تلسکوپ

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو
رصدخانه مکدونالد دانشگاه تگزاس در آستین حاوی تلسکوپ هابی ابرلی با قطر آیینه مرکب ۹ متر و ۲۰ سانتیمتر

تلسکوپ یا اختربین وسیله‌ای برای دیدن اجرام آسمانی با استفاده از تابش الکترومغناطیس (مثلاً نور مرئی) بصورت واضح و دقیق است. اولین تلسکوپ کارا در ابتدای قرن هفدهم در هلند اختراع شد. کلمهٔ تلسکوپ می‌تواند به تمام حیطهٔ وسایل عملیاتی درسرتاسر ناحیهٔ میدان الکترومغناطیس اشاره داشته باشد.

کلمهٔ تلسکوپ (گرفته شده از دو کلمهٔ یونانی تله τῆλε به معنی دور و اسکوپین σκοπεῖν به معنی دیدن) نخستین بار در سال ۱۶۱۱ توسط یک ریاضی دان یونانی به نام "جیووانی دمیسیانی" برای یکی از ابزارهای گالیلئو گالیله که در آکادمی دلینچی به نمایش گذاشته شده بود بکار گرفته شد.

پیشینه[ویرایش]

طرح تلسکوپ گالیله
طرح تلسکوپ نیوتن
طرح تلسکوپ کسگرین

هزاران سال بود که مطالعهٔ ستارگان فقط از راه چشم غیرمسلّح انجام می گرفت‎.‎ اولین مدارک استفاده از تلسکوپ مربوط به تلسکوپ شکستی است که در سال ۱۶۰۸ درهلند پدیدار شد. پیشرفت آن به سه نفر نسبت داده می‌شود: هانس لیپرشی و زاخاریاس جانسن که در میدل‌بورخ عینک ساز بودند و جاکوب میتیوس از شهر آلکمار. لیپرشی با کنار هم گذاشتن چند عدسی توانسته بود وسیله‌ای بسازد که اجسام دور را بزرگ تر نشان دهد‎.‎ اما بدون شک اولین مخترع تلسکوپ شکستی را گالیله می‌دانیم. او بود که برای اولین بار با استفاده از دو عدسی که خود ساخته بود توانست آسمان را رصد کند و به بررسی ماه، اقمار مشتری و سایر اجرام آسمانی بپردازد. ‎بزرگنمایی اولین تلسکوپ گالیله حدود ۳ برابر بود، ولی بعدها توانست تلسکوپی با بزرگنمایی ۳۰ برابر نیز بسازد. با این وجود تلسکوپ‌های گالیله کیفیت بالایی نداشتند و دلیل آن مشکل بودن ساخت عدسی و همچنین وجود شیشه‌های نامرغوب بود‎ .‎گالیله در سالهای بعد اصلاحات بزرگی روی این طرح انجام داد.

این ایده که آینهٔ خمیده می‌تواند به جای عدسی مورد استفاده گیرد، محصول تحقیقی بود که مدت کمی پس از اختراع تلسکوپ شکستی انجام شد. مزایای استفاده از آینه‌های سهمی گون بجای عدسی، از جمله کاهش ابیراهی کروی و عدم وجود ابیراهی رنگی باعث شد تعداد زیادی طرح پیشنهادی و چندین تلاش برای ساخت آینه بازتابی صورت گیرد. در سال ۱۶۶۸ ایزاک نیوتن اولین تلسکوپ بازتابی کاربردی را ساخت که بعدها تلسکوپ بازتابی نیوتنی نام گرفت. وسیلهٔ او از یک آینه مقعر و یک آینه تخت تشکیل می‌شد که در یک لوله قرار گرفته بودند. آینهٔ تلسکوپ نیوتون از فلز ساخته شده بود و قطری در حدود۵‎ ‎ سانتی متر داشت.

