جیوه: تفاوت میان نسخه‌ها

از ویکی‌پدیا، دانشنامهٔ آزاد
محتوای حذف‌شده محتوای افزوده‌شده
بدون خلاصۀ ویرایش
←‏پیدایش: اصلاح فاصلهٔ مجازی، ابرابزار
خط ۴۰: خط ۴۰:
جیوه عنصری به شدت کمیاب در [[پوسته|پوستهٔ زمین]] است. فراوانی آن در پوسته برپایهٔ جرم ۰٫۰۸ بخش در میلیون (ppm) است.<ref>{{cite book|url=http://books.google.com/?id=GerdDmwMTLkC&pg=PA265|page=۲۶۵|title=Geomicrobiology|author=Ehrlich, H. L. ; Newman D. K.|publisher=CRC Press| year=۲۰۰۸|isbn=۹۷۸-۰-۸۴۹۳-۷۹۰۶-۲}}</ref> البته چون این عنصر از دیدگاه [[زمین‌شیمی]] با عنصرهایی که بیشترین فراوانی را در پوسته دارند آمیخته نمی‌شود به همین دلیل سنگ معدن‌های جیوه نسبت به سنگ‌های معمولی دارای غلظت بالایی از این عنصرند. داراترین سنگ معدن‌های این عنصر تا ۲٫۵٪ جرمی و فقیرترین آن‌ها دست کم ۰٫۱٪ جیوه دارند (۱۲،۰۰۰ برابر فراوانی میانگین جیوه در پوسته). جیوه هم به صورت یک فلز (کمیاب) و هم در کنار عنصرهای دیگر در [[کانی|کانی‌هایی]] مانند [[شنگرف]]، [[کوردرویت]]، [[لیوینگ ستونیت]] و... پیدا شده‌است. HgS یا [[شنگرف]] معمول ترین سنگ معدن جیوه‌است.<ref>{{cite journal|doi = 10.1007/s00254-002-0629-5|title=Mercury from mineral deposits and potential environmental impact |journal=Environmental Geology|volume=۴۳|issue=۳|pages=۳۲۶–۳۳۸|author=Rytuba, James J}}</ref> سنگ معدن‌های جیوه بیشتر در کمربندهایی که سنگ‌هایی با چگالی بالا با نیروی بزرگی به بیرون پوسته هُل داده شده‌اند پیدا می‌شود بویژه در فصل‌های داغ یا ناحیه‌های [[آتشفشان]]ی.<ref>{{cite web|accessdate=۲۰۰۹-۰۷-۰۷|title=Mercury Recycling in the United States in 2000|publisher=USGS|url=http://pubs.usgs.gov/circ/c1196u/Circ_1196_U.pdf}}</ref>
جیوه عنصری به شدت کمیاب در [[پوسته|پوستهٔ زمین]] است. فراوانی آن در پوسته برپایهٔ جرم ۰٫۰۸ بخش در میلیون (ppm) است.<ref>{{cite book|url=http://books.google.com/?id=GerdDmwMTLkC&pg=PA265|page=۲۶۵|title=Geomicrobiology|author=Ehrlich, H. L. ; Newman D. K.|publisher=CRC Press| year=۲۰۰۸|isbn=۹۷۸-۰-۸۴۹۳-۷۹۰۶-۲}}</ref> البته چون این عنصر از دیدگاه [[زمین‌شیمی]] با عنصرهایی که بیشترین فراوانی را در پوسته دارند آمیخته نمی‌شود به همین دلیل سنگ معدن‌های جیوه نسبت به سنگ‌های معمولی دارای غلظت بالایی از این عنصرند. داراترین سنگ معدن‌های این عنصر تا ۲٫۵٪ جرمی و فقیرترین آن‌ها دست کم ۰٫۱٪ جیوه دارند (۱۲،۰۰۰ برابر فراوانی میانگین جیوه در پوسته). جیوه هم به صورت یک فلز (کمیاب) و هم در کنار عنصرهای دیگر در [[کانی|کانی‌هایی]] مانند [[شنگرف]]، [[کوردرویت]]، [[لیوینگ ستونیت]] و... پیدا شده‌است. HgS یا [[شنگرف]] معمول ترین سنگ معدن جیوه‌است.<ref>{{cite journal|doi = 10.1007/s00254-002-0629-5|title=Mercury from mineral deposits and potential environmental impact |journal=Environmental Geology|volume=۴۳|issue=۳|pages=۳۲۶–۳۳۸|author=Rytuba, James J}}</ref> سنگ معدن‌های جیوه بیشتر در کمربندهایی که سنگ‌هایی با چگالی بالا با نیروی بزرگی به بیرون پوسته هُل داده شده‌اند پیدا می‌شود بویژه در فصل‌های داغ یا ناحیه‌های [[آتشفشان]]ی.<ref>{{cite web|accessdate=۲۰۰۹-۰۷-۰۷|title=Mercury Recycling in the United States in 2000|publisher=USGS|url=http://pubs.usgs.gov/circ/c1196u/Circ_1196_U.pdf}}</ref>


