این صفحه یک درگاه برگزیده است.

درگاه:ریاضیات

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به ناوبری پرش به جستجو

صفحه اصلی   رده‌ها و موضوعات   درگاه‌ها و پروژه‌ها

درگاه ریاضیات


نماد ریاضی

ریاضیات (Mathematics) را معمولاً دانش بررسی کمیت‌ها و ساختار‌ها و فضا و تبدیل تعریف می‌کنند. دیدگاه دیگری ریاضی را دانشی می‌داند که در آن با استدلال منطقی از اصول و تعریف‌ها به نتایج دقیق و جدیدی می‌رسیم. دیدگاه‌های دیگری نیز در فلسفه ریاضیات بیان شده‌است.

اگرچه ریاضیات خود یکی از علوم طبیعی به‌شمار نمی‌رود ولی ساختارهای ویژه‌ای که ریاضی‌دانان می‌پژوهند، بیشتر از دانش‌های طبیعی به ویژه فیزیک سرچشمه می‌گیرند و در فضایی جدا از طبیعت و محض‌گونه گسترش پیدا می‌کند به طوری که علوم طبیعی برای حل مسائل خود به ریاضی باز می‌گردند تا جوابشان را با آن مقایسه و بررسی کنند.

علوم طبیعی، مهندسی و اقتصاد، بسیار به ریاضیات تکیه دارند. آن بخش از ریاضیات را که علوم کاربردی به آن بیشتر می‌پردازند، ریاضیات کاربردی می‌نامند. ولی گاه ریاضی‌دانان به دلایل صرفاً ریاضی و نه کاربردی به تعریف و بررسی برخی ساختارها می‌پردازند که به آن ریاضیات محض گفته می‌شود.

نوشتار برگزیده

Circle-trig6.svg

تابع مثلثاتی، در ریاضیات، به شش تابع سینوس، کسینوس، تانژانت، کتانژانت، سکانت و کسکانت گفته می‌شود. این توابع، رابطهٔ میان زاویه‌ها و ضلع‌های یک مثلث قائم‌الزاویه را نشان می‌دهند و به همین دلیل، توابع مثلثاتی نامیده می‌شوند.

توابع مثلثاتی بر روی یک زاویه عمل می‌کنند و یک عدد حقیقی را برمی‌گردانند. کاربرد اصلی این تابع‌ها محاسبهٔ اندازهٔ ضلع‌ها و زاویه‌های یک مثلث و سایر عوامل مرتبط با آن‌ها می‌باشد. این کاربرد، در دانش‌های مختلفی مانند نقشه‌برداری، ناوبری و زمینه‌های گوناگون فیزیک مورد استفاده قرار می‌گیرد. هم‌چنین به علت خاصیت تناوبی بودن، این تابع‌ها در مدل‌سازی فرایندهای نوسانی مانند نور و موج به کار می‌روند.

زندگی‌نامهٔ برگزیده

Persian Scholar pavilion in Viena UN (Omar Khayyam).jpg

خیام (زادهٔ ۲۸ اردیبهشت ۴۲۷، درگذشتهٔ ۵۱۰ خورشیدی) معروف به خیامی و خیام نیشابوری، از ریاضی‌دانان، ستاره‌شناسان و شاعران بنام ایران در دورهٔ سلجوقی است. گرچه پایگاه علمی خیام برتر از جایگاه ادبی او است و دارای لقب حجةالحق بوده‌است ولی آوازهٔ وی بیشتر به واسطهٔ نگارش رباعیاتش است که شهرت جهانی دارد. افزون بر آنکه رباعیات خیام را به اغلب زبان‌های زنده ترجمه نموده‌اند، فیتزجرالد رباعیات او را به زبان انگلیسی ترجمه کرده‌است که مایهٔ شهرت بیشتر وی در مغرب‌زمین گردیده‌است.شماری از تذکره‌نویسان، خیام را شاگرد ابن سینا و شماری نیز وی را شاگرد امام موفق نیشابوری خوانده‌اندهرچند صحت این فرضیه که خیام شاگرد ابن سینا بوده‌است، بسیار بعید می‌نماید، زیرا از لحاظ زمانی با هم تفاوت زیادی داشته‌اند. خیام در جایی ابن سینا را استاد خود می‌داند اما این استادی ابن سینا، جنبهٔ معنوی دارد.

مفاهیم

نماد بینهایت در حالت های مختلف

بینهایت مفهومی است که در رشته‌های مختلف ریاضیات (با تعبیرات مختلف) به‌کار می‌رود و معمولاً به معنای «فراتر از هر مقدار» است. معمولاً نشانه بینهایت در ریاضیات است. بی نهایت از واژه لاتین finites به معنی محدود گرفته شده ( علامت ) چیزی است که "محدود" نیست، که در آن هیچ محدودیت فضایی و زمانی وجود ندارد. در آنالیز حقیقی، بینهایت به معنای حدی بیکران است. یعنی متغیر فراتر از هر مقدار در نظرگرفته شده رشد می‌کند.

نوشتارهای برگزیده

نگارهٔ برگزیده

Isfahan Lotfollah mosque ceiling symmetric.jpg

در هندسه اقلیدسی، تجانس یکنواخت یا تجانس همسانگرد، تبدیلی خطی است که اشکال را در تمام جهات به یک مقیاس بزرگ یا کوچک می‌کند. در حالت کلی‌تر، ضریب تجانس در جهات گوناگون می‌تواند متفاوت باشد. در این صورت به آن تجانس غیریکنواخت یا ناهمسانگرد گویند.سطح زیرین گنبد مسجد شیخ لطف‌الله نمونه ای از تجانس است.

گفتاورد

«هیچکس را یارای آن نیست که ما را از بهشتی که کانتور برای ما آفریده است بیرون راند.»

دیوید هیلبرت

هندسه

Square - geometry.svg

مربع شکلی هندسی است با چهار لبهٔ (ضلع) برابر. در حقیقت مربع خمی بسته‌ است که ضلع‌های مجاورش دو به دو با هم زاویهٔ ۹۰ درجه می‌سازد و همه با هم برابر اند. برابر پارسی این خم بسته «چهار گوش» است.
برای مربعی با ضلع n داریم:

آیا می‌دانستید؟

آیا می‌دانستید...

... که امکان ساخت فرمولی برای حل معادله درجه پنج که فقط شامل رادیکال ها و چند جمله ای ها باشد نیست؟


درگاه‌های وابسته

در دیگر پروژه‌های ویکی‌مدیا