حدود ۴ سال بعد از اختراع نیوتون فردی بنام لوران کسگرین طرح جدیدی را برای تلسکوپ نیوتون ارائه کرد. در این طرح نور بازتاب شده از آینهٔ مقعر بجای بازتاب از آینهٔ تخت بوسیلهٔ یک آینهٔ محدب به پشت لوله ارسال می‌شود. ‎مهمترین مزیت این طرح کوتاه‌تر شدن طول لولهٔ تلسکوپ در حدود نصف طول اولیه بود و این امر برای تلسکوپ‌های غول پیکر امروزی بسیار اهمیت می‌یابد. با این وجود طرح کسگرین مورد استقبال قرار نگرفت و سال‌ها بعد دانشمندان به اهمیت آن پی بردند‎.‎

اختراع عدسی بی‌رنگ در سال ۱۷۳۳ خطای رنگی را اندکی تصحیح کرد و امکان ساخت عدسی‌هایی با فاصلهٔ کانونی کمتر که به کوتاه شدن لوله‌ تلسکوپ می‌انجامید را فراهم ساخت. تلسکوپ‌های بازتابی اگرچه ابیراهی رنگی نداشتند، ولی طی فرن ۱۸ و ۱۹ آینهٔ فلزی آنها (ساخته شده از مس و قلع) به سرعت تیره می‌شد. این مشکل با اندود کردن سطح شیشه با نقره در ۱۸۵۷ یا آلومینیم در سال ۱۹۳۲ حل شد.

در سال ۱۹۳۰ عینک سازی بنام برنارد اشمیت وسیلهٔ جدیدی اختراع کرد‎. در این طرح یک تیغهٔ شیشه‌ای بر سر تلسکوپ‌های بازتابی قرار می‌گرفت و ابیراهی کروی را از بین می‌برد و دیگر احتیاجی به ساخت آینه‌های سهموی نبود. علاوه بر این، این نوع تلسکوپ‌ها میدان دید بسیار بالایی داشتند و اگر با سیستم کسگرین ترکیب می‌شدند تلسکوپی بدست می‌آمد که از هر جهت بر سایر تلسکوپ‌ها برتری داشت. امروزه بسیاری از منجمان نیمه آماتور از این تلسکوپ‌ها استفاده می‌کنند.

حداکثر اندازهٔ عدسی شیئی تلسکوپ‌های شکستی در حدود یک متر است. اکثریت قریب به اتفاق تلسکوپ‌های ساخته شده در قرن بیستم از نوع بازتابی بودند. بزرگترین تلسکوپهای بازتابی در حال کار بزرگتر از ۱۰ متر هستند. قرن بیستم همچنین پیشرفت در ساخت تلسکوپهای فعال در طیف وسیعی از طول موجها (از امواج رادیویی تا امواج گاما) را نشان می‌دهد. اولین تلسکوپ رادیویی هدفمند نیز در سال ۱۹۳۷ وارد عملیات ساخت شد. از آن زمان پیشرفت شگرفی در تنوع مجموعهٔ ابزار نجومی انجام شد‎.‎

تلسکوپ نوری[ویرایش]

یک تلسکوپ مدرن آماتوری
تلسکوپ فضایی مادون قرمز IRAS

یک تلسکوپ نوری طیف مرئی نور را گردآوری می‌کند. تلسکوپ‌های نوری قطر زاویه‌ای و روشنی اجرام مورد رصد را افزایش می‌دهند. در یک تلسکوپ نوری به منظور ایجاد تصویر از آینه یا عدسی استفاده شده است. از این نظر تلسکوپ‌ها را به سه گروه عمده تقسیم‌بندی می‌کنند:

۱) تلسکوپ‌های شکستی

۲) تلسکوپ‌های بازتابی

۳) تلسکوپ‌های شکستی – بازتابی[۱]

تلسکوپ‌های شکستی[ویرایش]

نوشتار اصلی: تلسکوپ شکستی

در یک تلسکوپ شکستی برای ایجاد تصویر از عدسی استفاده می‌شود. اولین بار گالیله از این نوع تلسکوپ استفاده کرد و از این رو به این گونه تلسکوپ‌ها گالیله‌ای نیز می‌گویند.