از سال ۱۵۵۸ با بدست آوردن فرایندی که در آن بتوان با کمک جیوه، [[نقره]] را از سنگ معدنش بیرون کشید، جیوه ارزش بالایی در اقتصاد اسپانیا و سرزمین‌های آمریکایی زیر پوشش پیدا کرد. در [[اسپانیای نو]] و [[پرو]] این ارزش بیشتر دیده می‌شد. در آغاز معدن آلمادن در جنوب اسپانیا، فراهم کنندهٔ همهٔ جیوهٔ مورد نیاز اسپانیایی‌ها بود.<ref>{{cite book|author=Burkholder, M. and Johnson, L.|title=Colonial Latin America|publisher=Oxford University Press|year= ۲۰۰۸|pages=۱۵۷–۱۵۹|isbn=۰-۱۹-۵۰۴۵۴۲-۴}}</ref>
از سال ۱۵۵۸ با بدست آوردن فرایندی که در آن بتوان با کمک جیوه، [[نقره]] را از سنگ معدنش بیرون کشید، جیوه ارزش بالایی در اقتصاد اسپانیا و سرزمین‌های آمریکایی زیر پوشش پیدا کرد. در [[اسپانیای نو]] و [[پرو]] این ارزش بیشتر دیده می‌شد. در آغاز معدن آلمادن در جنوب اسپانیا، فراهم کنندهٔ همهٔ جیوهٔ مورد نیاز اسپانیایی‌ها بود.<ref>{{cite book|author=Burkholder, M. and Johnson, L.|title=Colonial Latin America|publisher=Oxford University Press|year= ۲۰۰۸|pages=۱۵۷–۱۵۹|isbn=۰-۱۹-۵۰۴۵۴۲-۴}}</ref> در بازهٔ سه سده بیش از ۱۰۰،۰۰۰ تُن جیوه از معدن‌ها بیرون کشیده شد و روند نیاز به جیوه تا پایان سدهٔ ۱۹ برای بدست آوردن نقرهٔ بیشتر همچنان ادامه داشت.<ref>{{cite book|url=http://books.google.com/?id=a4hPCX2XWDIC&pg=PA33|page=۳۳|title=Domestic Architecture and Power|author=Jamieson, R W|publisher=Springer|year=۲۰۰۰|isbn=۰-۳۰۶-۴۶۱۷۶-۵}}</ref>

[[File:Mercury-27128.jpg|thumb|[[شنگرف]]، سنگ معدن جیوه، معدن سوکریتس، [[شهرستان سونوما]]ی کالیفرنیا. در جاهایی که رسوب‌های جیوه به صورت اکسیدی اند، از شنگرف با عنوان سنگ مادر جیوه یاد می‌شود.]]

پس از اسپانیا در [[ایتالیا]]، [[ایالات متحده آمریکا|آمریکا]]، [[مکزیک]] و [[اسلوونی]] هم معدن‌های مهم جیوه پیدا شد و به بهره برداری رسید. اما امروز در بسیاری از این معدن‌ها بسته‌است. برای نمونه معدن [[مک‌درمیت]] در [[نوادا]] که آخرین معدن آمریکا بود در سال ۱۹۹۲ بسته شد. بسیاری از این بسته شدن‌ها به دلیل افت ارزش جیوه بوده‌است. ارزش جیوه در سال‌های گوناگون بسیار بالا و پایین شده برای نمونه در سال ۲۰۰۶ ارزش جیوه برای هر فلاسک، برابر با ۷۶ پوند یا ۳۴٫۴۶ کیلوگرم، ۶۵۰ دلار بوده‌است.<ref name="brooks_usgs">{{cite web|url=http://minerals.usgs.gov/minerals/pubs/commodity/mercury/mercumcs07.pdf|format=PDF|title=Mercury|author=Brooks, W. E.|year=۲۰۰۷|publisher=U.S. Geological Survey|accessdate=۲۰۰۸-۰۵-۳۰}}</ref>

با حرارت دادن [[شنگرف]] در برابر جریان هوا و سپس متراکم کردن بخار آن به جیوه می‌رسیم. این واکنش به ترتیب زیر است:
{{چپ‌چین}}
:HgS + O<sub>۲</sub> → Hg + SO<sub>۲</sub>
{{پایان چپ‌چین}}
در سال ۲۰۰۵ چین بزرگترین تولیدکنندهٔ جیوه بود.<ref>{{cite book|title=World Mineral Production|date= ۲۰۰۱-۰۵|publisher= British Geological Survey, NERC|location= London|year= ۲۰۰۷}}</ref> گمان آن می‌رود که کشورهای دیگر هم با کمک فرایندهای الکتریکی استخراج، تولیدکنندهٔ جیوه بوده‌اند اما داده‌ای را ثبت نکرده‌اند.

به دلیل سمی بودن بالای جیوه، هم در فرایند معدن کاری و هم در جداسازی، آسیب‌های فراوانی از این ماده در گذشته تا کنون به جای مانده‌است.<ref>[http://act.credoaction.com/campaign/thanks_mercury/?rc=fb_share1 About the Mercury Rule]</ref> به همین دلیل در دههٔ ۱۹۵۰ شرکت‌های خصوصی در اردوگاه‌های کار اجباری از زندانیان برای کندن معدن‌های جیوه استفاده می‌شد. هزاران زندانی به کار گرفته می‌شدند تا تونل‌های تازه بکنند.<ref name="GREEN"/> افزون بر این سلامتی کارگران در هنگام کار در معدن به شدت در خطر بود.

