گیاه

از ویکی‌پدیا، دانشنامهٔ آزاد
(تغییرمسیر از گیاهی)
پرش به: ناوبری، جستجو
فارسیEnglish
Plants
سن:
کامبرین تاکنون ۵۲۰ تا ۰ میلیون سال پیش
Diversity of plants image version 5.png
طبقه‌بندی علمی
دامنه: یوکاریوت
(طبقه‌بندی‌نشده): باستان‌گیاهیان
فرمانرو: گیاهان
ارنست هکل ۱۸۶۶[۱][نیازمند بازبینی منبع]
زیربخش‌ها

جلبک سبز

رویان‌داران (embryophytes)

Nematophytes

مترادف‌ها
  • Chloroplastida Adl et al. , 2005
  • Viridiplantae Cavalier-Smith 1981
  • Chlorobionta Jeffrey 1982, emend. Bremer 1985, emend. Lewis and McCourt 2004
  • Chlorobiota Kendrick and Crane 1997

گیاهان گروه بزرگی از گونه‌های زنده شامل موجوداتی مانند درختان، علف، سرخس‌ها و خزه گیان است.

تعریف کلمهٔ گیاه دشوار است. اگرچه گیاه شناسان محدودهٔ رده‌بندی گیاهان را تعریف کرده‌اند، مرزهای تعیین کنندهٔ اعضاء رده‌بندی گیاهان بسیار اختصاصی تر از تعریف‌های رایج گیاه است. گیاهانی که ما هر روز با آنها مواجه هستیم، معمولاً متعلق به گروه گیاهان آوندی می‌باشند. ما گیاه را بعنوان یک موجود زنده یوکاریوت و دارای تعداد زیادی سلول تعریف می‌کنیم که عموماً فاقد اندام‌های حسی یا حرکت ارادی بوده و در صورت رشد کامل دارای ریشه، ساقه و برگ می‌باشند. اما از نظر گیاه‌شناسی فقط گیاه آوندی دارای ریشه، ساقه و برگ است. تعریف دیگر گیاه که فراگیرتر می‌باشد، عبارت است از هرچیزی که فتواتوتروف می‌باشد- یعنی غذای خودش را از مواد خام غیر آلی و نور خورشید تولید کند. برای فردی که بر نقش خاصی که گیاهان در یک اکوسیستم بازی می‌کنند متمرکز شود این تعریف غیر منطقی نیست. اما در بین فتواتوتروف‌ها، پروکاریوت‌هایی (پیش هسته) مخصوصاً باکتری‌های فتواتوتروف و سیانوفیت‌ها وجود دارند. سیانوفیت‌ها را گاهی اوقات (به دلایل خوبی) جلبک‌های سبز– آبی می‌نامند. در اینجا این مشکل بوجود می‌آید که بیشتر مردم از جمله گیاه شناسان قدیمی قارچ خوراکی را گیاه می‌نامند اگرچه قارچ خوراکی اندام باردهی قارچ می‌باشد (حوزه قارچها)، و اصلاً فتواتوتروف نبوده، بلکه گندخوار (saprophytic) می‌باشد؛ و بیش از چند گونه گیاهان گل دار، قارچ‌ها و باکتری‌ها وجود دارند که انگلی هستند.

ما قادر به ارائهٔ پاسخی مطمئن نیستیم. فهرست خصوصیاتی که حوزهٔ رده‌بندی گیاهان را از سایر حوزه‌های زیست‌شناسی جدا می‌کند حد اقل یک تعریف فنی ارائه می‌کند اما این تعریف مورد پسند همگان قرار نمی‌گیرد؛ بنابراین تعریف اصطلاح گیاه همیشه به معنی بیشتر موجودات زنده طبقه‌بندی شده در محدودهٔ رده‌بندی گیاهان می‌باشد. مثلاً «اگر جلبک‌های سبز به وضوح گیاهانی جزو رده‌بندی گیاهان هستند، پس بیشتر مردم اکثر خزه‌های دریایی را هم که جزئی از (حوزه آغازیان) هستند، جزو جلبک‌های سبز در نظر می‌گیرند. مشکل عدم وجود دقت یا توافق که در تعریف گیاه وجود دارد یکی از گفته‌های مورد تفاهم است که اغلب در مقالات با آن مواجه هستیم از این قبیل: آوند چوبی یکی از دو بافت انتقال در گیاه است. بطور کلی تصور نمی‌شود این جمله به معنی تمامی گیاهان، جلبک‌ها با گیاهان گلدار باشد. به احتمال بسیار زیاد باکتری‌ها یا قارچ‌ها را به حساب نمی‌آورد. در واقع معمولاً بهتر است اینگونه تصور شود که این بحث فقط به گیاهان آوندی مربوط می‌شود (ضرورتاً سرخس‌ها، مخروط زاها، گیاهان گلدار و تعدادی دیگر) مگر اینکه به صورتی متفاوت بیان شود (مثلاً در گیاهان آوندی و غیر آوندی اینگونه‌است.

رده‌های گیاهان[ویرایش]

ممکن است گیاهان بر مبنای الگوهای رشد فصلی اشان مرتب شوند. البته گیاهان ساده مثل جلبک‌ها دوران زندگی کوتاهی دارند و اصطلاح‌های زیر در مورد آنها بکار نمی‌رود اما جمعیت جلبک‌ها عموماً «فصلی هستند. • سالانه: زندگی و تولید مثل در یک فصل رشد و نمو. • دوسالانه: زندگی در دو فصل رشد و نمو؛ تولید مثل معمولاً» در سال دوم • چند ساله: زندگی در سال‌های رشد نمو طولانی؛ ادامه به تولید مثل در یک مرحله گیاهان آوندی یا (غیر چوبی) هستند ویا چوبی. گیاه چوبی ممکن است درختانی باشند با یک یا چند تنه و شاخه که روی زمین بوجود می‌آیند ویا درختچه‌هایی باشند بدون تنه، با شاخه‌هایی که نزدیک سطح زمین قرار دارند.

همچنین ممکن است گیاهان بر اساس چگونگی کاربردشان طبقه‌بندی شوند. گیاهان غذایی از جمله میوه‌ها، سبزیجات، گیاهان دارویی و ادویه‌ها می‌باشند.

دسته‌ها[ویرایش]

دسته‌های گیاهان سبز
گروه غیررسمی نام دسته تصویر توضیحات
جلبک‌های سبز
Green algae
سبزتباران
Chlorophyta
Pediastrum duplex wagner.jpg این دسته بین ۳٬۸۰۰[۲] تا ۴٬۳۰۰[۳] گونه زنده دارد. سبزتباران گروهی از جلبک‌های سبز هستند. در دسته‌بندی‌های قدیمی تمامی جلبک‌های سبز را در زمره سبزتباران قرار می‌دادند که شامل حدود ۷ هزار گونه می‌شد که عمدتاً ارگانیزم‌های یوکاریتوتی فتوسنتزکننده آبزی هستند. جلبک‌های سبز همانند گیاهان خشکی، سبزینه chlorophyll دارند و غذا را به شکل نشاسته در دیسه‌های plastids خود ذخیره می‌کنند.
سنگ‌خزه‌تباران
Charophyta
CharaLilleLamiot2008.jpg بین ۲٬۸۰۰;[۴] ۴ هزار یا ۶ هزار[۵] گونه زنده دارد. گروهی از جلبک‌های سبز است که شامل نزدیک‌ترین خویشاوندان گیاهان رویان‌دار embryophyte می‌شود. برخی گروه‌ها هم‌چون جلبک‌های سبز هم‌یوغ، فاقد یاخته‌های تاژک‌دارند. جلبک‌های سبز هم‌یوغ هم‌چنین تولید مثل جنسی ندارد و جنبندگی آن‌ها از طریق تاژک انجام نمی‌شود.
خزه‌تبارها
Bryophytes
جگرواش‌تباران
Marchantiophyta
Marchantia.jpg جـِگَرواش‌تباران بین ۶ هزار تا ۸ هزار[۶] گونه زنده دارد. شاخه‌ای از گیاهان غیرآوندی شامل تقریباً ۶ هزار گونه که اغلب کوچک‌اند و در محیط‌های مرطوب زندگی می‌کنند. در چرخه زندگی جگرواش‌تباران مانند دیگر خزه‌تباران، گامتوفیت شکل غالب است بدین معنی که یاخته‌های گیاه تنها یک مجموعه از اطلاعات ژنتیکی را همراه دارد. برخی از گیاهان این دسته ریسه‌ها بی‌برگ مسطح دارند اما بیشتر گونه‌های این دسته برگ‌دار هستند و همانندی زیادی با خزه‌های مسطح دارند.
شاخ‌واش‌تباران
Anthocerotophyta
Hornwort (3144429129).jpg بین ۱۰۰ تا ۲۰۰[۷] گونه زنده دارد. شاخ‌واش‌تباران شاخه‌ای کوچک از گیاهان غیرآوندی، شامل تقریباً ۱۰۰ گونه است که دارای قاعده‏ای نسبتاً پهن و تعدادی پوشینهٔ بلندند که از رأس به‌صورت دوشاخه می‌شکافند.
خزه‌تباران
Bryophyta
Moss.jpg ۱۲ هزار[۸] گونه زنده دارد. شاخه‌ای از گیاهان غیرآوندی رطوبت‌پسند، دارای رشد محوری و پوشینه‌های کوتاه است. خزه‌ها کندرشدند و از نخستین گیاهان زمینی به‌شمار می‌آید و اندام (ساقه و ریشه و برگ) ندارند بلکه ساختارهایی شبیه به آن دارند. خزه‌ها به وسیله هاگ تولیدمثل می‌کنند. این گیاهان ساختارهای عمودی ساقه‌مانند دارند. خزه‌ها فاقد آوندند و از طریق اسمز سلولی آب را در سلول‌ها منتقل می‌کنند.
سرخس‌تبارها
Pteridophytes
پنجه‌گرگ‌تباران
Lycopodiophyta
Selaginella selaginoides Atlas Alpenflora.jpg این دسته ۱٬۲۰۰ گونه زنده دارد.[۹] پنجه‌گرگ‌تباران دسته‌ای آونددار از فرمانرو گیاهان است. این دسته با حدود ۴۱۰ میلیون سال قدمت، قدیمی‌ترین دسته از گیاهان زنده آونددار است و برخی از «ابتدایی‌ترین» گونه‌ها از گیاهان زنده را دربر می‌گیرد.[۱۰] این گونه‌ها از راه افشاندن هاگ تولید مثل می‌کنند و برخی جورهاگ و برخی نیز ناجورهاگ هستند. پنجه‌گرگ‌تباران پیش‌استوانه protostele دارند و هاگ‌رُست sporophyte (مرحلۀ دولادی تشکیل هاگ در چرخۀ زندگی گیاه) در آن‌ها غالب است.[۱۱]
سرخس‌تباران
Pteridophyta
Polypodium virgnianum 2-eheep (5098039438).jpg ۱۱٬۰۰۰ گونه زنده دارد.[۹] ابتدایی‌ترین شاخهٔ گیاهان آوندی که همهٔ نهانزادان آوندی را شامل می‌شود. سرخس‌ها گروهی از گیاهان نهانزاد آوندی هستند. سرخس‌های کنونی گروهی تکامل یافته‌ترین گیاهان از این گروه هستند. رشد برگ در سرخس‌ها نسبتا کامل و مداوم و ریزوم آنها پایا است. در سرخس‌ها مثل سایر نهانزادان آوندی تولید گیاه برگدار با تشکیل تخم آغاز می‌شود و بنابراین با اسپوروفیت مطابقت دارد.
گیاهان دانه‌دار
Seed plants
پایانخل‌تباران
Cycadophyta
Cycas Sago.palm.arp.750pix.jpg ۱۶۰ گونه زنده دارد.[۱۲] پایانخل یا سَرَخس نخلی یکی از گیاهان بازدانه است که قدمت آن به دوران پرمین می‌رسد. این گیاه باستانی شبیه نخل‌ها است و احتمالاً در دوران باستان برای دایناسورها غذا فراهم می‌کرده است.
کهن‌دارتباران
Ginkgophyta
Ginkgo biloba 010.JPG یک گونه زنده دارد.[۱۳] کهن‌دار[۱۴] یا جینکو، یکی از قدیمی‌ترین گونه‌های گیاهی بر روی کره زمین است. برگ‌های درخت جینکو قرن‌ها مورد مطالعه و پژوهش قرار گرفته‌اند و استفاده دارویی دارند. کهن‌دار با بهبود جریان خود عملکرد و کارایی مغز را بالا می‌برد و باعث بهبود حافظه، تمرکز و سرعت در یادگیری می‌شود. مواد اصلی تشکیل دهنده جینکو، فلاونوید و ترپنوید هستند.
مخروط‌تباران
Pinophyta
Fichtennadel.jpg ۶۳۰گونه زنده دارد.[۹] مَخروطیان دسته‌ای از انواع درختان همیشه‌سبز و از گیاهان بازدانه از ردهٔ «پیدازادان» هستند که غالباً در منطقهٔ معتدل می‌رویند. ساقهٔ این تیره از گیاهان، دارای طبقهٔ مولدی است که آوندهای قرصی چوبی می‌سازد. برگهای آنها عموماً باریک و سوزنی و دارای یک رگبرگ دایمی است. از این گیاهان صمغهای مختلفی به نام تربانتین استخراج می‌شود. میوهٔ گیاهان این تیره مرکب و مخروطی شکل است. انواع مهم گیاهان این تیره عبارتند از کاج، سرو، ابهل، پیرو، سرخدار، صنوبر، شوکران، کاج دریائی، سیور.[۱۵]
گنتوم‌تباران
Gnetophyta
Welwitschia mirabilis S&J6.jpg ۷۰ گونه زنده دارد.[۹] دسته گنتوم‌تباران از سه سرده زنده از گیاهان چوبی تشکیل شده که در زمره بازدانگان به‌شمار می‌آیند. سه سرده یادشده شامل گنتوم، ویلوچیا، و ریش بز است. گنتوم‌تباران برخلاف دیگر بازدانگان، عنصر چوب‌آوندی vessel element دارند که در گیاهان گلدار نیز دیده می‌شود. عنصر چوب‌آوندی یاختۀ آوندی در چوب برخی سرخس‌ها و اغلب نهان‌دانگان است که فاقد دیوارۀ عرضی است و دیوارۀ ثانویۀ ضخیم دارد.
گلدارتباران
Magnoliophyta
Sweetbay Magnolia Magnolia virginiana Flower Closeup 2242px.jpg این دسته ۲۵۸٬۶۵۰ گونه زنده دارد.[۱۶] گیاهان گلدار پرتنوع‌ترین خانواده گیاهان است. گیاهان گلدار و بازدانه تنها خانوداه گیاهان هسته دارند. گیاهان گلدار در زمین عمری ۴۲۵ میلیون ساله دارند که اجداد آن‌ها هاگ‌ها بودند. کشاورزی مهم‌ترین کاربردی است که انسان از این گیاهان گلدار استفاده می‌کند و غالباً از گیاهان گلداری مانند برنج، ذرت، گندم، جو، جو صحرایی و نیشکر برای کشاورزی و تامین غذای خود استفاده می‌کند.


