Review Letters. ۱۰۹ (۲): ۳۲۸–۳۳۰. Bibcode:1958PhRv..109..328H. doi:10.1103/PhysRev.109.328.
  55. Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. p. 6-120. ISBN 0-8493-0486-5.
  56. Hohenberg, P. C.; Martin, P. C. (2000). "Microscopic Theory of Superfluid Helium". Annals of Physics. 281 (1–2): 636–705 12091211. Bibcode:2000AnPhy.281..636H. doi:10.1006/aphy.2000.6019.
  57. Warner, Brent. "Introduction to Liquid Helium". NASA. Archived from the original on 2005-09-01. Retrieved 2007-01-05.
  58. Fairbank, H. A.; Lane, C. T. (1949). "Rollin Film Rates in Liquid Helium". Physical Review. 76 (8): 1209–1211. Bibcode:1949PhRv...76.1209F. doi:10.1103/PhysRev.76.1209.
  59. Rollin, B. V.; Simon, F. (1939). "On the 'film' phenomenon of liquid helium II". Physica. 6 (2): 219–230. Bibcode:1939Phy.....6..219R. doi:10.1016/S0031-8914(39)80013-1.
  60. Ellis, Fred M. (2005). "Third sound". Wesleyan Quantum Fluids Laboratory. Archived from the original on 2007-06-21. Retrieved 2008-07-23.
  61. Bergman, D. (1949). "Hydrodynamics and Third Sound in Thin He II Films". Physical Review. 188 (1): 370–384. Bibcode:1969PhRv..188..370B. doi:10.1103/PhysRev.188.370.
  62. ۶۲٫۰ ۶۲٫۱ Anderson, Don L. ; Foulger, G. R. ; Meibom, A. (۲۰۰۶-۰۹-۰۲). "Helium Fundamentals". MantlePlumes.org. Archived from the original on 8 February 2007. Retrieved 2008-07-20.{{cite web}}: نگهداری یادکرد:نام‌های متعدد:فهرست نویسندگان (link)
  63. Novick, Aaron (1947). "Half-Life of Tritium". Physical Review. ۷۲ (۱۰): ۹۷۲–۹۷۲. Bibcode:1947PhRv...72..972N. doi:10.1103/PhysRev.72.972.2.
  64. Zastenker G. N. et al. (2002). "Isotopic Composition and Abundance of Interstellar Neutral Helium Based on Direct Measurements". Astrophysics. ۴۵ (۲): ۱۳۱–۱۴۲. Bibcode:2002Ap.....45..131Z. doi:10.1023/A:1016057812964. Archived from the original on 1 October 2007. Retrieved 2008-07-20.
  65. "Lunar Mining of Helium-3". Fusion Technology Institute of the University of Wisconsin-Madison. ۲۰۰۷-۱۰-۱۹. Archived from the original on 9 June 2010. Retrieved 2008-07-09.
  66. Slyuta, E. N. ; Abdrakhimov, A. M. ; Galimov, E. M. (2007). "The estimation of helium-3 probable reserves in lunar regolith" (PDF). Lunar and Planetary Science XXXVIII. Archived from the original (PDF) on 5 July 2008. Retrieved 2008-07-20.{{cite web}}: نگهداری یادکرد:نام‌های متعدد:فهرست نویسندگان (link)
  67. Hedman, Eric R. (۲۰۰۶-۰۱-۱۶). "A fascinating hour with Gerald Kulcinski". The Space Review. Archived from the original on 9 January 2011. Retrieved 2008-07-20.
  68. Hiby, Julius W. (1939). "Massenspektrographische Untersuchungen an Wasserstoff- und Heliumkanalstrahlen (H+
    3
    , H
    2
    , HeH+
    , HeD+
    , He
    )". Annalen der Physik. 426 (5): 473–487. Bibcode:1939AnP...426..473H. doi:10.1002/andp.19394260506.
  69. Friedrich, Bretislav (8 April 2013). "A Fragile Union Between Li and He Atoms". Physics. 6: 42. Bibcode:2013PhyOJ...6...42F. doi:10.1103/Physics.6.42. hdl:11858/00-001M-0000-000E-F3CF-5. Archived from the original on 29 August 2017. Retrieved 24 August 2019.
  70. Wong, Ming Wah (2000). "Prediction of a Metastable Helium Compound: HHeF". Journal of the American Chemical Society. 122 (26): 6289–6290. doi:10.1021/ja9938175.
