درگاه:ریاضیات

این صفحه یک درگاه برگزیده است.
از ویکی‌پدیا، دانشنامهٔ آزاد

صفحه اصلی   رده‌ها و موضوعات   درگاه‌ها و پروژه‌ها

درگاه ریاضیات


نماد ریاضی

ریاضیات (Mathematics) را معمولاً دانش بررسی کمیت‌ها و ساختار‌ها و فضا و تبدیل تعریف می‌کنند. دیدگاه دیگری ریاضی را دانشی می‌داند که در آن با استدلال منطقی از اصول و تعریف‌ها به نتایج دقیق و جدیدی می‌رسیم. دیدگاه‌های دیگری نیز در فلسفه ریاضیات بیان شده‌است.

اگرچه ریاضیات خود یکی از علوم طبیعی به‌شمار نمی‌رود ولی ساختارهای ویژه‌ای که ریاضی‌دانان می‌پژوهند، بیشتر از دانش‌های طبیعی به ویژه فیزیک سرچشمه می‌گیرند و در فضایی جدا از طبیعت و محض‌گونه گسترش پیدا می‌کند به طوری که علوم طبیعی برای حل مسائل خود به ریاضی باز می‌گردند تا جوابشان را با آن مقایسه و بررسی کنند.

علوم طبیعی، مهندسی و اقتصاد، بسیار به ریاضیات تکیه دارند. آن بخش از ریاضیات را که علوم کاربردی به آن بیشتر می‌پردازند، ریاضیات کاربردی می‌نامند. ولی گاه ریاضی‌دانان به دلایل صرفاً ریاضی و نه کاربردی به تعریف و بررسی برخی ساختارها می‌پردازند که به آن ریاضیات محض گفته می‌شود.

نوشتار برگزیده

Prime number theorem ratio convergence.svg

نظریه اعداد اول نام نظریه‌ای بسیار اساسی در بخش نظریه اعداد ریاضی و اعداد اول که نقش بسیار مهمی در پیشبرد نظریه اعداد را ایفا می‌کند.

بر اساس این نظریه

اگر تعداد اعداد اول کمتر از باشد

آنگاه

این نظریه غوغایی را در نظریه اعداد ایجاد کرد و شگفتی بزرگی در اعداد اول آفرید تا به آنجا که توانست بسیاری از قضیه‌های موجود در نظریه اعداد، همچون قضیه اردیش را به راحتی اثبات کند.

زندگی‌نامهٔ برگزیده

Persian Scholar pavilion in Viena UN (Omar Khayyam).jpg

خیام (زادهٔ ۲۸ اردیبهشت ۴۲۷، درگذشتهٔ ۵۱۰ خورشیدی) معروف به خیامی و خیام نیشابوری، از ریاضی‌دانان، ستاره‌شناسان و شاعران بنام ایران در دورهٔ سلجوقی است. گرچه پایگاه علمی خیام برتر از جایگاه ادبی او است و دارای لقب حجةالحق بوده‌است ولی آوازهٔ وی بیشتر به واسطهٔ نگارش رباعیاتش است که شهرت جهانی دارد. افزون بر آنکه رباعیات خیام را به اغلب زبان‌های زنده ترجمه نموده‌اند، فیتزجرالد رباعیات او را به زبان انگلیسی ترجمه کرده‌است که مایهٔ شهرت بیشتر وی در مغرب‌زمین گردیده‌است.شماری از تذکره‌نویسان، خیام را شاگرد ابن سینا و شماری نیز وی را شاگرد امام موفق نیشابوری خوانده‌اندهرچند صحت این فرضیه که خیام شاگرد ابن سینا بوده‌است، بسیار بعید می‌نماید، زیرا از لحاظ زمانی با هم تفاوت زیادی داشته‌اند. خیام در جایی ابن سینا را استاد خود می‌داند اما این استادی ابن سینا، جنبهٔ معنوی دارد.

مفاهیم

نمودار تابع '"`UNIQ--postMath-00000004-QINU`"'

تابع یکی از مفاهیم نظریه مجموعه‌ها و حساب دیفرانسیل و انتگرال است. بطور ساده می‌توان گفت که به قاعده‌های تناظری که به هر ورودی خود یک و فقط یک خروجی نسبت می‌دهند، تابع گفته می‌شود. تابع به عنوان مفهومی در ریاضیات، توسط گوتفرید لایبنیتس در سال ۱۶۹۴، با هدف توصیف یک کمیت در رابطه با یک منحنی مانند شیب یک نمودار در یک نقطه خاص به وجود آمد. امروزه به توابعی که توسط لایبنیز تعریف شدند، توابع مشتق‌پذیر می‌گوییم.

نوشتارهای برگزیده

نگارهٔ برگزیده

Isfahan Lotfollah mosque ceiling symmetric.jpg

در هندسه اقلیدسی، تجانس یکنواخت یا تجانس همسانگرد، تبدیلی خطی است که اشکال را در تمام جهات به یک مقیاس بزرگ یا کوچک می‌کند. در حالت کلی‌تر، ضریب تجانس در جهات گوناگون می‌تواند متفاوت باشد. در این صورت به آن تجانس غیریکنواخت یا ناهمسانگرد گویند.سطح زیرین گنبد مسجد شیخ لطف‌الله نمونه ای از تجانس است.

گفتاورد

«هر نوع علمی، اگر به درجه ای از بلوغ برسد، به صورت خودکار قسمتی از ریاضیات می گردد.»

دیوید هیلبرت

هندسه

یک دایره با مشخصات آن (مرکز، شعاع)

دایره مکان هندسی نقاطی از صفحه است که فاصله‌شان از نقطهٔ ثابتی واقع در آن صفحه، مقدار ثابتی باشد. نقطهٔ ثابت، «مرکز دایره»، و مقدار ثابت، «اندازهٔ شعاع دایره» نامیده می‌شود. در حقیقت، دایره یک بیضی است که کانون‌های آن بر همدیگر منطبق‌اند.

  • = محیط دایره
  • = مساحت دایره

آیا می‌دانستید؟

آیا می‌دانستید...

... که یک هفت‌ضلعی منتظم، یک چند ضلعی منتظم با کمترین اضلاع ممکن است که می توان آن را با خط کش و پرگار ساخت؟


درگاه‌های وابسته

در دیگر پروژه‌های ویکی‌مدیا