پیدایش و پیشینه[ویرایش]

طرح تاریخ گیاهان زمین مشابه مهره‌داران آن است، با امواجی از انقراض‌ها و جانشینی‌ها و پیدایش تصادفی اشکال تازه برای غلبه بر محیط. در دورهٔ دونین، زمانی که جنگل‌های اولیه پدید آمدند، ابتدا مجموعهٔ گیاهان دم‌اسبی، پنجه‌گرگی‌ها و سرخس‌ها گسترش یافتند و گیای (فلورای) غالب زمین را به وجود آوردند. این گیاهان به‌وسیلهٔ هاگ تولید مثل می‌کردند و آب و هوای مرطوب را ترجیح می‌دادند.[۱۷]

انرژی لازم برای نگهداری جانوران دریایی اولیه باید نخست توسط زیستمندان فتوسنتزکننده تأمین شده باشد، و هنوز هم عمدتاً توسط این زیستمندان تأمین می‌گردد، ولی زمانی در اواخر دوران پرکامبرین جلبک‌های دریایی پرسلولی تکامل یافتند. در مورد گوناگونی یا فراوانی این گیاهان اطلاعات چندانی دردست نیست؛ آن‌ها قاعدتاً به اجتماعات بی‌مهرگان تنها زیستمندان کوچکی اضافه کرده‌اند و ممکن است مستقیماً توسط زیستمندان دیگر خورده شده باشند.[۱۸]

باکتری‌های خاک، قارچ‌ها و اشکال گیاهی پست احتمالاً در دروهٔ کامبرین روی زمین سکنی گزیده‌اند، و شاید حاشیهٔ مرداب‌ها و خلیج‌ها به انواع گیاهان پرطاقت و نیمه‌آبزی کمک کرده باشد؛ ولی، نخستین راسته‌های گیاهان غیر آبزی که نوادگان آن‌ها عناصر اصلی گیاهی خشکی را تشکیل می‌دهند، در دورهٔ سیلورین پدید آمده‌اند. گیاهان اولیه از مرداب‌ها و باتلاق‌ها به مناطق مسکونی خشک واقع در زمین‌های کوهپایه‌ای گسترش یافتند. با گسترش کمربند سبز زمین، جانوران در حاشیه آن را تعقیب کردند: بندپایان و احتمالاً کرم‌ها، که از خرده‌های گیاهان و سرانجام از خود گیاهان تغذیه می‌کردند، از این جانوران بودند. بدین‌ترتیب برای نگهداری از جمعیت‌های چهارپایان بزرگ که در طی دورهٔ پیدایش یافتند، روی خشکی انواع شکار وجود داشت.[۱۸]

گیاهانی که دارای دانه و گرده هستند، در دورهٔ دونین تکامل یافتند. آن‌ها در طی دورهٔ کربنیفر شاخه-شاخه شدند؛ در دورهٔ پرمین دودمانی به‌نام مخروطیان (کاج‌ها) آغاز به گسترش کرد که در دوران میانه‌زیستی گیای غالب خشکی شد. چیرگی مخروطیان با پیدایش آب و هوای خشک همراه بود.[۱۸]

تحول دیگری که در اواخر دورهٔ کرتاس روی داد، گسترش ناگهانی گیاهان گلدار برای غلبه بر قلمرو خشکی بود. (امروزه حدود ۰۰۰، ۲۵۰ گونه گیاه گلدار وجود دارد) به‌نظر می‌رسد نخستین گیاهان گلدار گونه‌های خودرو و فرصت‌طلبی بوده‌اند که برای تولید مثل سریع سازگاری یافتند. تخصص‌یابی‌های تولید مثلی، شامل تکوین گل‌ها و پیدایش دستگاه‌های گرده‌افشانی حشره‌ای، به گیاهان گلدار امتیازی عمومی در مقابل مخروطیان بخشید.[۱۸]

جزئیات گوناگونی و وفور گونه‌های گیاهی طی دوران‌های دیرینه‌زیستی و میانه‌زیستی تا اندازهٔ زیادی ناشناخته مانده‌است. دگرگونی عمده‌ای که در عناصر غالب گیای زمین روی می‌داد، همانند همان چیزی بود که در مورد جانوران هم اتفاق می‌افتاد، ولی از قرار معلوم این تغییرات مربوط به رخدادهایی نبودند که جانوران را مورد تأثیر قرار می‌دادند. مثلاً، گیاهان گلدار مدتها پیش از این‌که دایناسورها منقرض شوند، به‌خوبی تثبیت شده بودند. افزون بر این، چند موج انقراض چهارپایان که در دوران میانه‌زیستی روی داد، در تاریخ گیاهان تا جایی که امروزه می‌دانیم منعکس نشده‌است.[۱۸]

نگارخانه[ویرایش]

>

جستارهای وابسته[ویرایش]

منابع[ویرایش]

  1. Haeckel G (1866). Generale Morphologie der Organismen. Berlin: Verlag von Georg Reimer. pp. vol.1: i–xxxii, 1–574, pls I–II; vol. 2: i–clx, 1–462, pls I–VIII. 
  2. Van den Hoek, C. , D. G. Mann, & H. M. Jahns, 1995. Algae: An Introduction to Phycology. pages 343, 350, 392, 413, 425, 439, & 448 (Cambridge: Cambridge University Press). ISBN 0-521-30419-9
  3. Guiry, M.D. & Guiry, G.M. (2011), AlgaeBase: Chlorophyta, World-wide electronic publication, National University of Ireland, Galway, retrieved 2011-07-26 
  4. Guiry, M.D. & Guiry, G.M. (2011), AlgaeBase: Charophyta, World-wide electronic publication, National University of Ireland, Galway, retrieved 2011-07-26 
  5. Van den Hoek, C. , D. G. Mann, & H. M. Jahns, 1995. Algae: An Introduction to Phycology. pages 457, 463, & 476. (Cambridge: Cambridge University Press). ISBN 0-521-30419-9
  6. Crandall-Stotler, Barbara. & Stotler, Raymond E. , 2000. "Morphology and classification of the Marchantiophyta". page 21 in A. Jonathan Shaw & Bernard Goffinet (Eds.), Bryophyte Biology. (Cambridge: Cambridge University Press). ISBN 0-521-66097-1
  7. Schuster, Rudolf M. , The Hepaticae and Anthocerotae of North America, volume VI, pages 712-713. (Chicago: Field Museum of Natural History, 1992). ISBN 0-914868-21-7.
  8. Goffinet, Bernard; William R. Buck (2004). "Systematics of the Bryophyta (Mosses): From molecules to a revised classification". Monographs in Systematic Botany (Missouri Botanical Garden Press) 98: 205–239. 
  9. ۹٫۰ ۹٫۱ ۹٫۲ ۹٫۳ Raven, Peter H.; Evert, Ray F.; Eichhorn, Susan E. (2005). Biology of Plants (7th ed.). New York: W. H. Freeman and Company. ISBN 0-7167-1007-2. 
  10. McElwain, Jenny C.; Willis, K. G.; Willis, Kathy; McElwain, J. C. (2002). The evolution of plants. Oxford [Oxfordshire]: Oxford University Press. ISBN 0-19-850065-3. 
  11. Eichhorn, Evert, and Raven (2005). Biology of Plants, Seventh Edition. 381-388.
  12. Gifford, Ernest M.; Foster, Adriance S. (1988). Morphology and Evolution of Vascular Plants (3rd ed.). New York: W. H. Freeman and Company. p. 358. ISBN 0-7167-1946-0. 
  13. Taylor, Thomas N.; Taylor, Edith L. (1993). The Biology and Evolution of Fossil Plants. New Jersey: Prentice-Hall. p. 636. ISBN 0-13-651589-4. 
  14. برابرنهاده فرهنگستان زبان فارسی.
  15. لغتنامه دهخدا بر پایه: گیاه‌شناسی گل گلاب چ ۳ ص ۳۲۲ و فرهنگ اصطلاحات علمی.
  16. International Union for Conservation of Nature and Natural Resources, 2006. IUCN Red List of Threatened Species:Summary Statistics
  17. والنتین، جیمز: تکامل گیاهان و جانوران پرسلولی، مترجم: وحید موحد. در: مجله «هدهد». دی ۱۳۶۰ - شماره ۲۸. (از صفحه ۷۰۰ تا ۷۱۶). در مالکیت عمومی.
  18. ۱۸٫۰ ۱۸٫۱ ۱۸٫۲ ۱۸٫۳ ۱۸٫۴ والنتین، جیمز: تکامل گیاهان و جانوران پرسلولی.


