درگاه:ریاضیات

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو
صفحه اصلی   رده‌ها و موضوعات   درگاه‌ها و پروژه‌ها

درگاه ریاضیات


نماد ریاضی

ریاضیات یا مزداهیک (Mathematics) را معمولاً دانش بررسی کمیت‌ها و ساختار‌ها و فضا و دگرگونی تعریف می‌کنند. دیدگاه دیگری ریاضی را دانشی می‌داند که در آن با استدلال منطقی از اصول و تعریف‌ها به نتایج دقیق و جدیدی می‌رسیم، دیدگاه‌های دیگری نیز در فلسفه ریاضیات بیان شده‌است.

اگرچه ریاضیات خود یکی از علوم طبیعی به‌شمار نمی‌رود، ولی ساختارهای ویژه‌ای که ریاضی‌دانان می‌پژوهند بیشتر از دانش‌های طبیعی به ویژه فیزیک سرچشمه می‌گیرند و در فضایی جدا از طبیعت و محض‌گونه گسترش پیدا می‌کند به طوری که علوم طبیعی برای حل مسائل خود به ریاضی باز می‌گردند تا جوابشان را با آن مقایسه و بررسی کنند.

علوم طبیعی، مهندسی و اقتصاد، بسیار به ریاضیات تکیه دارند. آن بخش از ریاضیات را که علوم کاربردی به آن بیشتر می‌پردازند، ریاضیات کاربردی می‌نامند. ولی گاه ریاضی‌دانان به دلایل صرفاً ریاضی و نه کاربردی به تعریف و بررسی برخی ساختارها می‌پردازند که به آن ریاضیات محض گفته می‌شود.

نوشتار برگزیده

Petersen1 tiny.svg

ترکیبیات شاخه‌ای از ریاضیات است که به بررسی دسته‌هایی معمولاً متناهی) از اشیا می‌پردازد که در شرایط معینی صدق می‌کنند. ریشه آن در روش‌های مربوط به شمردن دسته‌بندی‌های مختلف از اشیا یا افراد بوده‌است. امروز مبحث شمارش همهٔ ترکیبیات را در بر نمی‌گیرد بلکه ترکیبیات یکی از شاخه‌های بسیار وسیع عالم ریاضی است و شمارش بخشی از آن است.

شمارش و شمردن حالات انجام یک کار از زمان‌های دور مورد بررسی بوده‌است. گویا این کار بیش از همه در جنگها برای شمارش سربازان به کار می‌رفته‌است.

زندگی‌نامهٔ برگزیده

Domenico-Fetti Archimedes 1620.jpg

ارشمیدس ریاضیدان و فیزیکدان یونان باستان و از اهالی جزیره ساموس در دریای مدیترانه بود. ارشمیدس دانشمند و ریاضیدان یونانی در سال ۲۱۲ قبل از میلاد در شهر سیراکوز یونان چشم به جهان گشود و در جوانی برای آموختن دانش به اسکندریه رفت. بیشتر دوران زندگیش را در زادگاهش گذرانید. در داستان‌ها چنین آمده‌است که بیش از ۲۰۰۰ سال پیش در شهر سیراکوز پایتخت ایالت یونانی سیسیل آن زمان ارشمیدس مکانیک دان و ریاضی دان و مشاور دربار پادشاه یمرون یکی از معروفترین کشفهای خود را در خزینه حمام انجام داد.
بیشتر...

مفاهیم

Integral.svg

انتگرال از مفاهیم اساسی در ریاضیات است که در کنار مشتق دو عملگر اصلی حساب دیفرانسیل و انتگرال را تشکیل می‌دهند.اولین بار لایب نیتس نماد استانداردی برای انتگرال معرفی کرد. aو b نقاط ابتدا و انتهای بازه هستند و f تابعی انتگرال‌پذیر است و dx نمادی برای متغیر انتگرال گیری است. از لحاظ تاریخی dx یک کمیت بی نهایت کوچک را نشان می‌دهد. هر چند در تئوریهای جدید، انتگرال گیری بر پایه متفاوتی پایه گذاری شده‌است. هر گاه معادله مشتق تابعی معلوم باشد وبخواهیم معادله اصلی تابع را تعیین کنیم این عمل را تابع اولیه می‌نامیم.

نوشتارهای برگزیده

نگارهٔ برگزیده

Mandel zoom 00 mandelbrot set.jpg

برخال یا فراکتال شکلهایی حاصل توابع ریاضی هستند که برعکس شکل‌های هندسه اقلیدسی به هیچ وجه منظم نیستند این شکل‌ها سراسر نامنظم اند و میزان بی نظمی آنها در همه مقیاسها یکسان است. جسم فراکتال از دور و نزدیک یکسان دیده می‌شود (با هر میزان زوم یک شکل دوباره ظاهر می‌شود) و خود متشابه است.

گفتاورد

خداوند اعداد طبیعی را خلق کرد، همه چیزهای دیگر کار انسان است.

لئوپولد کرونیکر

هندسه

مثلث.

مثلث یا سه‌گوش شکلی مسطح است که از اتصال سه نقطه غیرهم‌خط در صفحه به وجود می‌آید. مثلث دارای سه ضلع و سه زاویه است.مساحت یک مثلث برابر یک دوم طول یک ضلع، ضرب در طول ارتفاع وارد بر آن، یعنی فاصله رأس سوم تا خط شامل ضلع انتخاب‌شده، است. مساحت مثلث را از رابطه زیر به دست می‌آورند:

  • مساحت مثلث = (قاعده × ارتــــــفاع) ÷ ۲

درگاه‌های وابسته

در دیگر پروژه‌های ویکی‌مدیا