تلسکوپ‌های شکستی انواع مختلفی دارند که عبارتند از: ۱) تلسکوپ شکستی آکروماتیک ۲) تلسکوپ شکستی آپوکروماتیک

تلسکوپ شکستی آکروماتیک

در تلسکوپ‌های شکستی از دو عدسی شیئی و چشمی استفاده می‌شود. عدسی شیئی برای جمع‌آوری نور و کانونی کردن آن و عدسی چشمی برای بزرگنمایی تصویر. استفاده اشز عدسی به عنوان شیئی دارای معایب مهمی مانند ابیراهی رنگی است. برای رفع این مشکل می‌توان شیئی را از دو عدسی ساخت که منجر به ساخت تلسکوپ شکستی نوع آکروماتیک می‌شود. نسبت کانونی این نوع تلسکوپ ها از f/۷ ‎ تا f/۱۱‎ است که به این تلسکوپ‌ها اصطلاحاً "تلسکوپ کند" می‌گویند.

تلسکوپ شکستی آپوکروماتیک

تلسکوپ‌های شکستی آکروماتیک سنتی پس از دو قرن استفاده گسترده حالا جای خود را به مدلی پیشرفته‌تر به نام آپکروماتیک می دهند. عدسی شیئی این نوع تلسکوپ‌ها از چندین عدسی ساخته شده است که از جنس ED هستند. تلسکوپ‌هایی که شیئی آنها از سه قسمت تشکیل شده باشد به اصطلاح تریبلت می‌گویند. فضای بین این عدسی‌ها را از گاز نیتروژن پر می‌کنند. نسبت کانونی تلسکوپ‌های شکستی آپوکروماتیک معمولاً ازf/۴‎ تا f/۹‎ می باشد که به این تلسکوپ‌ها "تلسکوپ تند" می گویند. همچنین به علت پایین بودن نسبت کانونی از این نوع تلسکوپ ها برای عکاسی نجومی نیز استفاده می‌کنند.

تلسکوپ‌های بازتابی[ویرایش]

نوشتار اصلی: تلسکوپ بازتابی

در این تلسکوپ‌ها جمع‌آوری نور به عهدهٔ یک آینهٔ مقعر است. پوشش بازتابندهٔ آینه می‌تواند نقره یا آلومینیم باشد. پوشش آلومینیومی این مزیت را دارد که اکسیده شدن آن باعث از بین رفتن قابلیت بازتاب آینه نمی‌شود. در بعضی دیگر از تلسکوپ‌ها از نقره استفاده می‌شود، سپس روی آن پوششی قرار می‌گیرد که مانع اکسید شدن نقره می‌شود. آینهٔ مقعر می‌تواند قسمتی از یک کره (کروی) یا قسمتی از یک سهمی (سهموی) باشد. در تلسکوپ‌های بازتابی اگر از آینه سهموی استفاده شود، ابیراهی کروی به حداقل کاهش می‌یابد. تلسکوپ‌های بازتابی پس از مدتی نیاز به تمیز کردن آینه و پس از آن بسته به کیفیت روکش آلومینیوم، نیاز به تجدید روکش دارند. تلسکوپ‌های بازتابی در مقایسه با نوع شکستی یک مزیت عمده دارند: آینه خمیده در قسمت انتهایی تلسکوپ نصب می‌شود که باعث می‌شود آینه زیر وزن خود تغییر شکل ندهد.

تلسکوپ‌های بازتابی به دو دستهٔ اصلی تقسیم می‌شوند: ۱) تلسکوپ نیوتنی ۲) تلسکوپ کسگرین

تلسکوپ نیوتنی

در این نوع تلسکوپ نور جمع‌آوری شده توسط یک آینهٔ ثانویهٔ تخت یا منشور به بیرون از لولهٔ تلسکوپ هدایت شده و به عدسی چشمی ارسال می‌شود. اگرچه تلسکوپ‌های نیوتنی از انواع شکستی کوتاهترند، ولی همچنان از مدل‌های جدیدتر کسگرین یا اشمیت-کسگرین بلندتر و سنگین‌ترند.