لینه
۱۷۳۵[۱]
هکل
۱۸۶۶[۲]
چاتون
۱۹۲۵[۳]
کوپلند
۱۹۳۸[۴]
ویتیکر
۱۹۶۹[۵]
ووز و دیگران
۱۹۹۰[۶]
کاوالیر-اسمیت
۱۹۹۸[۷]
۲ فرمانرویی ۳ فرمانرویی دوقلمرویی ۴ فرمانرویی ۵ فرمانرویی سه‌حوزه‌ای ۶ فرمانرویی
(در نظر گرفته نشده) آغازیان پروکاریوت‌ها مونرا مونرا باکتری‌ها باکتری‌ها
باستانیان (Archaea)
یوکاریوت‌ها آغازیان آغازیان یوکاریا پروتوزوآ
کرومیست‌ها
گیاهان گیاهان گیاهان گیاهان گیاهان
قارچ‌ها قارچ‌ها
جانوران جانوران جانوران جانوران جانوران
  1. Linnaeus, C. (1735). Systemae Naturae, sive regna tria naturae, systematics proposita per classes, ordines, genera & species. 
  2. Haeckel, E. (1866). Generelle Morphologie der Organismen. Reimer, Berlin. 
  3. Chatton, É. (1925). "Pansporella perplexa. Réflexions sur la biologie et la phylogénie des protozoaires". Annales des Sciences Naturelles - Zoologie et Biologie Animale. 10-VII: 1–84. 
  4. Copeland, H. (1938). "The kingdoms of organisms". Quarterly Review of Biology 13: 383–420. doi:10.1086/394568. 
  5. Whittaker, R. H. (January 1969). "New concepts of kingdoms of organisms". Science 163 (3863): 150–60. Bibcode:1969Sci...163..150W. PMID 5762760. doi:10.1126/science.163.3863.150. 
  6. Woese, C.; Kandler, O.; Wheelis, M. (1990). "Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya.". Proceedings of the National Academy of Sciences of the United States of America 87 (12): 4576–9. Bibcode:1990PNAS...87.4576W. PMC 54159. PMID 2112744. doi:10.1073/pnas.87.12.4576. 
  7. Cavalier-Smith, T. (1998). "A revised six-kingdom system of life". Biological Reviews 73 (03): 203–66. PMID 9809012. doi:10.1111/j.1469-185X.1998.tb00030.x. 
Plants
Temporal range: Mesoproterozoic–present
Diversity of plants image version 5.png
Scientific classification
Domain: Eukaryota
(unranked): Archaeplastida
Kingdom: Plantae
sensu Copeland, 1956
Divisions
Synonyms
  • Viridiplantae Cavalier-Smith 1981[1]
  • Chlorobionta Jeffrey 1982, emend. Bremer 1985, emend. Lewis and McCourt 2004[2]
  • Chlorobiota Kenrick and Crane 1997[3]
  • Chloroplastida Adl et al., 2005 [4]
  • Phyta Barkley 1939 emed. Holt & Uidica 2007
  • Cormophyta Endlicher, 1836
  • Cormobionta Rothmaler, 1948
  • Euplanta Barkley, 1949
  • Telomobionta Takhtajan, 1964
  • Embryobionta Cronquist et al., 1966
  • Metaphyta Whittaker, 1969

Plants are mainly multicellular, predominantly photosynthetic eukaryotes of the kingdom Plantae. The term is today generally limited to the green plants, which form an unranked clade Viridiplantae (Latin for "green plants"). This includes the flowering plants, conifers and other gymnosperms, ferns, clubmosses, hornworts, liverworts, mosses and the green algae, and excludes the red and brown algae. Historically, plants formed one of two kingdoms covering all living things that were not animals, and both algae and fungi were treated as plants; however all current definitions of "plant" exclude the fungi and some algae, as well as the prokaryotes (the archaea and bacteria).

Green plants have cell walls containing cellulose and obtain most of their energy from sunlight via photosynthesis by primary chloroplasts, derived from endosymbiosis with cyanobacteria. Their chloroplasts contain chlorophylls a and b, which gives them their green color. Some plants are parasitic and have lost the ability to produce normal amounts of chlorophyll or to photosynthesize. Plants are characterized by sexual reproduction and alternation of generations, although asexual reproduction is also common.

There are about 300–315 thousand species of plants, of which the great majority, some 260–290 thousand, are seed plants (see the table below).[5] Green plants provide a substantial proportion of the world's molecular oxygen[6] and are the basis of most of Earth's ecologies, especially on land. Plants that produce grains, fruits and vegetables form humankind's basic foodstuffs, and have been domesticated for millennia. Plants play many roles in culture. They are used as ornaments and, until recently and in great variety, they have served as the source of most medicines and drugs. The scientific study of plants is known as botany, a branch of biology.

Definition

Plants are one of the two groups into which all living things were traditionally divided; the other is animals. The division goes back at least as far as Aristotle (384 BC – 322 BC), who distinguished between plants, which generally do not move, and animals, which often are mobile to catch their food. Much later, when Linnaeus (1707–1778) created the basis of the modern system of scientific classification, these two groups became the kingdoms Vegetabilia (later Metaphyta or Plantae) and Animalia (also called Metazoa). Since then, it has become clear that the plant kingdom as originally defined included several unrelated groups, and the fungi and several groups of algae were removed to new kingdoms. However, these organisms are still often considered plants, particularly in popular contexts.

Outside of formal scientific contexts, the term "plant" implies an association with certain traits, such as being multicellular, possessing cellulose, and having the ability to carry out photosynthesis.[7][8]

Current definitions of Plantae

When the name Plantae or plant is applied to a specific group of organisms or taxon, it usually refers to one of four concepts. From least to most inclusive, these four groupings are:

Name(s) Scope Description
Land plants, also known as Embryophyta Plantae sensu strictissimo Plants in the strictest sense include the liverworts, hornworts, mosses, and vascular plants, as well as fossil plants similar to these surviving groups (e.g., Metaphyta Whittaker, 1969,[9] Plantae Margulis, 1971[10]).
Green plants, also known as Viridiplantae, Viridiphyta or Chlorobionta Plantae sensu stricto Plants in a strict sense include the green algae, and land plants that emerged within them, including stoneworts. The names given to these groups vary considerably as of July 2011. Viridiplantae encompass a group of organisms that have cellulose in their cell walls, possess chlorophylls a and b and have plastids that are bound by only two membranes that are capable of storing starch. It is this clade that is mainly the subject of this article (e.g., Plantae Copeland, 1956[11]).
Archaeplastida, also known as Plastida or Primoplantae Plantae sensu lato Plants in a broad sense comprise the green plants listed above plus Rhodophyta (red algae) and Glaucophyta (glaucophyte algae). This clade includes the organisms that eons ago acquired their chloroplasts directly by engulfing cyanobacteria (e.g., Plantae Cavalier-Smith, 1981[12]).
Old definitions of plant (obsolete) Plantae sensu amplo Plants in an ample sense refers to older, obsolete classifications that placed diverse algae, fungi or bacteria in Plantae (e.g., Plantae or Vegetabilia Linnaeus,[13] Plantae Haeckel 1866,[14] Metaphyta Haeckel, 1894,[15] Plantae Whittaker, 1969[9]).

Another way of looking at the relationships between the different groups that have been called "plants" is through a cladogram, which shows their evolutionary relationships. The evolutionary history of plants is not yet completely settled, but one accepted relationship between the three groups described above is shown below.[16][17][18][19] Those which have been called "plants" are in bold.

Archaeplastida 

 Glaucophyta (glaucophyte algae) 




 Rhodophyta (red algae) 



Green plants

 Chlorophyta (part of green algae) 


Streptophyta 

 streptophyte algae (part of green algae) 




 Charales (stoneworts, often included 
in green algae) 



 land plants or embryophytes








groups traditionally
included in the "algae"

The way in which the groups of green algae are combined and named varies considerably between authors.

Algae

Algae comprise several different groups of organisms which produce energy through photosynthesis and for that reason have been included in the plant kingdom in the past. Most conspicuous among the algae are the seaweeds, multicellular algae that may roughly resemble land plants, but are classified among the brown, red and green algae. Each of these algal groups also includes various microscopic and single-celled organisms. There is good evidence that some of these algal groups arose independently from separate non-photosynthetic ancestors, with the result that the brown algae, for example, are no longer classified within the plant kingdom as it is defined here.[20][21]

The Viridiplantae, the green plants – green algae and land plants – form a clade, a group consisting of all the descendants of a common ancestor. With a few exceptions among green algae, the green plants have the following features in common; cell walls containing cellulose, chloroplasts containing chlorophylls a and b, and food stores in the form of starch contained within the plastids. They undergo closed mitosis without centrioles, and typically have mitochondria with flat cristae. The chloroplasts of green plants are surrounded by two membranes, suggesting they originated directly from endosymbiotic cyanobacteria.

Two additional groups, the Rhodophyta (red algae) and Glaucophyta (glaucophyte algae), also have chloroplasts that appear to be derived directly from endosymbiotic cyanobacteria, although they differ in the pigments which are used in photosynthesis from those of the Viridiplantae and so are different in colour. In these groups, the storage polysaccharide is floridean starch and is stored in the cytoplasm rather than in the plastids. These groups appear to have had a common origin with Viridiplantae and the three groups form the clade Archaeplastida, whose name implies that their chloroplasts were derived from a single ancient endosymbiotic event. This is the broadest modern definition of the term 'plant'.