[[اتحادیه اروپا|اتحادیهٔ اروپا]] در سال ۲۰۱۲ به دلیل نیازش به [[لامپ مهتابی|لامپ‌های مهتابی]] چین را به بازگشایی معدن‌های مرگبارش تشویق می‌کرد تا جیوهٔ مورد نیاز آن‌ها فراهم شود. با این روند محیط زیست در برابر خطرهای جدی قرار می‌گرفت بویژه در منطقه‌های جنوبی [[فوشان]] و [[گوانگ‌ژو]]، و در استان [[گوئیژو]] در جنوب غرب.<ref name="GREEN">{{cite news|author=Sheridan, M. |url=http://www.timesonline.co.uk/tol/news/world/asia/article6211261.ece |title='Green' Lightbulbs Poison Workers: hundreds of factory staff are being made ill by mercury used in bulbs destined for the West|date=May 3, 2009|publisher=The Sunday Times (of London, UK)}}</ref>

معدن‌های جیوه که پس از بهره برداری رها شده‌اند دارای توده‌های بزرگ و خطرناک شنگرف حرارت داده شده‌اند. بررسی‌ها نشان داده که آبی که از این منظقه‌ها می‌گذرد بسیار برای طبیعت آسیب رسان است. برای همین تلاش می‌شود تا از این منطقه‌ها به گونهٔ ویژه‌ای دوباره بهره برداری شود. برای نمونه در سال ۱۹۷۶ [[شهرستان سانتا کلارا]] یک معدن کهنه را خرید و در آن یک پارک محلی درست کرد و البته برای پاک سازی محیطی و امنیت آن بسیار هزینه کرد.<ref>{{cite book|url=http://books.google.com/?id=C6N03Lww1YsC&pg=PA8|page=۸|title=New Almaden|author=Boulland M|publisher=Arcadia Publishing|year= ۲۰۰۶|isbn=۰-۷۳۸۵-۳۱۳۱-۶}}</ref>
== ترکیب‌های شیمیایی ==


== جستارهای وابسته ==
== جستارهای وابسته ==

نسخهٔ ‏۴ اوت ۲۰۱۲، ساعت ۱۳:۲۹

جیوه، 80Hg
جیوه
ظاهرنقره‌ای
جرم اتمی استاندارد (Ar، استاندارد)۲۰۰٫۵۹۲(۳)[۱]
جیوه در جدول تناوبی
Element 1: هیدروژن (H), Other non-metal
Element 2: هلیوم (He), Noble gas
Element 3: لیتیم (Li), Alkali metal
Element 4: برلیم (Be), Alkaline earth metal
Element 5: بور (B), Metalloid
Element 6: کربن (C), Other non-metal
Element 7: نیتروژن (N), Halogen
Element 8: اکسیژن (O), Halogen
Element 9: فلوئور (F), Halogen
Element 10: نئون (Ne), Noble gas
Element 11: سدیم (Na), Alkali metal
Element 12: منیزیم (Mg), Alkaline earth metal
Element 13: آلومینیم (Al), Other metal
Element 14: سیلسیم (Si), Metalloid
Element 15: فسفر (P), Other non-metal
Element 16: گوگرد (S), Other non-metal
Element 17: کلر (Cl), Halogen
Element 18: آرگون (Ar), Noble gas
Element 19: پتاسیم (K), Alkali metal
Element 20: کلسیم (Ca), Alkaline earth metal
Element 21: اسکاندیم (Sc), Transition metal
Element 22: تیتانیم (Ti), Transition metal
Element 23: وانادیم (V), Transition metal
Element 24: کروم (Cr), Transition metal
Element 25: منگنز (Mn), Transition metal
Element 26: آهن (Fe), Transition metal
Element 27: کبالت (Co), Transition metal
Element 28: نیکل (Ni), Transition metal
Element 29: مس (Cu), Transition metal
Element 30: روی (Zn), Other metal
Element 31: گالیم (Ga), Other metal
Element 32: ژرمانیم (Ge), Metalloid
Element 33: آرسنیک (As), Metalloid
Element 34: سلنیم (Se), Other non-metal
Element 35: برم (Br), Halogen
Element 36: کریپتون (Kr), Noble gas
Element 37: روبیدیم (Rb), Alkali metal
Element 38: استرانسیم (Sr), Alkaline earth metal
Element 39: ایتریم (Y), Transition metal
Element 40: زیرکونیم (Zr), Transition metal
Element 41: نیوبیم (Nb), Transition metal
Element 42: مولیبدن (Mo), Transition metal
Element 43: تکنسیم (Tc), Transition metal
Element 44: روتنیم (Ru), Transition metal
Element 45: رودیم (Rh), Transition metal
Element 46: پالادیم (Pd), Transition metal
Element 47: نقره (Ag), Transition metal
Element 48: کادمیم (Cd), Other metal
Element 49: ایندیم (In), Other metal
Element 50: قلع (Sn), Other metal
Element 51: آنتیموان (Sb), Metalloid
Element 52: تلوریم (Te), Metalloid
Element 53: ید (I), Halogen
Element 54: زنون (Xe), Noble gas
Element 55: سزیم (Cs), Alkali metal
Element 56: باریم (Ba), Alkaline earth metal
Element 57: لانتان (La), Lanthanoid
Element 58: سریم (Ce), Lanthanoid
Element 59: پرازئودیمیم (Pr), Lanthanoid
Element 60: نئودیمیم (Nd), Lanthanoid
Element 61: پرومتیم (Pm), Lanthanoid
Element 62: ساماریم (Sm), Lanthanoid
Element 63: اروپیم (Eu), Lanthanoid
Element 64: گادولینیم (Gd), Lanthanoid
Element 65: تربیم (Tb), Lanthanoid
Element 66: دیسپروزیم (Dy), Lanthanoid
Element 67: هولمیم (Ho), Lanthanoid
Element 68: اربیم (Er), Lanthanoid
Element 69: تولیم (Tm), Lanthanoid
Element 70: ایتربیم (Yb), Lanthanoid
Element 71: لوتتیم (Lu), Lanthanoid
Element 72: هافنیم (Hf), Transition metal
Element 73: تانتال (Ta), Transition metal
Element 74: تنگستن (W), Transition metal
Element 75: رنیم (Re), Transition metal
Element 76: اوسمیم (Os), Transition metal
Element 77: ایریدیم (Ir), Transition metal
Element 78: پلاتین (Pt), Transition metal
Element 79: طلا (Au), Transition metal
Element 80: جیوه (Hg), Other metal
Element 81: تالیم (Tl), Other metal
Element 82: سرب (Pb), Other metal
Element 83: بیسموت (Bi), Other metal
Element 84: پولونیم (Po), Other metal
Element 85: آستاتین (At), Metalloid
Element 86: رادون (Rn), Noble gas
Element 87: فرانسیم (Fr), Alkali metal
Element 88: رادیم (Ra), Alkaline earth metal
Element 89: آکتینیم (Ac), Actinoid
Element 90: توریم (Th), Actinoid
Element 91: پروتاکتینیم (Pa), Actinoid
Element 92: اورانیم (U), Actinoid
Element 93: نپتونیم (Np), Actinoid
Element 94: پلوتونیم (Pu), Actinoid
Element 95: امریسیم (Am), Actinoid
Element 96: کوریم (Cm), Actinoid
Element 97: برکلیم (Bk), Actinoid
Element 98: کالیفرنیم (Cf), Actinoid
Element 99: اینشتینیم (Es), Actinoid
Element 100: فرمیم (Fm), Actinoid
Element 101: مندلیفیم (Md), Actinoid
Element 102: نوبلیم (No), Actinoid
Element 103: لارنسیم (Lr), Actinoid
Element 104: رادرفوردیم (Rf), Transition metal
Element 105: دوبنیم (Db), Transition metal
Element 106: سیبورگیم (Sg), Transition metal
Element 107: بوهریم (Bh), Transition metal
Element 108: هاسیم (Hs), Transition metal
Element 109: مایتنریم (Mt)
Element 110: دارمشتادیم (Ds)
Element 111: رونتگنیم (Rg)
Element 112: کوپرنیسیم (Cn), Other metal
Element 113: نیهونیم (Nh)
Element 114: فلروویم (Fl)
Element 115: مسکوویم (Mc)
Element 116: لیورموریم (Lv)
Element 117: تنسین (Ts)
Element 118: اوگانسون (Og)
Cd