تلسکوپ کاسگرین

تلسکوپ‌های نیوتنی نسبتاً بلند هستند و هنگامی که اندازهٔ آینه اصلی آنها بزرگ‌تر می‌شود، طول تلسکوپ بسیار زیاد می‌شود. برای حل این مشکل از روشی به نام کاسگرین استفاده می‌شود.

در این روش مرکز آینهٔ اصلی تلسکوپ سوراخ شده و چشمی در پشت تلسکوپ قرار می‌گیرد. آینهٔ ثانویه پرتوهای آینهٔ اصلی را از میان سوراخ آینهٔ اصلی به سمت چشمی می‌فرستد. در این روش به دلیل اینکه پرتوها طول تلسکوپ را دوبار طی می‌کنند، طول تلسکوپ به نصف کاهش می‌یابد. از روش کاسگرین در لنزهای آینه‌ای دوربین‌های عکاسی نیز استفاده می‌شود.

تلسکوپ‌های شکستی - بازتابی[ویرایش]

این تلسکوپ‌ها شبیه تلسکوپ‌های بازتابی هستند، با این تفاوت که در ساخت آنان از تیغه‌های شیشه‌ای‌ای استفاده شده است تا بتوان از آینه کروی بجای آینهٔ سهموی استفاده کرد. تلسکوپ‌های اشمیت و ماکسوتف - باورز از این دسته‌اند.

تلسکوپ اشمیت

در دهانهٔ این تلسکوپ تیغه باریکی به نام تیغه اشمیت قرار می‌گیرد که کار تصحیح خطای آینه را بر عهده دارد و بر اساس تراش و خطای آینه ساخته می‌شود.

تلسکوپ اشمیت-کاسگرین

تلسکوپ اشمیت-کاسگرین به تلسکوپی گفته می‌شود که از هر دو فناوری کاسگرین و تیغه اشمیت در آن استفاده شده باشد. این روش عموماً برای تلسکوپ‌های ۸ اینچ به بالا به کار می‌رود.

بزرگترین تلسکوپ‌های جهان[ویرایش]

نوشتار اصلی: بزرگترین تلسکوپ‌های جهان


عدم شفافیت جو برای امواج الکترومغناطیس[ویرایش]

از آنجا که جو زمین برای عمده طیف الکترومغناطیس شفاف نیست، تنها چند محدوده از امواج الکترومغناطیس در سطح زمین قابل دریافت است. این محدوده‌ها عبارتند از فروسرخ نزدیک و بخضی از امواج رادیویی. به همین دلیل هیچ تلسکوپ پرتو ایکس یا فروسرخ دوری در سطح زمین قابل استفاده نیست. چنین تلسکوپ‌هایی باید به مدار زمین زمین فرستاده شوند تا خارج از جو رصد خود را انجام دهند. حتی برای طول موج‌هایی که در سطح زمین قابل دریافت‌اند، تلسکوپی در مدار زمین به دلیل بدور بودن از اغتشاشات جوی، کارایی بسیار بیشتری دارد.

نمودار طیف الکترومغناطیس با مشخص شدن قسمت‌هایی که جو برای آن شفاف یا غیرشفاف است به همراه انواع تلسکوپ‌هایی که برای دریافت تصویر از قسمت‌های مختلف طیف به کار می‌رود.

استقرار تلسکوپ[ویرایش]

تکیه‌گاه تلسکوپ باید محکم و استوار باشد تا از لرزش آن جلوگیری کند؛ ضمن اینکه باید در هنگام رصد، تلسکوپ را به نرمی و به صورت یکنواخت چرخاند. دو شیوه‌ی اصلی در استقرار تلسکوپ وجود دارد: استوایی و سمتی- ارتفاعی.