In contrast, most other algae (e.g. brown algae/diatoms, haptophytes, dinoflagellates, and euglenids) not only have different pigments but also have chloroplasts with three or four surrounding membranes. They are not close relatives of the Archaeplastida, presumably having acquired chloroplasts separately from ingested or symbiotic green and red algae. They are thus not included in even the broadest modern definition of the plant kingdom, although they were in the past.

The green plants or Viridiplantae were traditionally divided into the green algae (including the stoneworts) and the land plants. However, it is now known that the land plants evolved from within a group of green algae, so that the green algae by themselves are a paraphyletic group, i.e. a group that excludes some of the descendants of a common ancestor. Paraphyletic groups are generally avoided in modern classifications, so that in recent treatments the Viridiplantae have been divided into two clades, the Chlorophyta and the Streptophyta (including the land plants and Charophyta).[22][23]

The Chlorophyta (a name that has also been used for all green algae) are the sister group to the group from which the land plants evolved. There are about 4,300 species[24] of mainly marine organisms, both unicellular and multicellular. The latter include the sea lettuce, Ulva.

The other group within the Viridiplantae are the mainly freshwater or terrestrial Streptophyta, which consists of the land plants together with the Charophyta, itself consisting of several groups of green algae such as the desmids and stoneworts. Streptophyte algae are either unicellular or form multicellular filaments, branched or unbranched.[23] The genus Spirogyra is a filamentous streptophyte alga familiar to many, as it is often used in teaching and is one of the organisms responsible for the algal "scum" so reprehensible to pond-owners. The freshwater stoneworts strongly resemble land plants and are believed to be their closest relatives.[citation needed] Growing in fresh water, they consist of a central stalk with whorls of branchlets, giving them a superficial resemblance to horsetails, species of the genus Equisetum, which are true land plants.

Fungi

The classification of fungi has been controversial until quite recently in the history of biology. Linnaeus' original classification placed the fungi within the Plantae, since they were unquestionably not animals or minerals and these were the only other alternatives. With later developments in microbiology, in the 19th century Ernst Haeckel felt that another kingdom was required to classify newly discovered micro-organisms. The introduction of the new kingdom Protista in addition to Plantae and Animalia, led to uncertainty as to whether fungi truly were best placed in the Plantae or whether they ought to be reclassified as protists. Haeckel himself found it difficult to decide and it was not until 1969 that a solution was found whereby Robert Whittaker proposed the creation of the kingdom Fungi. Molecular evidence has since shown that the most recent common ancestor (concestor), of the Fungi was probably more similar to that of the Animalia than to that of Plantae or any other kingdom.[25]

Whittaker's original reclassification was based on the fundamental difference in nutrition between the Fungi and the Plantae. Unlike plants, which generally gain carbon through photosynthesis, and so are called autotrophs, fungi generally obtain carbon by breaking down and absorbing surrounding materials, and so are called heterotrophic saprotrophs. In addition, the substructure of multicellular fungi is different from that of plants, taking the form of many chitinous microscopic strands called hyphae, which may be further subdivided into cells or may form a syncytium containing many eukaryotic nuclei. Fruiting bodies, of which mushrooms are the most familiar example, are the reproductive structures of fungi, and are unlike any structures produced by plants.

Diversity

The table below shows some species count estimates of different green plant (Viridiplantae) divisions. It suggests there are about 300,000 species of living Viridiplantae, of which 85–90% are flowering plants. (Note: as these are from different sources and different dates, they are not necessarily comparable, and like all species counts, are subject to a degree of uncertainty in some cases.)

Diversity of living green plant (Viridiplantae) divisions
Informal group Division name Common name No. of living species Approximate No. in informal group
Green algae Chlorophyta green algae (chlorophytes) 3,800–4,300 [26][27] 8,500

(6,600–10,300)

Charophyta green algae (e.g. desmids & stoneworts) 2,800–6,000 [28][29]
Bryophytes Marchantiophyta liverworts 6,000–8,000 [30] 19,000

(18,100–20,200)

Anthocerotophyta hornworts 100–200 [31]
Bryophyta mosses 12,000 [32]
Pteridophytes Lycopodiophyta club mosses 1,200 [21] 12,000

(12,200)

Pteridophyta ferns, whisk ferns & horsetails 11,000 [21]
Seed plants Cycadophyta cycads 160 [33] 260,000

(259,511)

Ginkgophyta ginkgo 1 [34]
Pinophyta conifers 630 [21]
Gnetophyta gnetophytes 70 [21]
Magnoliophyta flowering plants 258,650 [35]

The naming of plants is governed by the International Code of Nomenclature for algae, fungi, and plants and International Code of Nomenclature for Cultivated Plants (see cultivated plant taxonomy).

Evolution

The evolution of plants has resulted in increasing levels of complexity, from the earliest algal mats, through bryophytes, lycopods, ferns to the complex gymnosperms and angiosperms of today. Plants in all of these groups continue to thrive, especially in the environments in which they evolved.

An algal scum formed on the land 1,200 million years ago, but it was not until the Ordovician Period, around 450 million years ago, that land plants appeared.[36] However, new evidence from the study of carbon isotope ratios in Precambrian rocks has suggested that complex photosynthetic plants developed on the earth over 1000 m.y.a.[37] For more than a century it has been assumed that the ancestors of land plants evolved in aquatic environments and then adapted to a life on land, an idea usually credited to botanist Frederick Orpen Bower in his 1908 book "The Origin of a Land Flora". A recent alternative view, supported by genetic evidence, is that they evolved from terrestrial single-celled algae.[38] Primitive land plants began to diversify in the late Silurian Period, around 420 million years ago, and the fruits of their diversification are displayed in remarkable detail in an early Devonian fossil assemblage from the Rhynie chert. This chert preserved early plants in cellular detail, petrified in volcanic springs. By the middle of the Devonian Period most of the features recognised in plants today are present, including roots, leaves and secondary wood, and by late Devonian times seeds had evolved.[39] Late Devonian plants had thereby reached a degree of sophistication that allowed them to form forests of tall trees. Evolutionary innovation continued after the Devonian period. Most plant groups were relatively unscathed by the Permo-Triassic extinction event, although the structures of communities changed. This may have set the scene for the evolution of flowering plants in the Triassic (~200 million years ago), which exploded in the Cretaceous and Tertiary. The latest major group of plants to evolve were the grasses, which became important in the mid Tertiary, from around 40 million years ago. The grasses, as well as many other groups, evolved new mechanisms of metabolism to survive the low CO2 and warm, dry conditions of the tropics over the last 10 million years.

A 1997 proposed phylogenetic tree of Plantae, after Kenrick and Crane,[40] is as follows, with modification to the Pteridophyta from Smith et al.[41] The Prasinophyceae are a paraphyletic assemblage of early diverging green algal lineages, but are treated as a group outside the Chlorophyta:[42] later authors have not followed this suggestion.



Prasinophyceae (micromonads)



Streptobionta

Embryophytes

Stomatophytes

Polysporangiates

Tracheophytes
Eutracheophytes
Euphyllophytina
Lignophyta

Spermatophytes (seed plants)



Progymnospermophyta †



Pteridophyta


Pteridopsida (true ferns)



Marattiopsida



Equisetopsida (horsetails)



Psilotopsida (whisk ferns & adders'-tongues)



Cladoxylopsida †





Lycophytina

Lycopodiophyta



Zosterophyllophyta †





Rhyniophyta †





Aglaophyton †



Horneophytopsida †





Bryophyta (mosses)



Anthocerotophyta (hornworts)





Marchantiophyta (liverworts)





Charophyta





Chlorophyta


Trebouxiophyceae (Pleurastrophyceae)



Chlorophyceae




Ulvophyceae





A newer proposed classification follows Leliaert et al. 2011[43] and modified with Silar 2016[44] for the green algae clades and Novíkov & Barabaš-Krasni 2015[45] for the land plants clade. Notice that the Prasinophyceae are here placed inside the Chlorophyta.


Chlorophyta

 ?Palmophyllales Zechman et al. 2010 



 Prasinophyceae Christensen 1962 s.s.




 Nephroselmidophyceae Cavalier-Smith 1993




 Pseudoscourfieldiales Melkonian 1990 [Pycnococcales]





 Mamiellophyceae Marin & Melkonian 2010



 Pyramimonadophyceae





 Picocystis Lewin 2001


Tetraphytina

 ?Scourfieldiales Moestrup 1991



 Pedinophyceae Moestrup 1991


Chlorophytina

 Chlorodendrophyceae Massjuk 2006




 Trebouxiophyceae Friedl 1995




 Ulvophyceae Mattox & Stewart 1984



 Chlorophyceae Christensen 1994











Streptophyta s.l.

 ?Chlorokybophyta



 Mesostigmatophyta




 Klebsormidiophyta


Phragmoplastophyta

 Charophyta Rabenhorst 1863 emend. Lewis & McCourt 2004 (Stoneworts)




 Chaetosphaeridiales Marin & Melkonian 1999



 Coleochaetophyta




 Zygnematophyta 


Embryophyta

 Marchantiophyta (Liverworts)


Stomatophyta

 Bryophyta (True mosses)




 Anthocerotophyta (Non-flowering hornworts)


Polysporangiophyta

 Horneophyta




 Lyonophyta



 Tracheophyta (Vascular Plants)













Embryophytes

The plants that are likely most familiar to us are the multicellular land plants, called embryophytes. Embryophytes include the vascular plants, such as ferns, conifers and flowering plants. They also include the bryophytes, of which mosses and liverworts are the most common.

All of these plants have eukaryotic cells with cell walls composed of cellulose, and most obtain their energy through photosynthesis, using light, water and carbon dioxide to synthesize food. About three hundred plant species do not photosynthesize but are parasites on other species of photosynthetic plants. Embryophytes are distinguished from green algae, which represent a mode of photosynthetic life similar to the kind modern plants are believed to have evolved from, by having specialized reproductive organs protected by non-reproductive tissues.

Bryophytes first appeared during the early Paleozoic. They can only survive where moisture is available for significant periods, although some species are desiccation-tolerant. Most species of bryophytes remain small throughout their life-cycle. This involves an alternation between two generations: a haploid stage, called the gametophyte, and a diploid stage, called the sporophyte. In bryophytes, the sporophyte is always unbranched and remains nutritionally dependent on its parent gametophyte. The bryophytes have the ability to secrete a cuticle on their outer surface, a waxy layer that confers resistant to desiccation. In the mosses and hornworts a cuticle is usually only produced on the sporophyte. Stomata are absent from liverworts, but occur on the sporangia of mosses and hornworts, allowing gas exchange while controlling water loss.