  71. "Collapse of helium's chemical nobility predicted by Polish chemist" (PDF). Archived from the original (PDF) on 2009-03-19. Retrieved 2009-05-15.
  72. Saunders, Martin; Jiménez-Vázquez, Hugo A.; Cross, R. James; Poreda, Robert J. (1993). "Stable Compounds of Helium and Neon: He@C60 and Ne@C60". Science. 259 (5100): 1428–1430. Bibcode:1993Sci...259.1428S. doi:10.1126/science.259.5100.1428. PMID 17801275.
  73. Saunders, Martin; Jiménez-Vázquez, Hugo A.; Cross, R. James; Mroczkowski, Stanley; Freedberg, Darón I.; Anet, Frank A. L. (1994). "Probing the interior of fullerenes by 3He NMR spectroscopy of endohedral 3He@C60 and 3He@C70". Nature. 367 (6460): 256–258. Bibcode:1994Natur.367..256S. doi:10.1038/367256a0.
  74. Vos, W. L.; Finger, L. W.; Hemley, R. J.; Hu, J. Z.; Mao, H. K.; Schouten, J. A. (1992). "A high-pressure van der Waals compound in solid nitrogen-helium mixtures". Nature. 358 (6381): 46–48. Bibcode:1992Natur.358...46V. doi:10.1038/358046a0.
  75. Dong, Xiao; Oganov, Artem R.; Goncharov, Alexander F.; Stavrou, Elissaios; Lobanov, Sergey; Saleh, Gabriele; Qian, Guang-Rui; Zhu, Qiang; Gatti, Carlo; Deringer, Volker L.; Dronskowski, Richard; Zhou, Xiang-Feng; Prakapenka, Vitali B.; Konôpková, Zuzana; Popov, Ivan A.; Boldyrev, Alexander I.; Wang, Hui-Tian (2017). "A stable compound of helium and sodium at high pressure". Nature Chemistry. 9 (5): 440–445. arXiv:1309.3827. Bibcode:2017NatCh...9..440D. doi:10.1038/nchem.2716. ISSN 1755-4330. PMID 28430195.
  76. کشف بی‌سابقه میدان بزرگ گاز ارزشمند «هلیوم» خبرگزاری انتخاب
  77. Ackerman MJ, Maitland G (1975). "Calculation of the relative speed of sound in a gas mixture". Undersea Biomed Res. 2 (4): 305–10. PMID 1226588. Archived from the original on 27 January 2011. Retrieved 2008-08-09.
  78. ۷۸٫۰ ۷۸٫۱ (آلمانی) Grassberger, Martin; Krauskopf, Astrid (2007). "Suicidal asphyxiation with helium: Report of three cases Suizid mit Helium Gas: Bericht über drei Fälle". Wiener Klinische Wochenschrift (به German & English). ۱۱۹ (9–10): 323–325. doi:10.1007/s00508-007-0785-4. PMID 17571238.{{cite journal}}: نگهداری یادکرد:زبان ناشناخته (link) نگهداری یادکرد:نام‌های متعدد:فهرست نویسندگان (link)
  79. ۷۹٫۰ ۷۹٫۱ Engber, Daniel (2006-06-13). "Stay Out of That Balloon!". Slate.com. Archived from the original on 24 June 2018. Retrieved 2008-07-14.
  80. "Teen Dies After Inhaling Helium". KTLA News. RIVERSIDE: ktla.com. January 6, 2010. Archived from the original on 9 January 2012. Retrieved 19 November 2010.
  81. "Tributes to 'helium death' teenager from Newtownabbey". BBC Online. 19 November 2010. Archived from the original on 11 اكتبر 2014. Retrieved 19 November 2010. {{cite news}}: Check date values in: |archivedate= (help)
  82. Rostain J.C. , Lemaire C. , Gardette-Chauffour M.C. , Doucet J. , Naquet R. (1983). "Estimation of human susceptibility to the high-pressure nervous syndrome". J Appl Physiol. 54 (4): 1063–70. PMID 6853282. Archived from the original on 4 March 2016. Retrieved 2008-08-09.{{cite journal}}: نگهداری یادکرد:نام‌های متعدد:فهرست نویسندگان (link)
  83. Hunger Jr, W. L. ; Bennett. , P. B. (1974). "The causes, mechanisms and prevention of the high-pressure nervous syndrome". Undersea Biomed. Res. 1 (1): 1–28. OCLC 2068005. PMID 4619860. Archived from the original on 25 December 2010. Retrieved 2008-08-09.{{cite journal}}: نگهداری یادکرد:نام‌های متعدد:فهرست نویسندگان (link)
