ضریب همبستگی رتبه‌ای اسپیرمن

از ویکی‌پدیا، دانشنامهٔ آزاد
زمانی که رابطهٔ بین دو متغیر یکنوا باشد، اگرچه غیر خطی، ضریب همبستگی اسپیرمن ۱ است. ولی در این شرایط ضریب همبستگی پیرسون کامل ۱ نمی‌شود.

ضریب همبستگی رتبه‌ای اسپیرمن [۱] آماره‌ای ناپارامتری برای سنجش ضریب همبستگی بین دو متغیر تصادفی است. این ضریب را معمولاً با ρ یا نشان می‌دهند.

بیان آماری[ویرایش]

مقدار ضریب همبستگی رتبه‌ای اسپیرمن مبین قابلیت بیان یک متغیر به صورت تابعی یکنوا از متغیر دیگر است. همبستگی کامل پیرسون (۱+ یا ۱-) در جاییست که متغیری تابعی یکنوا از متغیر دیگر باشد. صفر بودن این ضریب دلیل استقلال متقابل است. لازم به ذکر است که از ضریب اسپیرمن تنها در شرایطی استفاده می‌شود که دادههای ورودی رتبه‌ای باشند. روش های دیگری مانند تای کندال را می توان بجای ضریب همبستگی اسپیرمن استفاده نمود که همانند روش اسپیرمن یک روش ناپارامتری محسوب می شود.

اگر n زوج داده به صورت داده شده‌باشند و رتبهٔ هر داده را به صورت تعریف کنیم، ضریب اسپیرمن از طریق فرمول زیر محاسبه می گردد[۲][۳]:

بطوریکه مقدار بیانگر فاصله بین دو رنک در مشاهدات است که از طریق فرمول محاسبه می گردد و بیانگر تعداد مشاهدات است.

همچنین، این ضریب را می‌توان به صورت ضریب همبستگی پیرسون بین داده‌های رتبه‌بندی شده تعریف کرد. به عنوان مثال، اگر n زوج داده به صورت داده شده‌باشند، ابتدا رتبهٔ هر داده را به صورت حساب کرده و سپس ضریب همبستگی اسپیرمن را به صورت زیر حساب می‌کنیم:

به داده‌های تکراری مقدار میانگین رتبه‌ها را اختصاص می‌دهیم. جدول زیر مثالی از محاسبهٔ رتبه را نشان می‌دهد:

Variable Position in the ascending order Rank
۰٫۸ ۱ ۱
1.2 2
1.2 3
۲٫۳ ۴ ۴
۱۸ ۵ ۵


فرض کنید دو سری دیتا رتبه ای بصورت جدول زیر وجود دارد. می خواهیم مقدار ضریب اسپیرمن را برای این دیتاها محاسبه نماییم.

1 1
2 3
3 2

مقدار ضریب اسپرمن برای این دو سری دیتا 0.5 خواهد بود که بیانگر مشابهت آنها می باشد. نحوه محاسبه ضریب اسپیرمن بصورت زیر است:


نمونه کد ساده[ویرایش]

در متلب، تابع corr برای این منظور است؛ مثلاً در کد زیر:

N=5; % No. of nodes

x = randn(N,1); y = randn(N,1);

[r,p] = corr(x,y,'type','Spearman');

z(N,2)=0; z(:,1)=x(:,1);z(:,2)=y(:,1);z2=sortrows(z,1);zx=z2(:,1);zy=z2(:,2);

fprintf(' Spearman"s rho= %g, P_Value= %g\n',r,p), plot(zx,zy,'ro-')

مقدار ضریب اسپیرمن و مقدار احتمال محاسبه می‌شوند. توجه شود که مقدار احتمال تابعی از ضریب اسپیرمن و شمار نمونه هاست.

  • ضریب اسپیرمن: مقدار تابعیت یکنوای صعودی یا نزولی دو بردار
  • مقدار احتمال: احتمال عدم وجود یک تابع یکنوا بین دو بردار


همچنین می توان مقدار ضریب اسپیرمن را در اکسل با استفاده از تابع CORREL(array1, array2) محاسبه نمود.

منابع[ویرایش]

  1. "Spearman's rank correlation coefficient". Wikipedia (به انگلیسی). 2022-05-12.
  2. Ataei, Younes; Mahmoudi, Amin; Feylizadeh, Mohammad Reza; Li, Deng-Feng (2020-01-01). "Ordinal Priority Approach (OPA) in Multiple Attribute Decision-Making". Applied Soft Computing (به انگلیسی). 86: 105893. doi:10.1016/j.asoc.2019.105893. ISSN 1568-4946.
  3. Spearman, C (2010-10-01). "The proof and measurement of association between two things". International Journal of Epidemiology. 39 (5): 1137–1150. doi:10.1093/ije/dyq191. ISSN 0300-5771.