استقرار استوایی[ویرایش]

نوشتار اصلی: استقرار استوایی

در استقرار استوایی، یک محور تلسکوپ به سمت قطب سماوی نشانه می‌رود. این محور را محور قطبی یا محور ساعت نام نهاده‌ند. محور دیگر، عمود بر این محور، محور مِیل است. با توجه به موازی بودن محور ساعت و محور چرخش زمین، اگر تلسکوپ را با یک سرعت ثابت حول این محور بچرخانیم، چرخش ظاهری آسمان جبران می‌ود. مهمترین مشکل فنی در نصب استوایی، محور میل می‌باشد. زمانی که تلسکوپ به سمت جنوب نشانه رفته است، وزن آن، نیرویی عمود بر این محور وارد می‌کند. چنانچه تلسکوپ در تعقیب یک جسم به سمت غرب بچرخد، یاتاقان‌ها باید یک بار اضافی را، موازی با محور میل، تحمل کنند.

استقرار سمتی- ارتفاعی[ویرایش]

نوشتار اصلی: استقرار سمت-ارتفاعی

در استقرار سمتی- ارتفاعی، یکی از محورها عمودی و دیگری افقی است. سوار کردن تلسکوپ به این صورت، از نصب استوایی ساده‌تر بوده،پایداری آن در تلسکوپهای خیلی بزرگ بیشتر می‌باشد. برای دنبال کردن چرخش آسمان، تلسکوپ باید با سرعت متغیر حول هر دو محور بچرخد. بدین ترتیب میدان دید نیز می‌چرخد؛ و این مسئله‌ای است که باید در هنگام استفاده از تلسکوپ جهت عکس‌برداری مورد توجه قرار گرفته، جبران شود. زمانی که یک جسم سماوی به سمت‌الرأس نزدیک می‌شود، مختصه سمتی آن در مدت زمانی بسیار کوتاه تغییر می‌کند. از این رو، در اطراف سمت‌الرأس ناحیه کوچکی وجود دارد که رصد آن با یک تلسکوپ سمتی غیر ممکن است.[۲]

استقرار سمت ارتفاعی بهتر است یا استوایی؟[ویرایش]

پایه‌های سمتی-ارتفاعی، درست مانند پایه‌های دروبین عکاسی فقط به بالا و پایین و چپ و راست حرکت می‌کنند و از این رو لوله تلسکوپ فقط در همین جهات حرکت خواهد کرد. بهترین نوع از پایه‌های سمت-ارتفاعی، آنهایی هستند که پیچ حرکت آرام دارند که به درد دنبال کردن جرم مورد نظر می‌خورند (البته فقط در جهت‌های گفته شده). با وجود این، پایه‌های سمت-ارتقاعی نمی‌توانند ستاره‌ها را در حرکت قوسی شان دنبال کند.

رادیو تلسکوپ[ویرایش]

رادیو تلسکوپ‌ها انتن‌های رادیویی کنترل شونده ای هستند که در اخترشناسی رادیویی استفاده میشوند.این دیش‌ها گاهی روی شبکه فلزی رسانایی با دهانه ای کوچکتر ازطول موج در حال مشاهده ساخته میشوند.رادیوتلسکوپهاچندقسمتی از جفت یا گروههای بزرگتری ازاین دیشها ساخته شده اند.برای بر هم نهی دهانه‌های مجازی که اندازه‌های یکسانی دارند به منظور تفکیک بین 2تلسکوپ. این فرایند به تطبیق دهانه‌ها معروف است.رکورد فعلی مربوط به انذازه چینش تلسکوپها برای سال 2005 است که برای چندین بار عرض زمین با استفاده از پایه‌های فضایی براساس تداخل طولانی‌ترین مدار مبنا(VLBI) تلسکوپهااز قبیل هالسی(HALCA)ژاپنی( ازمایشگاه پیشرفته برای ارتباطات و نجوم) ماهوارهVSOP(VLBI برنامه رصد فضایی) با استفاده ازاطلاعات نوری(کنار هم قرار دادن تلسکوپهایی نوری) ومانع دید شدن تداخل دهانه‌ها در تلسکوپهای بازتابی تنها برهم نهی دهانه‌ها هم اکنون در مورد تلسکوپهای نوری نیز عملی شده است.از رادیوتلسکوپها برای گرداوری اشعه میکروموجی استفاده میشود.همچنین برای گرداوری اشعه وقتی که یک نور مرئی یا تیرگی (از قبیل اخترنماها) مانع میشود.بعضی از رادیو تلسکوپهادرپروژه هایی از قبیلSETI ورصدخانهAREIBO برای بررسی کردن زندگی EXTERRESTRIAL استفاده میشوند.