Hg

Cn
طلاجیوهتالیم
عدد اتمی (Z)80
گروهگروه ۱۲
دورهدوره 6
بلوکبلوک-d
دسته Post-transition metal
آرایش الکترونی[Xe] 4f14 5d10 6s2
2, 8, 18, 32, 18, 2
ویژگی‌های فیزیکی
فاز در STPمایع
نقطه ذوب234.32 K ​(-38.83 °C, ​-37.89 °F)
نقطه جوش629.88 K ​(356.73 °C, ​674.11 °F)
چگالی (near r.t.)(مایع) 13.534 g/cm3
نقطه بحرانی1750 K, 172.00 MPa
حرارت همجوشی2.29 kJ/mol
آنتالپی تبخیر 59.11 kJ/mol
ظرفیت حرارتی مولی27.983 J/(mol·K)
فشار بخار
فشار (Pa) ۱ ۱۰ ۱۰۰ ۱ K ۱۰ K ۱۰۰ K
در دمای (K) 315 350 393 449 523 629
ویژگی‌های اتمی
عدد اکسایش−2 , +1 (mercurous), +2 (mercuric) (a mildly basic اکسید)
الکترونگاتیویمقیاس پائولینگ: 2.00
انرژی یونش
  • 1st: 1007.1 kJ/mol
  • 2nd: 1810 kJ/mol
  • 3rd: 3300 kJ/mol
شعاع اتمیempirical: 151 pm
شعاع کووالانسی pm 132±5
شعاع واندروالسی155 pm
Color lines in a spectral range
خط طیف نوری جیوه
دیگر ویژگی ها
ساختار بلوریدستگاه بلوری شش‌گوشه
Rhombohedral crystal structure for جیوه
سرعت صوت(liquid, 20 °C) 1451.4 m/s
انبساط حرارتی60.4 µm/(m·K) (at 25 °C)
رسانندگی گرمایی8.30 W/(m·K)
رسانش الکتریکی(25 °C) 961n Ω·m
رسانش مغناطیسیdiamagnetic
شماره ثبت سی‌ای‌اس7439-97-6
ایزوتوپ‌های جیوه
ایزوتوپ فراوانی نیمه‌عمر (t۱/۲) حالت فروپاشی محصول
194Hg syn 444 y ε 0.040 194Au
195Hg syn 9.9 h ε 1.510 195Au
196Hg 0.15% 196Hg ایزوتوپ پایدار است که 116 نوترون دارد
197Hg syn 64.14 h ε 0.600 197Au
198Hg 9.97% 198Hg ایزوتوپ پایدار است که 118 نوترون دارد
199Hg 16.87% 199Hg ایزوتوپ پایدار است که 119 نوترون دارد
200Hg 23.1% 200Hg ایزوتوپ پایدار است که 120 نوترون دارد
201Hg 13.18% 201Hg ایزوتوپ پایدار است که 121 نوترون دارد
202Hg 29.86% 202Hg ایزوتوپ پایدار است که 122 نوترون دارد
203Hg syn 46.612 d β 0.492 203Tl
204Hg 6.87% 204Hg ایزوتوپ پایدار است که 124 نوترون دارد
| منابع