Vascular plants first appeared during the Silurian period, and by the Devonian had diversified and spread into many different terrestrial environments. They developed a number of adaptations that allowed them to spread into increasingly more arid places, notably the vascular tissues xylem and phloem, that transport water and food throughout the organism. Root systems capable of obtaining soil water and nutrients also evolved during the Devonian. In modern vascular plants, the sporophyte is typically large, branched, nutritionally independent and long-lived, but there is increasing evidence that Paleozoic gametophytes were just as complex as the sporophytes. The gametophytes of all vascular plant groups evolved to become reduced in size and prominence in the life cycle.

The first seed plants, pteridosperms (seed ferns), now extinct, appeared in the Devonian and diversified through the Carboniferous. In these the microgametophyte is reduced to pollen and the megagametophyte remains inside the megasporangium, attached to the parent plant. A megasporangium invested in protective layer called an integument is known as an ovule. After fertilisation by means of sperm deposited by pollen grains, an embryo develops inside the ovule. The integument becomes a seed coat, and the ovule develops into a seed. Seed plants can survive and reproduce in extremely arid conditions, because they are not dependent on free water for the movement of sperm, or the development of free living gametophytes.

Early seed plants are gymnosperms, as the ovules and subsequent seeds are not enclosed in a protective structure (carpels or fruit), but are found naked, typically on cone scales. Pollen typically lands directly on the ovule. Four surviving groups remain widespread now, particularly the conifers, which are dominant trees in several biomes.

Fossils

A petrified log in Petrified Forest National Park, Arizona

Plant fossils include roots, wood, leaves, seeds, fruit, pollen, spores, phytoliths, and amber (the fossilized resin produced by some plants). Fossil land plants are recorded in terrestrial, lacustrine, fluvial and nearshore marine sediments. Pollen, spores and algae (dinoflagellates and acritarchs) are used for dating sedimentary rock sequences. The remains of fossil plants are not as common as fossil animals, although plant fossils are locally abundant in many regions worldwide.

The earliest fossils clearly assignable to Kingdom Plantae are fossil green algae from the Cambrian. These fossils resemble calcified multicellular members of the Dasycladales. Earlier Precambrian fossils are known that resemble single-cell green algae, but definitive identity with that group of algae is uncertain.

The oldest known fossils of embryophytes date from the Ordovician, though such fossils are fragmentary. By the Silurian, fossils of whole plants are preserved, including the lycophyte Baragwanathia longifolia. From the Devonian, detailed fossils of rhyniophytes have been found. Early fossils of these ancient plants show the individual cells within the plant tissue. The Devonian period also saw the evolution of what many believe to be the first modern tree, Archaeopteris. This fern-like tree combined a woody trunk with the fronds of a fern, but produced no seeds.

The Coal measures are a major source of Paleozoic plant fossils, with many groups of plants in existence at this time. The spoil heaps of coal mines are the best places to collect; coal itself is the remains of fossilised plants, though structural detail of the plant fossils is rarely visible in coal. In the Fossil Grove at Victoria Park in Glasgow, Scotland, the stumps of Lepidodendron trees are found in their original growth positions.

The fossilized remains of conifer and angiosperm roots, stems and branches may be locally abundant in lake and inshore sedimentary rocks from the Mesozoic and Cenozoic eras. Sequoia and its allies, magnolia, oak, and palms are often found.

Petrified wood is common in some parts of the world, and is most frequently found in arid or desert areas where it is more readily exposed by erosion. Petrified wood is often heavily silicified (the organic material replaced by silicon dioxide), and the impregnated tissue is often preserved in fine detail. Such specimens may be cut and polished using lapidary equipment. Fossil forests of petrified wood have been found in all continents.

Fossils of seed ferns such as Glossopteris are widely distributed throughout several continents of the Southern Hemisphere, a fact that gave support to Alfred Wegener's early ideas regarding Continental drift theory.

The earliest fossils attributed to green algae date from the Precambrian (ca. 1200 mya).[46][47] The resistant outer walls of prasinophyte cysts (known as phycomata) are well preserved in fossil deposits of the Paleozoic (ca. 250-540 mya). A filamentous fossil (Proterocladus) from middle Neoproterozoic deposits (ca. 750 mya) has been attributed to the Cladophorales, while the oldest reliable records of the Bryopsidales, Dasycladales) and stoneworts are from the Paleozoic.[42][48]

Structure, growth and development

The leaf is usually the primary site of photosynthesis in plants.

Most of the solid material in a plant is taken from the atmosphere. Through a process known as photosynthesis, most plants use the energy in sunlight to convert carbon dioxide from the atmosphere, plus water, into simple sugars. Parasitic plants, on the other hand, use the resources of their host to grow. These sugars are then used as building blocks and form the main structural component of the plant. Chlorophyll, a green-colored, magnesium-containing pigment is essential to this process; it is generally present in plant leaves, and often in other plant parts as well.

Plants usually rely on soil primarily for support and water (in quantitative terms), but also obtain compounds of nitrogen, phosphorus, potassium, magnesium and other elemental nutrients. Epiphytic and lithophytic plants depend on air and nearby debris for nutrients, and carnivorous plants supplement their nutrient requirements with insect prey that they capture. For the majority of plants to grow successfully they also require oxygen in the atmosphere and around their roots (soil gas) for respiration. Plants use oxygen and glucose (which may be produced from stored starch) to provide energy.[49] Some plants grow as submerged aquatics, using oxygen dissolved in the surrounding water, and a few specialized vascular plants, such as mangroves, can grow with their roots in anoxic conditions.

Factors affecting growth

The genotype of a plant affects its growth. For example, selected varieties of wheat grow rapidly, maturing within 110 days, whereas others, in the same environmental conditions, grow more slowly and mature within 155 days.[50]

Growth is also determined by environmental factors, such as temperature, available water, available light, carbon dioxide and available nutrients in the soil. Any change in the availability of these external conditions will be reflected in the plant's growth.

Biotic factors are also capable of affecting plant growth. Plants compete with other plants for space, water, light and nutrients. Plants can be so crowded that no single individual produces normal growth, causing etiolation and chlorosis. Optimal plant growth can be hampered by grazing animals, suboptimal soil composition, lack of mycorrhizal fungi, and attacks by insects or plant diseases, including those caused by bacteria, fungi, viruses, and nematodes.[50]

There is no photosynthesis in deciduous leaves in autumn.

Simple plants like algae may have short life spans as individuals, but their populations are commonly seasonal. Other plants may be organized according to their seasonal growth pattern: annual plants live and reproduce within one growing season, biennial plants live for two growing seasons and usually reproduce in second year, and perennial plants live for many growing seasons and continue to reproduce once they are mature. These designations often depend on climate and other environmental factors; plants that are annual in alpine or temperate regions can be biennial or perennial in warmer climates. Among the vascular plants, perennials include both evergreens that keep their leaves the entire year, and deciduous plants that lose their leaves for some part of it. In temperate and boreal climates, they generally lose their leaves during the winter; many tropical plants lose their leaves during the dry season.

The growth rate of plants is extremely variable. Some mosses grow less than 0.001 millimeters per hour (mm/h), while most trees grow 0.025-0.250 mm/h. Some climbing species, such as kudzu, which do not need to produce thick supportive tissue, may grow up to 12.5 mm/h.

Plants protect themselves from frost and dehydration stress with antifreeze proteins, heat-shock proteins and sugars (sucrose is common). LEA (Late Embryogenesis Abundant) protein expression is induced by stresses and protects other proteins from aggregation as a result of desiccation and freezing.[51]

Effects of freezing

When water freezes in plants, the consequences for the plant depend very much on whether the freezing occurs within cells (intracellularly) or outside cells in intercellular spaces (Glerum 1985).[52] Intracellular freezing, which usually kills the cell (Lyons et al. 1979)[53] regardless of the hardiness of the plant and its tissues, seldom occurs in nature because rates of cooling are rarely high enough to support it. Rates of cooling of several degrees Celsius per minute are typically needed to cause intracellular formation of ice (Mazur 1977).[54]

At rates of cooling of a few degrees Celsius per hour, segregation of ice occurs in intercellular spaces, the “extraorgan ice” of Sakai and Larcher (1987)[55] and their coworkers. This may or may not be lethal, depending on the hardiness of the tissue.

The process of intercellular ice formation was described by Glerum (1985).[52] At freezing temperatures, water in the intercellular spaces of plant tissue freezes first, though the water may remain unfrozen until temperatures drop below −7 °C (19 °F). After the initial formation of ice intercellularly, the cells shrink as water is lost to the segregated ice, and the cells undergo freeze-drying. This dehydration is now considered the fundamental cause of freezing injury.

DNA damage and repair

Plants are continuously exposed to a range of biotic and abiotic stresses. These stresses often cause DNA damage directly, or indirectly via the generation of reactive oxygen species.[56] Plants are capable of a DNA damage response that is a critical mechanism for maintaining genome stability.[57] The DNA damage response is particularly important during seed germination, since seed quality tends to deteriorate with age in association with DNA damage accumulation.[58] During germination repair processes are activated to deal with this accumulated DNA damage.[59] In particular, single- and double-strand breaks in DNA can be repaired.[60] The DNA checkpoint kinase ATM has a key role in integrating progression through germination with repair responses to the DNA damages accumulated by the aged seed.[61]

Plant cells

Plant cell structure

Plant cells are typically distinguished by their large water-filled central vacuole, chloroplasts, and rigid cell walls that are made up of cellulose, hemicellulose, and pectin. Cell division is also characterized by the development of a phragmoplast for the construction of a cell plate in the late stages of cytokinesis. Just as in animals, plant cells differentiate and develop into multiple cell types. Totipotent meristematic cells can differentiate into vascular, storage, protective (e.g. epidermal layer), or reproductive tissues, with more primitive plants lacking some tissue types.[62]

Physiology

Photosynthesis

Plants are photosynthetic, which means that they manufacture their own food molecules using energy obtained from light. The primary mechanism plants have for capturing light energy is the pigment chlorophyll. All green plants contain two forms of chlorophyll, chlorophyll a and chlorophyll b. The latter of these pigments is not found in red or brown algae. The simple equation of photosynthesis is as follows:-

6CO2 + 6H2O → (in the presence of light and chlorophyll) C6H12O6 + 6O2

Immune system

By means of cells that behave like nerves, plants receive and distribute within their systems information about incident light intensity and quality. Incident light that stimulates a chemical reaction in one leaf, will cause a chain reaction of signals to the entire plant via a type of cell termed a bundle sheath cell. Researchers, from the Warsaw University of Life Sciences in Poland, found that plants have a specific memory for varying light conditions, which prepares their immune systems against seasonal pathogens.[63] Plants use pattern-recognition receptors to recognize conserved microbial signatures. This recognition triggers an immune response. The first plant receptors of conserved microbial signatures were identified in rice (XA21, 1995)[64] and in Arabidopsis thaliana (FLS2, 2000).[65] Plants also carry immune receptors that recognize highly variable pathogen effectors. These include the NBS-LRR class of proteins.