رادیو تلسکوپ نوعی آنتن رادیویی است که در اخترشناسی رادیویی به منظور پیدا کردن و جمع آوری اطلاعات از ماهواره‌ها و کاوشگرهای فضایی و هر گونه منبع رادیویی در فضا استفاده می‌شود.

این نوع تلسکوپ‌ها با تلسکوپ‌های نوری متفاوت اند چون فقط می‌توانند از منابع رادیویی اطلاعات بگیرند.

رادیو تلسکوپ‌ها دارای دیش‌های بزرگی هستند که به صورت تکی یا چند تایی کار می‌کنند و معمولاً برای جلوگیری از تداخل امواج الکترومغناطیسی منتشر شده از تلویزیون و رادیو و رادار و...در مکان‌های خالی از جمعیت واقع شده‌اند این دقیقاً مانند تلسکوپ‌های نوری است که باید از آلودگی نوری پرهیزکند.

رادیو تلسکوپ برای مطالعه رخدادهای رادیویی از ستاره ها، کهکشان‌ها اخترنماها، و سایر اشیا فضایی استفاده می‌شود در طول موجی بین ۱۰ متر (۳۰ مگاهرتز) و ۱ میلیمتر(300کیلوهرتز) در طول موج‌های بلند تر مانند ۲۰ سانتیمتر(۱۰۵ گیگاهرتز) بی قاعدگی‌ها در طبقه یونسفر زمین باعث خمیدگی امواج ورودی می‌شود، به این پدیده جرقه زدن می‌گویند که قابل قیاس با چشمک زدن ستارگان در طول موج مرئی می‌شود جذب امواج کهکشانی توسط لایه یونسفر با افزایش طول موج افزایش می‌یابد تا جایی که طول موج‌ها ی بالاتر از ۱۰ متر با رادیو تلسکوپ‌های زمینی قابل دریافت نیستند.

اولین رادیو تلسکوپ Reber در سال 1937

رادیو تلسکوپ‌های اولیه[ویرایش]

اولین آنتن رادیویی استفاده شده برای تشخیص منابع رادیویی نجومی توسط Karl Guthe Jansky یکی از مهندسان لابراتوار تلفن بل در سال ۱۹۳۱ ساخته شد.جان اسکای شغل خود را به شناسایی منابع ایستا که توانایی مداخله با سرویس رادیویی تلفن را دارند اختصاص داد.آنتن جان اسکای برای دریافت سیکنال‌های رادیویی موج کوتاه در یک فرکانس ۲۰٫۵ MHz (طول موجی تقریباً ۱۴٫۶ m) طراحی شده بود. آن نصب شده بوددر یک صفحه گردون که اجازه می‌داد تابه هر سمتی بچرخد، و چرخ و فلک جان اسکای نام گرفت.آن دارای ضخامتی تقریباً ۱۰۰ فوت(۳۰ متر)و ۲۰فوت (۶ متر)ارتفاع بود.وبوسیله مجموعهای از چهار چرخ چرخش و هدایت می‌شددر دریافت منابع رادیویی مزاحم (ایستا) و می‌توانست با دقت اشاره کند.بخشی کوچک امواج از یک طرف آنتن با سیستم خودکار و کاغذ آنالوگ ذخیره می‌شدند.بعد از ثبت سیکنال هااز همه مسیرها در چندین ماه، جان اسکای عاقبت آنها را به سه نوع ایستا دسته بندی کرد:نزدیک بوسیله توفان همراه بااذرخش وصاعقه، دور توفان همراه بااذرخش وصاعقه و یک صدای ضعیف هیس از منبعی نا شناخته.