جیوه یا سیماب نام یک عنصر شیمیایی با نماد Hg و عدد اتمی ۸۰ است. جیوه در زبان‌های دیگر با نام‌های نقرهٔ زنده یا hydrargyrum هم شناخته می شده‌است. در یونانی "hydr" به معنی آب و "argyros" به معنی نقره است. جیوه یک عنصر سنگین بلوک دی است و تنها فلزی است که در شرایط استاندارد دما و فشار مایع است. عنصر دیگری که در این شرایط مایع باشد، برم است. فلزهای دیگر مانند سزیم، فرانسیم، گالیم و روبیدیم در دمایی بالاتر از شرایط استاندارد ذوب می‌شوند. جیوه با دمای ذوب −۳۸٫۸۳ °C و نقطهٔ جوش ۳۵۶٫۷۳ °C دارای درازترین بازهٔ مایعی در میان فلزات است.[۲][۳][۴]

رسوب‌های جیوه در سراسر زمین پیدا می‌شود، اما بیشتر به صورت شنگرف (سولفیدهای جیوه) این رنگدانهٔ قرمز شنگرفی بیشتر از راه کاهش شنگرف بدست می‌آید. شنگرف بسیار سمّی است بویژه اگر گرد و غبار آن بوییده یا خورده شود. راه دیگر مسمویت جیوه قرار گرفتن در برابر ترکیب‌های حل شدنی جیوه در آب است مانند کلرید جیوه(II) یا متیل‌جیوه، تنفس بخار جیوه یا خوردن خوراک‌های دریایی آلوده به جیوه.

جیوه در دماسنج، فشارسنج (بارومتر، مانومتر)، فشارسنج خون، کلید جیوه‌ای، شیرهای شناور و دیگر ابزارها. البته به دلیل زهرآگین بودن این عنصر، تلاش شده تا از فشارسنج‌های خون و دماسنج‌های جیوه‌ای در بیمارستان‌ها پرهیز شود و بجای آن از ابزارهای الکلی، آلیاژهای اوتکتیک مانند گالینستان، ابزارهای الکترونیکی یا با پایهٔ ترمیستور بهره برده شود. اما همچنان کاربرد جیوه در زمینهٔ پژوهش و ساخت مواد آمالگام دندانی برای پرکردن دندان‌ها پابرجا است. جیوه کاربرد نوری هم دارد: اگر جریان الکتریسیته از بخار جیوهٔ درون یک لولهٔ فسفری گذرانده شود، موج‌های کوتاه فرابنفش پدید می‌آید در اثر این موج‌ها فسفر به درخشش می‌افتد و نور مرئی تولید می‌شود (مانند لامپ مهتابی).

ویژگی‌ها

فیزیکی

سکهٔ یک پوندی (با چگالی ۷٫۶ g/cm۳) به دلیل نیروهای کشش سطحی و شناوری بر روی جیوه شناور می‌ماند.

جیوه فلزی سنگین و سفید-نقره‌ای است. نسبت به دیگر فلزها رسانایی گرمایی پایینی دارد اما رسانای خوب جریان برق است.[۵] به عنوان یک فلز بلوک دی دارای نقطهٔ ذوب بسیار پایینی است. توضیح این ویژگی به دانش مکانیک کوانتوم نیازمند است. اما کوتاه شده می توان چنین توضیح داد: جایگیری الکترون‌ها به دور هستهٔ جیوه از ترتیب ۱s, ۲s, ۲p, ۳s, ۳p, ۳d, ۴s, ۴p, ۴d, ۴f, ۵s, ۵p, ۵d, ۶s پیروی می‌کند. چنین جایگیری الکترون‌ها به سختی آمادهٔ ازدست دادن الکترون می‌شود برای همین از این نظر جیوه مانند گازهای نجیب رفتار می‌کند، پس پیوندهای درونی ضعیف است و نقطهٔ ذوب پایینی دارد (به آسانی ذوب می‌شود) پایداری تراز ۶s به دلیل وجود تراز پُرشدهٔ ۴f است. نبود تراز پایین تر f در عنصرهایی مانند کادمیم و روی دلیل داشتن نقطهٔ ذوب بالاتر این عنصرها است. یادآوری می‌شود که هر دوی این عنصرها به آسانی ذوب می‌شوند و افزون بر این به گونهٔ نامعمولی نقطهٔ جوش پایینی دارند. فلزهایی مانند طلا نسبت به جیوه اتم‌هایی با یک الکترون کمتر در 6s دارند. چنین الکترون‌هایی آسان تر جدا می‌شوند و میان اتم‌های طلا به اشتراک گذاشته می‌شوند و پیوندهای فلزی برقرار می‌کنند.[۳][۶]