Internal distribution

Vascular plants differ from other plants in that nutrients are transported between their different parts through specialized structures, called xylem and phloem. They also have roots for taking up water and minerals. The xylem moves water and minerals from the root to the rest of the plant, and the phloem provides the roots with sugars and other nutrient produced by the leaves.[62]

Genomics

Plants have some of the largest genomes among all organisms.[66] The largest plant genome (in terms of gene number) is that of wheat (Triticum asestivum), predicted to encode ~94,000 genes[67] and thus almost 5 times as many as the human genome. The first plant genome sequenced was that of Arabidopsis thaliana which encodes about 25,500 genes.[68] In terms of sheer DNA sequence, the smallest published genome is that of the carnivorous bladderwort (Utricularia gibba) at 82 Mb (although it still encodes 28,500 genes)[69] while the largest, from the Norway Spruce (Picea abies), extends over 19,600 Mb (encoding about 28,300 genes).[70]

Ecology

The photosynthesis conducted by land plants and algae is the ultimate source of energy and organic material in nearly all ecosystems. Photosynthesis radically changed the composition of the early Earth's atmosphere, which as a result is now 21% oxygen. Animals and most other organisms are aerobic, relying on oxygen; those that do not are confined to relatively rare anaerobic environments. Plants are the primary producers in most terrestrial ecosystems and form the basis of the food web in those ecosystems. Many animals rely on plants for shelter as well as oxygen and food.

Land plants are key components of the water cycle and several other biogeochemical cycles. Some plants have coevolved with nitrogen fixing bacteria, making plants an important part of the nitrogen cycle. Plant roots play an essential role in soil development and prevention of soil erosion.

Distribution

Plants are distributed worldwide in varying numbers. While they inhabit a multitude of biomes and ecoregions, few can be found beyond the tundras at the northernmost regions of continental shelves. At the southern extremes, plants have adapted tenaciously to the prevailing conditions. (See Antarctic flora.)

Plants are often the dominant physical and structural component of habitats where they occur. Many of the Earth's biomes are named for the type of vegetation because plants are the dominant organisms in those biomes, such as grasslands and forests.

Ecological relationships

The Venus flytrap, a species of carnivorous plant.

Numerous animals have coevolved with plants. Many animals pollinate flowers in exchange for food in the form of pollen or nectar. Many animals disperse seeds, often by eating fruit and passing the seeds in their feces. Myrmecophytes are plants that have coevolved with ants. The plant provides a home, and sometimes food, for the ants. In exchange, the ants defend the plant from herbivores and sometimes competing plants. Ant wastes provide organic fertilizer.

The majority of plant species have various kinds of fungi associated with their root systems in a kind of mutualistic symbiosis known as mycorrhiza. The fungi help the plants gain water and mineral nutrients from the soil, while the plant gives the fungi carbohydrates manufactured in photosynthesis. Some plants serve as homes for endophytic fungi that protect the plant from herbivores by producing toxins. The fungal endophyte, Neotyphodium coenophialum, in tall fescue (Festuca arundinacea) does tremendous economic damage to the cattle industry in the U.S.

Various forms of parasitism are also fairly common among plants, from the semi-parasitic mistletoe that merely takes some nutrients from its host, but still has photosynthetic leaves, to the fully parasitic broomrape and toothwort that acquire all their nutrients through connections to the roots of other plants, and so have no chlorophyll. Some plants, known as myco-heterotrophs, parasitize mycorrhizal fungi, and hence act as epiparasites on other plants.

Many plants are epiphytes, meaning they grow on other plants, usually trees, without parasitizing them. Epiphytes may indirectly harm their host plant by intercepting mineral nutrients and light that the host would otherwise receive. The weight of large numbers of epiphytes may break tree limbs. Hemiepiphytes like the strangler fig begin as epiphytes but eventually set their own roots and overpower and kill their host. Many orchids, bromeliads, ferns and mosses often grow as epiphytes. Bromeliad epiphytes accumulate water in leaf axils to form phytotelmata that may contain complex aquatic food webs.[71]

Approximately 630 plants are carnivorous, such as the Venus Flytrap (Dionaea muscipula) and sundew (Drosera species). They trap small animals and digest them to obtain mineral nutrients, especially nitrogen and phosphorus.[72]

Importance

The study of plant uses by people is termed economic botany or ethnobotany.[73] Human cultivation of plants is part of agriculture, which is the basis of human civilization.[74] Plant agriculture is subdivided into agronomy, horticulture and forestry.[75]

Food

Mechanical harvest of oats.

Humans depend on plants for food, either directly or as feed for domestic animals. Agriculture deals with the production of food crops, and has played a key role in the history of world civilizations. Agriculture includes agronomy for arable crops, horticulture for vegetables and fruit, and forestry for timber.[76] About 7,000 species of plant have been used for food, though most of today's food is derived from only 30 species. The major staples include cereals such as rice and wheat, starchy roots and tubers such as cassava and potato, and legumes such as peas and beans. Vegetable oils such as olive oil provide lipids, while fruit and vegetables contribute vitamins and minerals to the diet.[77]

Medicines

Medicinal plants are a primary source of organic compounds, both for their medicinal and physiological effects, and for the industrial synthesis of a vast array of organic chemicals.[78] Many hundreds of medicines are derived from plants, both traditional medicines used in herbalism[79][80] and chemical substances purified from plants or first identified in them, sometimes by ethnobotanical search, and then synthesised for use in modern medicine. Modern medicines derived from plants include aspirin, taxol, morphine, quinine, reserpine, colchicine, digitalis and vincristine. Plants used in herbalism include ginkgo, echinacea, feverfew, and Saint John's wort. The pharmacopoeia of Dioscorides, De Materia Medica, describing some 600 medicinal plants, was written between 50 and 70 AD and remained in use in Europe and the Middle East until around 1600 AD; it was the precursor of all modern pharmacopoeias.[81][82][83]

Nonfood products

Timber in storage for later processing at a sawmill

Plants grown as industrial crops are the source of a wide range of products used in manufacturing, sometimes so intensively as to risk harm to the environment.[84] Nonfood products include essential oils, natural dyes, pigments, waxes, resins, tannins, alkaloids, amber and cork. Products derived from plants include soaps, shampoos, perfumes, cosmetics, paint, varnish, turpentine, rubber, latex, lubricants, linoleum, plastics, inks, and gums. Renewable fuels from plants include firewood, peat and other biofuels.[85][86] The fossil fuels coal, petroleum and natural gas are derived from the remains of aquatic organisms including phytoplankton in geological time.[87]

Structural resources and fibres from plants are used to construct dwellings and to manufacture clothing. Wood is used not only for buildings, boats, and furniture, but also for smaller items such as musical instruments and sports equipment. Wood is pulped to make paper and cardboard.[88] Cloth is often made from cotton, flax, ramie or synthetic fibres such as rayon and acetate derived from plant cellulose. Thread used to sew cloth likewise comes in large part from cotton.[89]

Aesthetic uses

A rose espalier at Niedernhall in Germany.

Thousands of plant species are cultivated for aesthetic purposes as well as to provide shade, modify temperatures, reduce wind, abate noise, provide privacy, and prevent soil erosion. Plants are the basis of a multibillion-dollar per year tourism industry, which includes travel to historic gardens, national parks, rainforests, forests with colorful autumn leaves, and festivals such as Japan's[90] and America's cherry blossom festivals.[91]

Capitals of ancient Egyptian columns decorated to resemble papyrus plants. (at Luxor, Egypt)

While some gardens are planted with food crops, many are planted for aesthetic, ornamental, or conservation purposes. Arboretums and botanical gardens are public collections of living plants. In private outdoor gardens, lawn grasses, shade trees, ornamental trees, shrubs, vines, herbaceous perennials and bedding plants are used. Gardens may cultivate the plants in a naturalistic state, or may sculpture their growth, as with topiary or espalier. Gardening is the most popular leisure activity in the U.S., and working with plants or horticulture therapy is beneficial for rehabilitating people with disabilities.

Plants may also be grown or kept indoors as houseplants, or in specialized buildings such as greenhouses that are designed for the care and cultivation of living plants. Venus Flytrap, sensitive plant and resurrection plant are examples of plants sold as novelties. There are also art forms specializing in the arrangement of cut or living plant, such as bonsai, ikebana, and the arrangement of cut or dried flowers. Ornamental plants have sometimes changed the course of history, as in tulipomania.[92]

Architectural designs resembling plants appear in the capitals of Ancient Egyptian columns, which were carved to resemble either the Egyptian white lotus or the papyrus.[93] Images of plants are often used in painting and photography, as well as on textiles, money, stamps, flags and coats of arms.

Scientific and cultural uses

Barbara McClintock (1902–1992) was a pioneering cytogeneticist who used maize (or corn) to study the mechanism of inheritance of traits.

Basic biological research has often been done with plants. In genetics, the breeding of pea plants allowed Gregor Mendel to derive the basic laws governing inheritance,[94] and examination of chromosomes in maize allowed Barbara McClintock to demonstrate their connection to inherited traits.[95] The plant Arabidopsis thaliana is used in laboratories as a model organism to understand how genes control the growth and development of plant structures.[96] NASA predicts that space stations or space colonies will one day rely on plants for life support.[97]

Ancient trees are revered and many are famous. Tree rings themselves are an important method of dating in archeology, and serve as a record of past climates.

Plants figure prominently in mythology, religion and literature. They are used as national and state emblems, including state trees and state flowers. Plants are often used as memorials, gifts and to mark special occasions such as births, deaths, weddings and holidays. The arrangement of flowers may be used to send hidden messages.

Negative effects

Weeds are unwanted plants growing in managed environments such as farms, urban areas, gardens, lawns, and parks. People have spread plants beyond their native ranges and some of these introduced plants become invasive, damaging existing ecosystems by displacing native species, and sometimes becoming serious weeds of cultivation.

Plants may cause harm to animals, including people. Plants that produce windblown pollen invoke allergic reactions in people who suffer from hay fever. A wide variety of plants are poisonous. Toxalbumins are plant poisons fatal to most mammals and act as a serious deterrent to consumption. Several plants cause skin irritations when touched, such as poison ivy. Certain plants contain psychotropic chemicals, which are extracted and ingested or smoked, including tobacco, cannabis (marijuana), cocaine and opium. Smoking causes damage to health or even death, while some drugs may also be harmful or fatal to people.[98][99] Both illegal and legal drugs derived from plants may have negative effects on the economy, affecting worker productivity and law enforcement costs.[100][101] Some plants cause allergic reactions when ingested, while other plants cause food intolerances that negatively affect health.