اخترشناسی رادیویی[ویرایش]

اخترشناسی رادیویی یکی از شاخه‌های مهم اخترشناسی است که به مطالعه اجرام سماوی در زمینه امواج الکترومغناطیسی می‌پردازد.

تکنیک‌های اخترشناسی رادیویی شبیه به تکنیک‌های اخترشناسی اپتیکی است با این تفاوت که در اخترشناسی رادیویی از رادیو تلسکوپ استفاده می‌شود ولی در اخترشناسی از تلسکوپ نوری از این رو تنها می‌تواند از منابع رادیویی اطلاعت بگیرد.

تاریخچه[ویرایش]

این ایده که اجرام سماوی می‌توانند تشعشعات رادیویی داشته باشند نخستین بار توسط معادله ماکسول نشان داده شد که تشعشات رادیویی از ستارگان می‌توانند با هر طول موجی وجود داشته باشند.

بسیاری از دانشمندان برجسته مانند توماس الوا ادیسون، الیور جوزف لوج، و ماکس پلانک پیش بینی کرده بودنند که خورشید دارای تشعشعات رادیویی است. حتی لوج سعی کرد که سیگنال‌های خورشیدی را دریافت کند ولی به دلیل مشکلات دستگاهش در این امر موفق نبود.

اولین تشعشعات دریافت شده از یک منبع رادیویی در فضا که به طور اتفاقی در اوایل دهه ۳۰ ثبت شد به وسیله کارل گوت جانسکی انجام شد. او که به عنوان یک مهندس در آزمایشگاه تلفن بل کار می‌کرد در حال تحقیق و بررسی روی فرستادن امواج صوتی به آن سوی اقیانوس اطلس بود که بدین منظور از یک آنتن بزرگ استفاده می‌کرد سپس او متوجه شد که سیستم آنالوگ ضبط وی مدام یک سیگنال را از منبعی نامعین ضبط می‌کند از آنجا که این سیگنال روزی شدت گرفت جانسکی گمان کرد که منبع آن ممکن است خورشید باشد. پس از بررسی‌ها او متوجه شد که سیگنال دقیقاً با طلوع و غروب خورشید مطابق نیست ولی در عوض در یک سیکل ۲۳ ساعت و ۵۶ دقیقه تکرار می‌شود نوعی از اجرام سماوی که ساکن در کره سماوی می‌باشند و با شب و روز زمین می‌چرخند با مقایسه مشاهدات وی با نقشه‌های فضایی، دریافت که این سیگنال‌ها از کهکشان راه شیری می‌آید و در مرکز کهکشان قوت می‌گیرد در صورت فلکی کماندار او نتایج مشاهدات و اکتشافاتش را در سال ۱۹۳۳ رسماً اعلام کرد. ولی از آنجا که آزمایشگاه بل وی را به شاخه دیگری منتقل کرد او نتوانست تحقیقات خود را در این زمینه ادامه دهد. گرت ربر با ساختن یک دیش شلجمی با ۹ متر طول در شعاع که در ساخت رادیو تلسکوپ استفاده می‌شد کمک شایانی به اخترشناسی رادیوی کرد این کار در ۱۹۳۷ انجام گرفت بعد از مدتی وی موفق به ترسیم اولین نقشه آسمانی از امواج رادیویی شد.

در ۱۹۴۲ ج.س هی که یک محقق نظامی در بریتانیا بود کشف کرد که خورشید امواج رادیویی می‌دهد.