شیمیایی

جیوه با بیشتر اسیدها واکنش نمی‌دهد، مانند اسید سولفوریک رقیق. هرچند که اسیدهای اکسیدکننده مانند اسید سولفوریک غلیظ و اسید نیتریک یاتیزاب سلطانی جیوه را حل می‌کند سولفات، نیترات و کلرید جیوه(II) را برجای می‌گذارد. مانند نقره با سولفید هیدروژن هوا واکنش می‌دهد. جیوه حتی با تکه‌های کوچک جامد گوگردی هم واکنش می‌دهد. این مواد در کیت‌های نشت جیوه برای جذب بخارهای جیوه به کار می‌رود.[۷]

ملغمه

Mercury-discharge spectral calibration lamp

به هر آلیاژی از جیوه، ملغمه گفته می‌شود. به عبارت دیگر ملغمه همان جیوه-فلز است که می‌تواند مایع یا جامد باشد. جیوه می‌تواند با طلا، روی و بسیاری از فلزهای دیگر ملغمه بسازد. آهن یک استثنا است برای همین به صورت سنتی برای تجارت جیوه از ظرف‌های آهنی بهره برده می‌شد. فلزهای دیگر که با جیوه ملغمه نمی‌سازند عبارتند از تانتالیم، تنگستن و پلاتین. ملغمهٔ سدیم یک عامل کاهندهٔ پرکاربرد در ساخت مواد آلی است. همچنین در لامپ‌های سدیمی فشاربالا هم بکار می‌آید.

هنگامی که جیوه و آلومینیم خالص در تماس با هم قرار گیرند به آسانی با هم ترکیب می‌شوند و ملغمهٔ آلومینیم-جیوه را می‌سازند. اکسید آلومینیم که پوشش محافظ آلومینیم در برابر اکسیدشدگی است در برابر این ملغمه به آسانی از میان می‌رود برای همین حتی اندازه‌های اندک جیوه هم برای آلومینیم بسیار خورنده‌است. به این دلیل در بیشتر شرایط اجازهٔ ورود جیوه به درون هواپیما داده نمی‌شود.[۸]

ایزوتوپ

جیوه هفت ایزوتوپ دارد که فراوان ترین آن‌ها ۲۰۲Hg است (۲۹٫۸۶٪). ۱۹۴Hg با نیمه‌عمر ۴۴۴ سال و پس از آن ۲۰۳Hg با نیمه‌عمر ۴۶٫۶۱۲ روز دارای درازترین نیمه‌عمر در میان ایزوتوپ‌های پرتوزای جیوه‌اند. غیر از این دو، بیشتر ایزوتوپ‌ها دارای نیمه‌عمری کمتر از یک روز اند. ۱۹۹Hg و ۲۰۱Hg به ترتیب با اسپین‌های ۱۲ و ۳۲ ایزوتوپ‌هایی اند که بیشترین پژوهش تشدید مغناطیسی هسته-هستهٔ فعال بر روی آن‌ها صورت گرفته‌است.[۵]

گذشته

نماد سیارهٔ جیوه (☿) که از دوران باستان برای اشاره به این عنصر بکار برده می‌شد.

گذشتهٔ جیوه به سال ۱۵۰۰ پیش از میلاد باز می‌گردد. دیرینه ترین نشانه از این عنصر در آرامگاه‌های مصر باستان پوده‌است.[۹]

مردم در چین و تبت گمان می‌کردند که جیوه باعث درازی عمر، درمان آسیب‌ها و درمجموع، سلامتی بهتر افراد می‌شود.[۱۰] تا آنجا که گفته شده یکی از شاهان چین به نام چین شی هوان در آرمگاهی از سرزمینش به خاک سپرده شده که رودهایی از جیوه را دربرداشته به عنوان نمادی از رودهای چین. این پادشاه خود در اثر نوشیدن آمیخته‌ای از جیوه و گَرد یشم سبز که کیمیاگران دربار دودمان چه‌این آن را درست کرده بودند، کشته شده بود. او گمان می‌کرد با نوشیدن این معجون، جاودان خواهد شد. او با نوشیدن این معجون دچار نارسایی کبدی، مسمویت جیوه و در پایان مرگ مغزی شده بود.[۱۱][۱۲]

در یونان باستان جیوه به عنوان یک مرهم یا روغن کاربرد داشت. مصریان و رومیان باستان هم از آن به عنوان ابزار آرایشی که گاهی باعث دگرگونی چهره می‌شود، بهره می‌بردند. در لامانه، یکی از شهرهای اصلی تمدن مایا یک استخر جیوه پیدا شده بود که در زیر یک زمین بازی (با توپ) در آمریکای میانه جای داشت.[۱۳][۱۴] تا سال ۵۰۰ پیش از میلاد، جیوه در ساخت ملغمه، آلیاژی با دیگر فلزات به کار برده می‌شد.[۱۵]

کیمیاگران گمان می‌کردند جیوه نخستین مادهٔ جهان بوده و دیگر فلزها از آن پدید آمده‌اند. آن‌ها بر این باور بودند که می توان با تغییر کیفیت و کمیت گوگرد افزوده شده به جیوه، فلزهای گوناگون را پدید آورد. همچنین این باور وجود داشت که خالص ترین فلزها، طلا است برای همین در تلاش شان در دگرگونی فلزهای ناخالص به طلا از جیوه بهره می‌بردند. به انجام رسانیدن چنین واکنشی، آرزوی دیرینهٔ بسیاری از کیمیاگران بود.[۱۶]