See also

References

  1. ^ Cavalier-Smith, T. (1981). "Eukaryote kingdoms: Seven or nine?". BioSystems. 14 (3–4): 461–481. doi:10.1016/0303-2647(81)90050-2. PMID 7337818. 
  2. ^ Lewis, L.A.; McCourt, R.M. (2004). "Green algae and the origin of land plants". American Journal of Botany. 91: 1535–1556. doi:10.3732/ajb.91.10.1535. PMID 21652308. 
  3. ^ Kenrick, Paul; Crane, Peter R. (1997). The origin and early diversification of land plants: A cladistic study. Washington, D. C.: Smithsonian Institution Press. ISBN 1-56098-730-8. 
  4. ^ Adl, S.M. et al. (2005). "The new higher level classification of eukaryotes with emphasis on the taxonomy of protists". Journal of Eukaryote Microbiology. 52: 399–451. doi:10.1111/j.1550-7408.2005.00053.x. PMID 16248873. 
  5. ^ "Numbers of threatened species by major groups of organisms (1996–2010)" (PDF). International Union for Conservation of Nature. 11 March 2010. 
  6. ^ Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. (1998). "Primary production of the biosphere: Integrating terrestrial and oceanic components". Science. 281 (5374): 237–240. Bibcode:1998Sci...281..237F. doi:10.1126/science.281.5374.237. PMID 9657713. 
  7. ^ "plant[2] – Definition from the Merriam-Webster Online Dictionary". Retrieved 2009-03-25. 
  8. ^ "plant (life form) -- Britannica Online Encyclopedia". Retrieved 2009-03-25. 
  9. ^ a b Whittaker, R. H. (1969). "New concepts of kingdoms or organisms" (PDF). Science. 163 (3863): 150–160. doi:10.1126/science.163.3863.150. PMID 5762760. 
  10. ^ Margulis, L (1971). "Whittaker's five kingdoms of organisms: minor revisions suggested by considerations of the origin of mitosis". Evolution. 25: 242–245. doi:10.2307/2406516. 
  11. ^ Copeland, H. F. (1956). The Classification of Lower Organisms. Palo Alto: Pacific Books, p. 6, [1].
  12. ^ Cavalier-Smith, T. (1981). "Eukaryote Kingdoms: Seven or Nine?"". BioSystems. 14 (3–4): 461–481. doi:10.1016/0303-2647(81)90050-2. PMID 7337818. 
  13. ^ Linnaeus, C. (1751). Philosophia botanica, 1st ed., p. 37.
  14. ^ Haeckel, E. (1866). Generale Morphologie der Organismen. Berlin: Verlag von Georg Reimer. pp. vol.1: i–xxxii, 1–574, pls I–II; vol. 2: i–clx, 1–462, pls I–VIII. 
  15. ^ Haeckel, E. (1894). Die systematische Phylogenie.
  16. ^ Based on Rogozin, I.B.; Basu, M.K.; Csürös, M. & Koonin, E.V. (2009), "Analysis of Rare Genomic Changes Does Not Support the Unikont–Bikont Phylogeny and Suggests Cyanobacterial Symbiosis as the Point of Primary Radiation of Eukaryotes", Genome Biology and Evolution, 1: 99–113, doi:10.1093/gbe/evp011, PMC 2817406Freely accessible, PMID 20333181  and Becker, B. & Marin, B. (2009), "Streptophyte algae and the origin of embryophytes", Annals of Botany, 103 (7): 999–1004, doi:10.1093/aob/mcp044, PMC 2707909Freely accessible, PMID 19273476 ; see also the slightly different cladogram in Lewis, Louise A. & McCourt, R.M. (2004), "Green algae and the origin of land plants", Am. J. Bot., 91 (10): 1535–1556, doi:10.3732/ajb.91.10.1535, PMID 21652308 
  17. ^ Parfrey, Laura Wegener; Lahr, Daniel J. G.; Knoll, Andrew H.; Katz, Laura A. (16 August 2011). "Estimating the timing of early eukaryotic diversification with multigene molecular clocks". Proceedings of the National Academy of Sciences. 108 (33): 13624–13629. doi:10.1073/pnas.1110633108. ISSN 0027-8424. PMC 3158185Freely accessible. PMID 21810989. 
  18. ^ Derelle, Romain; Torruella, Guifré; Klimeš, Vladimír; Brinkmann, Henner; Kim, Eunsoo; Vlček, Čestmír; Lang, B. Franz; Eliáš, Marek (17 February 2015). "Bacterial proteins pinpoint a single eukaryotic root". Proceedings of the National Academy of Sciences. 112 (7): E693–E699. doi:10.1073/pnas.1420657112. ISSN 0027-8424. PMC 4343179Freely accessible. PMID 25646484. 
  19. ^ Jackson, Christopher; Clayden, Susan; Reyes-Prieto, Adrian (1 January 2015). "The Glaucophyta: the blue-green plants in a nutshell". Acta Societatis Botanicorum Poloniae. 84 (2): 149–165. doi:10.5586/asbp.2015.020. 
  20. ^ Margulis, L. (1974). "Five-kingdom classification and the origin and evolution of cells". Evolutionary Biology. 7: 45–78. doi:10.1007/978-1-4615-6944-2_2. 
  21. ^ a b c d e Raven, Peter H.; Evert, Ray F.; Eichhorn, Susan E. (2005). Biology of Plants (7th ed.). New York: W. H. Freeman and Company. ISBN 0-7167-1007-2. 
  22. ^ Lewis, Louise A. & McCourt, R.M. (2004), "Green algae and the origin of land plants", Am. J. Bot., 91 (10): 1535–1556, doi:10.3732/ajb.91.10.1535, PMID 21652308 
  23. ^ a b Becker, B. & Marin, B. (2009), "Streptophyte algae and the origin of embryophytes", Annals of Botany, 103 (7): 999–1004, doi:10.1093/aob/mcp044, PMC 2707909Freely accessible, PMID 19273476 
  24. ^ Guiry, M.D. & Guiry, G.M. (2007). "Phylum: Chlorophyta taxonomy browser". AlgaeBase version 4.2 World-wide electronic publication, National University of Ireland, Galway. Retrieved 2007-09-23. 
  25. ^ Deacon, J.W. (2005). Fungal Biology. Wiley. ISBN 978-1-4051-3066-0. 
  26. ^ Van den Hoek, C., D. G. Mann, & H. M. Jahns, 1995. Algae: An Introduction to Phycology. pages 343, 350, 392, 413, 425, 439, & 448 (Cambridge: Cambridge University Press). ISBN 0-521-30419-9
  27. ^ Guiry, M.D. & Guiry, G.M. (2011), AlgaeBase : Chlorophyta, World-wide electronic publication, National University of Ireland, Galway, retrieved 2011-07-26 
  28. ^ Guiry, M.D. & Guiry, G.M. (2011), AlgaeBase : Charophyta, World-wide electronic publication, National University of Ireland, Galway, retrieved 2011-07-26 
  29. ^ Van den Hoek, C., D. G. Mann, & H. M. Jahns, 1995. Algae: An Introduction to Phycology. pages 457, 463, & 476. (Cambridge: Cambridge University Press). ISBN 0-521-30419-9
  30. ^ Crandall-Stotler, Barbara. & Stotler, Raymond E., 2000. "Morphology and classification of the Marchantiophyta". page 21 in A. Jonathan Shaw & Bernard Goffinet (Eds.), Bryophyte Biology. (Cambridge: Cambridge University Press). ISBN 0-521-66097-1
  31. ^ Schuster, Rudolf M., The Hepaticae and Anthocerotae of North America, volume VI, pages 712–713. (Chicago: Field Museum of Natural History, 1992). ISBN 0-914868-21-7.
  32. ^ Goffinet, Bernard; William R. Buck (2004). "Systematics of the Bryophyta (Mosses): From molecules to a revised classification". Monographs in Systematic Botany. Missouri Botanical Garden Press. 98: 205–239. 
  33. ^ Gifford, Ernest M.; Foster, Adriance S. (1988). Morphology and Evolution of Vascular Plants (3rd ed.). New York: W. H. Freeman and Company. p. 358. ISBN 0-7167-1946-0. 
  34. ^ Taylor, Thomas N.; Taylor, Edith L. (1993). The Biology and Evolution of Fossil Plants. New Jersey: Prentice-Hall. p. 636. ISBN 0-13-651589-4. 
  35. ^ International Union for Conservation of Nature and Natural Resources, 2006. IUCN Red List of Threatened Species:Summary Statistics
  36. ^ "The oldest fossils reveal evolution of non-vascular plants by the middle to late Ordovician Period (≈450–440 m.y.a.) on the basis of fossil spores" Transition of plants to land Archived 2 March 2008 at the Wayback Machine.
  37. ^ Strother, Paul K.; Battison, Leila; Brasier, Martin D.; Wellman, Charles H. (26 May 2011). "Earth's earliest non-marine eukaryotes". Nature. 473: 505–509. doi:10.1038/nature09943. 
  38. ^ Harholt, Jesper; Moestrup, Øjvind; Ulvskov, Peter (2016-02-01). "Why Plants Were Terrestrial from the Beginning". Trends in Plant Science. Cell Press. 21 (2): 96–101. doi:10.1016/j.tplants.2015.11.010. ISSN 1360-1385. PMID 26706443. 
  39. ^ Rothwell, G. W.; Scheckler, S. E.; Gillespie, W. H. (1989). "Elkinsia gen. nov., a Late Devonian gymnosperm with cupulate ovules". Botanical Gazette. University of Chicago Press. 150 (2): 170–189. doi:10.1086/337763. JSTOR 2995234. 
  40. ^ Kenrick, Paul & Peter R. Crane. 1997. The Origin and Early Diversification of Land Plants: A Cladistic Study. (Washington, D.C., Smithsonian Institution Press.) ISBN 1-56098-730-8.
  41. ^ Smith Alan R.; Pryer Kathleen M.; Schuettpelz E.; Korall P.; Schneider H.; Wolf Paul G. (2006). "A classification for extant ferns" (PDF). Taxon. 55 (3): 705–731. doi:10.2307/25065646. Archived from the original (PDF) on 26 February 2008. 
  42. ^ a b Leliaert, F., Smith, D.R., Moreau, H., Herron, M.D., Verbruggen, H., Delwiche, C.F. & De Clerck, O. (2012). "Phylogeny and molecular evolution of the green algae" (PDF). Critical Reviews in Plant Sciences. 31: 1–46. doi:10.1080/07352689.2011.615705. Archived from the original (PDF) on 26 June 2015. 
  43. ^ Leliaert, Frederik; Verbruggen, Heroen; Zechman, Frederick W. (2011). "Into the deep: New discoveries at the base of the green plant phylogeny". BioEssays. 33 (9): 683–692. doi:10.1002/bies.201100035. ISSN 0265-9247. PMID 21744372. 
  44. ^ Silar, Philippe (2016), "Protistes Eucaryotes: Origine, Evolution et Biologie des Microbes Eucaryotes", HAL archives-ouvertes: 1–462 
  45. ^ Novíkov & Barabaš-Krasni (2015). "Modern plant systematics". Liga-Pres: 685. doi:10.13140/RG.2.1.4745.6164. ISBN 978-966-397-276-3. 
  46. ^ Knoll, Andrew H (2003). Life on a Young Planet: The First Three Billion Years of Evolution on Earth. Princeton University Press. 