در اوایل دهه ۵۰ مارتین ریل و آنتونی هویش دردانشگاه کمبریج از تداخل سنج امواج که در دانشگاه موجود بود استفاده کرده و موفق به ترسیم نقشه‌های معروف ۲c و ۳c شدند.

تلسکوپ‌های ذرات پر انرژی:

تلسکوپ امواج ایکس از تلسکوپWOLTER که ترکیب شده ازشکل حلقوی اجمالی اینه‌های ساخته شده از فلزات سنگین قادر به بازتاب امواج با درجه کم هستند، استفاده می کنند.این آینه‌ها معمولاً مقطعی از یک سهمی دوران داده شده و هذلولی یا بیضی هستند.در سال1952هانس والتر سه راه که یک تلسکوپ می توانست با استفاده از این نوع خاص از آینه‌ها ساخته شود را شرح داد.تلسکوپ‌های امواج گاما مانع از تمرکز کامل می شوند و از پنهان کردن رمزی دهانه استفاده می کنند.الگوهای پنهان کردن ایجاد شده می تواند برای تشکیل یک تصویر احیا شوند. تلسکوپ‌های امواج ایکس و گاما معمولاً در ماهواره هایی در مدار زمین یا بالن‌های بلند پرواز خارج از جو زمین که برای این قسمت از طیف الکترو مغناطیس مات هست، قرار دارند. در گونه‌های دیگر از تلسکوپ‌های ذرات پرانرژی، هیچ سیستم تشکیل تصویر نوری وجود ندارد.تلسکوپ‌های امواج کیهانی معمولاً از کنار هم قرار دادن انواع آشکار سازهای مختلف پخش شده در یک منطقه بزرگ، تشکیل شده اند.تلسکوپ نوترینو از جرم زیادی از آب ویخ احاطه شده به وسیله مجموعه ای از آشکار سازهای حساس به نور به نام لولهPHOTOMULTIPLIERتشکیل شده است.


جستارهای وابسته[ویرایش]

منابع[ویرایش]

  1. مفاله آشنایی با انواع تلسکوپ های نوری نویسنده : علی شهبازی
  2. کتاب مبانی ستاره‌شناسی، صفحه ۶۹ و ۷۰

منابع 1

. archive.org "Galileo His Life And Work" BY J. J. FAHIE "Galileo usually called the telescope occhicde or cannocchiale ; and now he calls the microscope occhialino. The name telescope was first suggested by Demisiani in 1612" 2. ^ Sobel (2000, p.43), Drake (1978, p.196) 3. ^ Rosen, Edward, The Naming of the Telescope (1947) 4. ^ galileo.rice.edu The Galileo Project> Science> The Telescope by Al Van Helden "The Hague discussed the patent applications first of Hans Lipperhey of Middelburg, and then of Jacob Metius of Alkmaar... another citizen of Middelburg, Sacharias Janssen had a telescope at about the same time but was at the Frankfurt Fair where he tried to sell it" 5. ^ Stargazer - By Fred Watson, Inc NetLibrary, Page 109 6. ^ Attempts by Niccolò Zucchi and James Gregory and theoretical designs by Bonaventura Cavalieri, Marin Mersenne, and Gregory among others 7. ^ madehow.com - Inventor Biographies - Jean-Bernard-Léon Foucault Biography (1819-1868) 8. ^ Bakich sample pages Chapter 2, Page 3 "John Donavan Strong, a young physicist at the California Institute of Technology, was one of the first to coat a mirror with aluminum. He did it by thermal vacuum evaporation. The first mirror he aluminized, in 1932, is the earliest known example of a telescope mirror coated by this technique." 9. ^ Barrie William Jones, The search for life continued: planets around other stars, page 111 10. ^ Wolter, H. (1952). "Glancing Incidence Mirror Systems as Imaging Optics for X-rays". Ann. Physik 10: 94. 11. ^ Wolter, H. (1952). "A Generalized Schwarschild Mirror Systems For Use at Glancing Incidence for X-ray Imaging". Ann. Physik 10: 286.

پیوند به بیرون[ویرایش]