  84. Helium sell-off risks future supply بایگانی‌شده در ۲۰۱۲-۰۶-۱۰ توسط Wayback Machine, Michael Banks, Physics World, 27 January 2010. accessed February 27, 2010.
  85. Beckwith, I. E.; Miller, C. G. (1990). "Aerothermodynamics and Transition in High-Speed Wind Tunnels at Nasa Langley". Annual Review of Fluid Mechanics. 22 (1): 419–439. Bibcode:1990AnRFM..22..419B. doi:10.1146/annurev.fl.22.010190.002223.
  86. Morris, C.I. (2001). Shock Induced Combustion in High Speed Wedge Flows (PDF). Stanford University Thesis. Archived from the original (PDF) on 2009-03-04.
  87. ۸۷٫۰ ۸۷٫۱ "Helium". Van Nostrand's Encyclopedia of Chemistry. Wiley-Interscience. 2005. pp. 764–765. ISBN 978-0-471-61525-5.
  88. Hablanian, M. H. (1997). High-vacuum technology: a practical guide. CRC Press. p. 493. ISBN 978-0-8247-9834-5.
  89. Ekin, Jack W. (2006). Experimental Techniques for Low-Temperature measurements. Oxford University Press. ISBN 978-0-19-857054-7.
  90. Fowler, B (1985). "Effects of inert gas narcosis on behavior—a critical review". Undersea Biomedical Research Journal. 12 (4): 369–402. PMID 4082343. Archived from the original on 25 December 2010. Retrieved 2008-06-27. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  91. Thomas, J. R. (1976). "Reversal of nitrogen narcosis in rats by helium pressure". Undersea Biomed Res. 3 (3): 249–59. PMID 969027. Archived from the original on 6 December 2008. Retrieved 2008-08-06.
  92. Rostain, J. C. ; Gardette-Chauffour, M. C. ; Lemaire, C. ; Naquet, R. (1988). "Effects of a H۲-He-O۲ mixture on the HPNS up to 450 msw". Undersea Biomed. Res. ۱۵ (4): 257–70. OCLC 2068005. PMID 3212843. Archived from the original on 25 December 2010. Retrieved 2008-06-24.{{cite journal}}: نگهداری یادکرد:نام‌های متعدد:فهرست نویسندگان (link)
  93. Butcher, Scott J. ; Jones, Richard L. ; Mayne, Jonathan R. ; Hartley, Timothy C. ; Petersen, Stewart R. (2007). "Impaired exercise ventilatory mechanics with the self-contained breathing apparatus are improved with heliox". European Journal of Applied Physiology. Netherlands: Springer. 101 (6): 659. doi:10.1007/s00421-007-0541-5. PMID 17701048.{{cite journal}}: نگهداری یادکرد:نام‌های متعدد:فهرست نویسندگان (link)
  94. Makhijani, Arjun; Gurney, Kevin (1995). Mending the Ozone Hole: Science, Technology, and Policy. MIT Press. ISBN 0-262-13308-3.{{cite book}}: نگهداری یادکرد:نام‌های متعدد:فهرست نویسندگان (link)
  95. Jakobsson, H. (1997). "Simulations of the dynamics of the Large Earth-based Solar Telescope". Astronomical & Astrophysical Transactions. 13 (1): 35–46. Bibcode:1997A&AT...13...35J. doi:10.1080/10556799708208113.
  96. Engvold, O.; Dunn, R.B.; Smartt, R. N.; Livingston, W. C. (1983). "Tests of vacuum VS. helium in a solar telescope". Applied Optics. 22 (1): 10–12. Bibcode:1983ApOpt..22...10E. doi:10.1364/AO.22.000010. PMID 20401118.
  97. "LHC: Facts and Figures" (PDF). CERN. Archived from the original (PDF) on 2011-07-06. Retrieved 2008-04-30.
  98. "Helium, USP: FDA-Approved Drugs". U.S. Food and Drug Administration. Retrieved 30 April 2020.
  99. "FDA approval letter" (PDF). 14 April 2020. Retrieved 30 April 2020.

پیوند به بیرون

عمومی

جزئیات بیشتر

گوناگون

کمبود هلیوم