آلمادن در اسپانیا، مونته آمیاتا در ایتالیا و ایدریا در اسلونی امروزی معدن‌های اصلی جیوه بوده‌اند. نزدیک به ۲۵۰۰ سال از عمر معدن آلمادن می‌گذرد.[۱۷]

پیدایش

همچنین ببینید: رده:کانی‌های جیوه و رده:معدن‌های جیوه
خروجی جیوه در سال ۲۰۰۵

جیوه عنصری به شدت کمیاب در پوستهٔ زمین است. فراوانی آن در پوسته برپایهٔ جرم ۰٫۰۸ بخش در میلیون (ppm) است.[۱۸] البته چون این عنصر از دیدگاه زمین‌شیمی با عنصرهایی که بیشترین فراوانی را در پوسته دارند آمیخته نمی‌شود به همین دلیل سنگ معدن‌های جیوه نسبت به سنگ‌های معمولی دارای غلظت بالایی از این عنصرند. داراترین سنگ معدن‌های این عنصر تا ۲٫۵٪ جرمی و فقیرترین آن‌ها دست کم ۰٫۱٪ جیوه دارند (۱۲،۰۰۰ برابر فراوانی میانگین جیوه در پوسته). جیوه هم به صورت یک فلز (کمیاب) و هم در کنار عنصرهای دیگر در کانی‌هایی مانند شنگرف، کوردرویت، لیوینگ ستونیت و... پیدا شده‌است. HgS یا شنگرف معمول ترین سنگ معدن جیوه‌است.[۱۹] سنگ معدن‌های جیوه بیشتر در کمربندهایی که سنگ‌هایی با چگالی بالا با نیروی بزرگی به بیرون پوسته هُل داده شده‌اند پیدا می‌شود بویژه در فصل‌های داغ یا ناحیه‌های آتشفشانی.[۲۰]

از سال ۱۵۵۸ با بدست آوردن فرایندی که در آن بتوان با کمک جیوه، نقره را از سنگ معدنش بیرون کشید، جیوه ارزش بالایی در اقتصاد اسپانیا و سرزمین‌های آمریکایی زیر پوشش پیدا کرد. در اسپانیای نو و پرو این ارزش بیشتر دیده می‌شد. در آغاز معدن آلمادن در جنوب اسپانیا، فراهم کنندهٔ همهٔ جیوهٔ مورد نیاز اسپانیایی‌ها بود.[۲۱] در بازهٔ سه سده بیش از ۱۰۰،۰۰۰ تُن جیوه از معدن‌ها بیرون کشیده شد و روند نیاز به جیوه تا پایان سدهٔ ۱۹ برای بدست آوردن نقرهٔ بیشتر همچنان ادامه داشت.[۲۲]

شنگرف، سنگ معدن جیوه، معدن سوکریتس، شهرستان سونومای کالیفرنیا. در جاهایی که رسوب‌های جیوه به صورت اکسیدی اند، از شنگرف با عنوان سنگ مادر جیوه یاد می‌شود.

پس از اسپانیا در ایتالیا، آمریکا، مکزیک و اسلوونی هم معدن‌های مهم جیوه پیدا شد و به بهره برداری رسید. اما امروز در بسیاری از این معدن‌ها بسته‌است. برای نمونه معدن مک‌درمیت در نوادا که آخرین معدن آمریکا بود در سال ۱۹۹۲ بسته شد. بسیاری از این بسته شدن‌ها به دلیل افت ارزش جیوه بوده‌است. ارزش جیوه در سال‌های گوناگون بسیار بالا و پایین شده برای نمونه در سال ۲۰۰۶ ارزش جیوه برای هر فلاسک، برابر با ۷۶ پوند یا ۳۴٫۴۶ کیلوگرم، ۶۵۰ دلار بوده‌است.[۲۳]

با حرارت دادن شنگرف در برابر جریان هوا و سپس متراکم کردن بخار آن به جیوه می‌رسیم. این واکنش به ترتیب زیر است:

HgS + O۲ → Hg + SO۲

در سال ۲۰۰۵ چین بزرگترین تولیدکنندهٔ جیوه بود.[۲۴] گمان آن می‌رود که کشورهای دیگر هم با کمک فرایندهای الکتریکی استخراج، تولیدکنندهٔ جیوه بوده‌اند اما داده‌ای را ثبت نکرده‌اند.

به دلیل سمی بودن بالای جیوه، هم در فرایند معدن کاری و هم در جداسازی، آسیب‌های فراوانی از این ماده در گذشته تا کنون به جای مانده‌است.[۲۵] به همین دلیل در دههٔ ۱۹۵۰ شرکت‌های خصوصی در اردوگاه‌های کار اجباری از زندانیان برای کندن معدن‌های جیوه استفاده می‌شد. هزاران زندانی به کار گرفته می‌شدند تا تونل‌های تازه بکنند.[۲۶] افزون بر این سلامتی کارگران در هنگام کار در معدن به شدت در خطر بود.