  47. ^ Tappan, H (1980). Palaeobiology of Plant Protists. Freeman, San Francisco. 
  48. ^ Butterfield, Nicholas J.; Knoll, Andrew H.; Swett, Keene (1994). "Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen". Lethaia. 27 (1): 76–76. doi:10.1111/j.1502-3931.1994.tb01558.x. ISSN 0024-1164. 
  49. ^ Edward O. Wilson; et al. (1973). Life on Earth (First ed.). p. 145. ISBN 0-87893-934-2. 
  50. ^ a b Robbins, W.W., Weier, T.E., et al., Botany:Plant Science, 3rd edition, Wiley International, New York, 1965.
  51. ^ Goyal, K., Walton, L. J., & Tunnacliffe, A. (2005). "LEA proteins prevent protein aggregation due to water stress". Biochemical Journal. 388 (Part 1): 151–157. doi:10.1042/BJ20041931. PMC 1186703Freely accessible. PMID 15631617. Archived from the original on 3 August 2009. 
  52. ^ a b Glerum, C. 1985. Frost hardiness of coniferous seedlings: principles and applications. p. 107–123 in Duryea, M.L. (Ed.). Proceedings: Evaluating seedling quality: principles, procedures, and predictive abilities of major tests. Workshop, October 1984, Oregon State Univ., For. Res. Lab., Corvallis OR.
  53. ^ Lyons, J.M.; Raison, J.K.; Steponkus, P.L. 1979. The plant membrane in response to low temperature: an overview. p. 1–24 in Lyons, J.M.; Graham, D.; Raison, J.K. (Eds.). Low Temperature Stress in Crop Plants. Academic Press, New York NY.
  54. ^ Mazur, P. 1977. The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology 14:251–272.
  55. ^ Sakai, A.; Larcher, W. (Eds.) 1987. Frost Survival of Plants. Springer-Verlag, New York NY. 321 p.
  56. ^ Roldán-Arjona T, Ariza RR (2009). "Repair and tolerance of oxidative DNA damage in plants". Mutat. Res. 681 (2-3): 169–79. doi:10.1016/j.mrrev.2008.07.003. PMID 18707020. 
  57. ^ Yoshiyama KO (2016). "SOG1: a master regulator of the DNA damage response in plants". Genes Genet. Syst. 90 (4): 209–16. doi:10.1266/ggs.15-00011. PMID 26617076. 
  58. ^ Waterworth WM, Bray CM, West CE (2015). "The importance of safeguarding genome integrity in germination and seed longevity". J. Exp. Bot. 66 (12): 3549–58. doi:10.1093/jxb/erv080. PMID 25750428. 
  59. ^ Koppen G, Verschaeve L (2001). "The alkaline single-cell gel electrophoresis/comet assay: a way to study DNA repair in radicle cells of germinating Vicia faba". Folia Biol. (Praha). 47 (2): 50–4. PMID 11321247. 
  60. ^ Waterworth WM, Masnavi G, Bhardwaj RM, Jiang Q, Bray CM, West CE (2010). "A plant DNA ligase is an important determinant of seed longevity". Plant J. 63 (5): 848–60. doi:10.1111/j.1365-313X.2010.04285.x. PMID 20584150. 
  61. ^ Waterworth WM, Footitt S, Bray CM, Finch-Savage WE, West CE (2016). "DNA damage checkpoint kinase ATM regulates germination and maintains genome stability in seeds". Proc. Natl. Acad. Sci. U.S.A. 113 (34): 9647–52. doi:10.1073/pnas.1608829113. PMC 5003248Freely accessible. PMID 27503884. 
  62. ^ a b Campbell, Reece, Biology, 7th edition, Pearson/Benjamin Cummings, 2005.
  63. ^ Gill, Victoria (14 July 2010). "Plants 'can think and remember'" – via www.bbc.co.uk. 
  64. ^ Song, W.Y.; et al. (1995). "A receptor kinase-like protein encoded by the rice disease resistance gene, XA21". Science. 270 (5243): 1804–1806. doi:10.1126/science.270.5243.1804. PMID 8525370. 
  65. ^ Gomez-Gomez, L.; et al. (2000). "FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis". Molecular Cell. 5 (6): 1003–1011. doi:10.1016/S1097-2765(00)80265-8. PMID 10911994. 
  66. ^ Michael, Todd P.; Jackson, Scott (1 July 2013). "The First 50 Plant Genomes". The Plant Genome. 6 (2). doi:10.3835/plantgenome2013.03.0001in. ISSN 1940-3372. 
  67. ^ Brenchley, Rachel; Spannagl, Manuel; Pfeifer, Matthias; Barker, Gary L. A.; D'Amore, Rosalinda; Allen, Alexandra M.; McKenzie, Neil; Kramer, Melissa; Kerhornou, Arnaud (29 November 2012). "Analysis of the bread wheat genome using whole-genome shotgun sequencing". Nature. 491 (7426): 705–710. doi:10.1038/nature11650. ISSN 1476-4687. PMC 3510651Freely accessible. PMID 23192148. 
  68. ^ Arabidopsis Genome Initiative (14 December 2000). "Analysis of the genome sequence of the flowering plant Arabidopsis thaliana". Nature. 408 (6814): 796–815. doi:10.1038/35048692. ISSN 0028-0836. PMID 11130711. 
  69. ^ Ibarra-Laclette, Enrique; Lyons, Eric; Hernández-Guzmán, Gustavo; Pérez-Torres, Claudia Anahí; Carretero-Paulet, Lorenzo; Chang, Tien-Hao; Lan, Tianying; Welch, Andreanna J.; Juárez, María Jazmín Abraham (6 June 2013). "Architecture and evolution of a minute plant genome". Nature. 498 (7452): 94–98. doi:10.1038/nature12132. ISSN 1476-4687. PMC 4972453Freely accessible. PMID 23665961. 
  70. ^ Nystedt, Björn; Street, Nathaniel R.; Wetterbom, Anna; Zuccolo, Andrea; Lin, Yao-Cheng; Scofield, Douglas G.; Vezzi, Francesco; Delhomme, Nicolas; Giacomello, Stefania (30 May 2013). "The Norway spruce genome sequence and conifer genome evolution". Nature. 497 (7451): 579–584. doi:10.1038/nature12211. ISSN 1476-4687. PMID 23698360. 
  71. ^ Howard Frank, Bromeliad Phytotelmata, October 2000
  72. ^ Barthlott, W., S. Porembski, R. Seine, and I. Theisen. 2007. The Curious World of Carnivorous Plants: A Comprehensive Guide to Their Biology and Cultivation. Timber Press: Portland, Oregon.
  73. ^ Kochhar, S. L. (31 May 2016). Economic Botany: A Comprehensive Study. Cambridge University Press. ISBN 9781316675397. 
  74. ^ Wrench, Jason S. (9 January 2013). Workplace Communication for the 21st Century: Tools and Strategies that Impact the Bottom Line [2 volumes]: Tools and Strategies That Impact the Bottom Line. ABC-CLIO. ISBN 9780313396328. 
  75. ^ United States Agricultural Research Service (1903). Report on the Agricultural Experiment Stations. U.S. Government Printing Office. 
  76. ^ "The Development of Agriculture". National Geographic. 2016. Retrieved 2017-10-01. 
  77. ^ "Food and drink". Kew Gardens. Archived from the original on 28 March 2014. Retrieved 2017-10-01. 
  78. ^ "Chemicals from Plants". Cambridge University Botanic Garden. Retrieved 9 December 2017.  Note that the details of each plant and the chemicals it yields are described in the linked subpages.
  79. ^ Tapsell LC, Hemphill I, Cobiac L, et al. (August 2006). "Health benefits of herbs and spices: the past, the present, the future". Med. J. Aust. 185 (4 Suppl): S4–24. PMID 17022438. 
  80. ^ Lai PK, Roy J; Roy (June 2004). "Antimicrobial and chemopreventive properties of herbs and spices". Curr. Med. Chem. 11 (11): 1451–60. doi:10.2174/0929867043365107. PMID 15180577. 
  81. ^ "Greek Medicine". National Institutes of Health, USA. 16 September 2002. Retrieved 22 May 2014. 
  82. ^ Hefferon, Kathleen (2012). Let Thy Food Be Thy Medicine. Oxford University Press. p. 46. 
  83. ^ Rooney, Anne (2009). The Story of Medicine. Arcturus Publishing. p. 143. 
  84. ^ "Industrial Crop Production". Grace Communications Foundation. 2016. Retrieved 2016-06-20. 
  85. ^ "INDUSTRIAL CROPS AND PRODUCTS An International Journal". Elsevier. Retrieved 2016-06-20. 
  86. ^ Cruz, Von Mark V.; Dierig, David A. (2014). Industrial Crops: Breeding for BioEnergy and Bioproducts. Springer. pp. 9 and passim. ISBN 978-1-4939-1447-0. 
  87. ^ Sato, Motoaki (1990). Thermochemistry of the formation of fossil fuels (PDF). Fluid-Mineral Interactions: A Tribute to H. P. Eugster, Special Publication No.2. The Geochemical Society. 
  88. ^ Sixta, Herbert, ed. (2006). Handbook of pulp. 1. Winheim, Germany: Wiley-VCH. p. 9. ISBN 3-527-30997-7. 
  89. ^ "Natural fibres". Discover Natural Fibres. Retrieved 2016-06-20. 
  90. ^ Sosnoski, Daniel (1996). Introduction to Japanese culture. Tuttle. p. 12. ISBN 0-8048-2056-2. 
  91. ^ "History of the Cherry Blossom Trees and Festival". National Cherry Blossom Festival: About. National Cherry Blossom Festival. Archived from the original on 14 March 2016. Retrieved 22 March 2016. 
  92. ^ Lambert, Tim (2014). "A Brief History of Gardening". British Broadcasting Corporation. Retrieved 21 June 2016. 
  93. ^ Wilkinson, Richard H. (2000). The Complete Temples of Ancient Egypt. Thames and Hudson. pp. 65–66. ISBN 0-500-05100-3. 
  94. ^ Blumberg, Roger B. "Mendel's Paper in English". 
  95. ^ "BARBARA McCLINTOCK:A Brief Biographical Sketch". WebCite. Archived from the original on August 21, 2011. Retrieved 21 June 2016. 
  96. ^ "About Arabidopsis". TAIR. Retrieved 21 June 2016. 
  97. ^ "Engineering Life". NASA. Retrieved 21 June 2016. 
  98. ^ "cocaine/crack". 
  99. ^ "Deaths related to cocaine". 
  100. ^ "Illegal drugs drain $160 billion a year from American economy". Archived from the original on 15 February 2008. 
  101. ^ "The social cost of illegal drug consumption in Spain". 

Further reading

General
Species estimates and counts
  • International Union for Conservation of Nature and Natural Resources (IUCN) Species Survival Commission (2004). IUCN Red List [2].
  • Prance G. T. (2001). "Discovering the Plant World". Taxon. International Association for Plant Taxonomy. 50 (2, Golden Jubilee Part 4): 345–359. doi:10.2307/1223885. ISSN 0040-0262. JSTOR 1223885. 

External links

Botanical and vegetation databases