اتحادیهٔ اروپا در سال ۲۰۱۲ به دلیل نیازش به لامپ‌های مهتابی چین را به بازگشایی معدن‌های مرگبارش تشویق می‌کرد تا جیوهٔ مورد نیاز آن‌ها فراهم شود. با این روند محیط زیست در برابر خطرهای جدی قرار می‌گرفت بویژه در منطقه‌های جنوبی فوشان و گوانگ‌ژو، و در استان گوئیژو در جنوب غرب.[۲۶]

معدن‌های جیوه که پس از بهره برداری رها شده‌اند دارای توده‌های بزرگ و خطرناک شنگرف حرارت داده شده‌اند. بررسی‌ها نشان داده که آبی که از این منظقه‌ها می‌گذرد بسیار برای طبیعت آسیب رسان است. برای همین تلاش می‌شود تا از این منطقه‌ها به گونهٔ ویژه‌ای دوباره بهره برداری شود. برای نمونه در سال ۱۹۷۶ شهرستان سانتا کلارا یک معدن کهنه را خرید و در آن یک پارک محلی درست کرد و البته برای پاک سازی محیطی و امنیت آن بسیار هزینه کرد.[۲۷]

ترکیب‌های شیمیایی

جستارهای وابسته

منبع

  1. Meija, J.; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". شیمی محض و کاربردی(نشریه). 88 (3): 265–91. doi:10.1515/pac-2015-0305.
  2. Senese, F. "Why is mercury a liquid at STP?". General Chemistry Online at Frostburg State University. Retrieved May 1, 2007.
  3. ۳٫۰ ۳٫۱ Norrby, L.J. (1991). "Why is mercury liquid? Or, why do relativistic effects not get into chemistry textbooks?". Journal of Chemical Education. 68 (2): 110. Bibcode:1991JChEd..68..110N. doi:10.1021/ed068p110.
  4. Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. pp. ۴٫۱۲۵–۴٫۱۲۶. ISBN 0-8493-0486-5.
  5. ۵٫۰ ۵٫۱ Hammond, C. R The Elements in Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.
  6. "Why is mercury a liquid at STP?". Retrieved 2009-07-07.
  7. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Oxford: Butterworth-Heinemann. ISBN 0080379419.{{cite book}}: نگهداری یادکرد:نام‌های متعدد:فهرست نویسندگان (link)
  8. Vargel, C. ; Jacques, M. ; Schmidt, M. P. (2004). Corrosion of Aluminium. Elsevier. p. ۱۵۸. ISBN 20049780080444956. {{cite book}}: Check |isbn= value: length (help)نگهداری یادکرد:نام‌های متعدد:فهرست نویسندگان (link)
  9. "Mercury and the environment — Basic facts". Environment Canada, Federal Government of Canada. 2004. Retrieved 2008-03-27.
  10. "Mercury — Element of the ancients". Center for Environmental Health Sciences, Dartmouth College. Retrieved 2012-04-09.
  11. "Qin Shihuang". Ministry of Culture, People's Republic of China. 2003. Retrieved 2008-03-27.
  12. Wright, David Curtis (2001). The History of China. Greenwood Publishing Group. p. ۴۹. ISBN 0-313-30940-X.
  13. Pendergast, David M. (August 6, 1982). "Ancient maya mercury". Science. ۲۱۷ (۴۵۵۹): ۵۳۳–۵۳۵. Bibcode:1982Sci...217..533P. doi:10.1126/science.217.4559.533. PMID ۱۷۸۲۰۵۴۲. {{cite journal}}: Check |pmid= value (help)
  14. "Lamanai". Retrieved June 17, 2011.
  15. Hesse R W (2007). Jewelrymaking through history. Greenwood Publishing Group. p. ۱۲۰. ISBN 0-313-33507-9.
  16. Stillman, J. M. (2003). Story of Alchemy and Early Chemistry. Kessinger Publishing. pp. ۷–۹. ISBN 978-0-7661-3230-6.
  17. Eisler, R. (2006). Mercury hazards to living organisms. CRC Press. ISBN 978-0-8493-9212-2.
  18. Ehrlich, H. L. ; Newman D. K. (2008). Geomicrobiology. CRC Press. p. ۲۶۵. ISBN 978-0-8493-7906-2.{{cite book}}: نگهداری یادکرد:نام‌های متعدد:فهرست نویسندگان (link)
  19. Rytuba, James J. "Mercury from mineral deposits and potential environmental impact". Environmental Geology. ۴۳ (۳): ۳۲۶–۳۳۸. doi:10.1007/s00254-002-0629-5.
  20. "Mercury Recycling in the United States in 2000" (PDF). USGS. Retrieved 2009-07-07.
  21. Burkholder, M. and Johnson, L. (2008). Colonial Latin America. Oxford University Press. pp. ۱۵۷–۱۵۹. ISBN 0-19-504542-4.{{cite book}}: نگهداری یادکرد:نام‌های متعدد:فهرست نویسندگان (link)
  22. Jamieson, R W (2000). Domestic Architecture and Power. Springer. p. ۳۳. ISBN 0-306-46176-5.
  23. Brooks, W. E. (2007). "Mercury" (PDF). U.S. Geological Survey. Retrieved 2008-05-30.
  24. World Mineral Production. London: British Geological Survey, NERC. ۲۰۰۱-۰۵. {{cite book}}: Check date values in: |date= و |year= / |date= mismatch (help)
  25. About the Mercury Rule
  26. ۲۶٫۰ ۲۶٫۱ Sheridan, M. (May 3, 2009). "'Green' Lightbulbs Poison Workers: hundreds of factory staff are being made ill by mercury used in bulbs destined for the West". The Sunday Times (of London, UK).
  27. Boulland M (2006). New Almaden. Arcadia Publishing. p. ۸. ISBN 0-7385-3131-6.

پیوند به بیرون

الگو:Link FA