نسبت طلایی
برای تأییدپذیری کامل این مقاله به منابع بیشتری نیاز است. |
نسبت طلایی یا عدد فی (ϕ) (به انگلیسی: Golden ratio) در ریاضیات و هنر هنگامی رخ میدهد که نسبت بخش بزرگتر به بخش کوچکتر، برابر با نسبت کل به بخش بزرگتر باشد.[۱]
تعریف دیگر آن این است که «عددی (ثابت) مثبت است که اگر به آن یک واحد اضافه کنیم، به مربع آن خواهیم رسید».
تعریف هندسی آن چنین است: طول مستطیلی به مساحت واحد که عرض آن یک واحد کمتر از طولش باشد. مقدار دقیق عدد فی برابر است با: (یک به اضافه رادیکال پنج) تقسیم بر دو
عدد فی[ویرایش]
فی، نخستین حرف از نام «فیدیاس»، پیکرتراش زبدهٔ یونان باستان است که به احتمال زیاد این نسبت عددی را دهها سال پیش ازاقلیدس ، در شیوهٔ هنریاش لحاظ میکردهاست. بسیاری از مراجع علمی، حرف یونانی یا عدد فی را برای این عدد انتخاب کردهاند. مقدار عددی عدد طلایی برابر بهطور تقریبی برابر است با:
تعبیر هندسی دیگر اینگونهاست: پاره خط AB و نقطهٔ M روی آن مفروضند به گونهای که نسبت a به b برابر است با نسبت a+b به a. این نسبت برابر φ است. یعنی:
عدد فی با تعداد اعشار بیشتر[ویرایش]
عدد فی با ۲٬۰۰۰ رقم اعشار به شرح زیر است.[۲]
۱٫۶۱۸۰۳۳۹۸۸۷۴۹۸۹۴۸۴۸۲۰۴۵۸۶۸۳۴۳۶۵۶۳۸۱۱۷۷۲۰۳۰۹۱۷۹۸۰۵۷۶۲۸۶۲۱۳۵۴۴۸۶۲۲۷۰۵۲۶۰۴۶۲۸۱۸۹۰ ۲۴۴۹۷۰۷۲۰۷۲۰۴۱۸۹۳۹۱۱۳۷۴۸۴۷۵۴۰۸۸۰۷۵۳۸۶۸۹۱۷۵۲۱۲۶۶۳۳۸۶۲۲۲۳۵۳۶۹۳۱۷۹۳۱۸۰۰۶۰۷۶۶۷۲۶۳۵ ۴۴۳۳۳۸۹۰۸۶۵۹۵۹۳۹۵۸۲۹۰۵۶۳۸۳۲۲۶۶۱۳۱۹۹۲۸۲۹۰۲۶۷۸۸۰۶۷۵۲۰۸۷۶۶۸۹۲۵۰۱۷۱۱۶۹۶۲۰۷۰۳۲۲۲۱۰۴ ۳۲۱۶۲۶۹۵۴۸۶۲۶۲۹۶۳۱۳۶۱۴۴۳۸۱۴۹۷۵۸۷۰۱۲۲۰۳۴۰۸۰۵۸۸۷۹۵۴۴۵۴۷۴۹۲۴۶۱۸۵۶۹۵۳۶۴۸۶۴۴۴۹۲۴۱۰۴ ۴۳۲۰۷۷۱۳۴۴۹۴۷۰۴۹۵۶۵۸۴۶۷۸۸۵۰۹۸۷۴۳۳۹۴۴۲۲۱۲۵۴۴۸۷۷۰۶۶۴۷۸۰۹۱۵۸۸۴۶۰۷۴۹۹۸۸۷۱۲۴۰۰۷۶۵۲۱ ۷۰۵۷۵۱۷۹۷۸۸۳۴۱۶۶۲۵۶۲۴۹۴۰۷۵۸۹۰۶۹۷۰۴۰۰۰۲۸۱۲۱۰۴۲۷۶۲۱۷۷۱۱۱۷۷۷۸۰۵۳۱۵۳۱۷۱۴۱۰۱۱۷۰۴۶۶۶ ۵۹۹۱۴۶۶۹۷۹۸۷۳۱۷۶۱۳۵۶۰۰۶۷۰۸۷۴۸۰۷۱۰۱۳۱۷۹۵۲۳۶۸۹۴۲۷۵۲۱۹۴۸۴۳۵۳۰۵۶۷۸۳۰۰۲۲۸۷۸۵۶۹۹۷۸۲۹ ۷۷۸۳۴۷۸۴۵۸۷۸۲۲۸۹۱۱۰۹۷۶۲۵۰۰۳۰۲۶۹۶۱۵۶۱۷۰۰۲۵۰۴۶۴۳۳۸۲۴۳۷۷۶۴۸۶۱۰۲۸۳۸۳۱۲۶۸۳۳۰۳۷۲۴۲۹۲ ۶۷۵۲۶۳۱۱۶۵۳۳۹۲۴۷۳۱۶۷۱۱۱۲۱۱۵۸۸۱۸۶۳۸۵۱۳۳۱۶۲۰۳۸۴۰۰۵۲۲۲۱۶۵۷۹۱۲۸۶۶۷۵۲۹۴۶۵۴۹۰۶۸۱۱۳۱۷ ۱۵۹۹۳۴۳۲۳۵۹۷۳۴۹۴۹۸۵۰۹۰۴۰۹۴۷۶۲۱۳۲۲۲۹۸۱۰۱۷۲۶۱۰۷۰۵۹۶۱۱۶۴۵۶۲۹۹۰۹۸۱۶۲۹۰۵۵۵۲۰۸۵۲۴۷۹۰ ۳۵۲۴۰۶۰۲۰۱۷۲۷۹۹۷۴۷۱۷۵۳۴۲۷۷۷۵۹۲۷۷۸۶۲۵۶۱۹۴۳۲۰۸۲۷۵۰۵۱۳۱۲۱۸۱۵۶۲۸۵۵۱۲۲۲۴۸۰۹۳۹۴۷۱۲۳۴ ۱۴۵۱۷۰۲۲۳۷۳۵۸۰۵۷۷۲۷۸۶۱۶۰۰۸۶۸۸۳۸۲۹۵۲۳۰۴۵۹۲۶۴۷۸۷۸۰۱۷۸۸۹۹۲۱۹۹۰۲۷۰۷۷۶۹۰۳۸۹۵۳۲۱۹۶۸۱ ۹۸۶۱۵۱۴۳۷۸۰۳۱۴۹۹۷۴۱۱۰۶۹۲۶۰۸۸۶۷۴۲۹۶۲۲۶۷۵۷۵۶۰۵۲۳۱۷۲۷۷۷۵۲۰۳۵۳۶۱۳۹۳۶۲۱۰۷۶۷۳۸۹۳۷۶۴۵ ۵۶۰۶۰۶۰۵۹۲۱۶۵۸۹۴۶۶۷۵۹۵۵۱۹۰۰۴۰۰۵۵۵۹۰۸۹۵۰۲۲۹۵۳۰۹۴۲۳۱۲۴۸۲۳۵۵۲۱۲۲۱۲۴۱۵۴۴۴۰۰۶۴۷۰۳۴۰ ۵۶۵۷۳۴۷۹۷۶۶۳۹۷۲۳۹۴۹۴۹۹۴۶۵۸۴۵۷۸۸۷۳۰۳۹۶۲۳۰۹۰۳۷۵۰۳۳۹۹۳۸۵۶۲۱۰۲۴۲۳۶۹۰۲۵۱۳۸۶۸۰۴۱۴۵۷۷ ۹۹۵۶۹۸۱۲۲۴۴۵۷۴۷۱۷۸۰۳۴۱۷۳۱۲۶۴۵۳۲۲۰۴۱۶۳۹۷۲۳۲۱۳۴۰۴۴۴۴۹۴۸۷۳۰۲۳۱۵۴۱۷۶۷۶۸۹۳۷۵۲۱۰۳۰۶۸ ۷۳۷۸۸۰۳۴۴۱۷۰۰۹۳۹۵۴۴۰۹۶۲۷۹۵۵۸۹۸۶۷۸۷۲۳۲۰۹۵۱۲۴۲۶۸۹۳۵۵۷۳۰۹۷۰۴۵۰۹۵۹۵۶۸۴۴۰۱۷۵۵۵۱۹۸۸۱ ۹۲۱۸۰۲۰۶۴۰۵۲۹۰۵۵۱۸۹۳۴۹۴۷۵۹۲۶۰۰۷۳۴۸۵۲۲۸۲۱۰۱۰۸۸۱۹۴۶۴۴۵۴۴۲۲۲۳۱۸۸۹۱۳۱۹۲۹۴۶۸۹۶۲۲۰۰۲ ۳۰۱۴۴۳۷۷۰۲۶۹۹۲۳۰۰۷۸۰۳۰۸۵۲۶۱۱۸۰۷۵۴۵۱۹۲۸۸۷۷۰۵۰۲۱۰۹۶۸۴۲۴۹۳۶۲۷۱۳۵۹۲۵۱۸۷۶۰۷۷۷۸۸۴۶۶۵ ۸۳۶۱۵۰۲۳۸۹۱۳۴۹۳۳۳۳۱۲۲۳۱۰۵۳۳۹۲۳۲۱۳۶۲۴۳۱۹۲۶۳۷۲۸۹۱۰۶۷۰۵۰۳۳۹۹۲۸۲۲۶۵۲۶۳۵۵۶۲۰۹۰۲۹۷۹۸ ۶۴۲۴۷۲۷۵۹۷۷۲۵۶۵۵۰۸۶۱۵۴۸۷۵۴۳۵۷۴۸۲۶۴۷۱۸۱۴۱۴۵۱۲۷۰۰۰۶۰۲۳۸۹۰۱۶۲۰۷۷۷۳۲۲۴۴۹۹۴۳۵۳۰۸۸۹۹ ۹۰۹۵۰۱۶۸۰۳۲۸۱۱۲۱۹۴۳۲۰۴۸۱۹۶۴۳۸۷۶۷۵۸۶۳۳۱۴۷۹۸۵۷۱۹۱۱۳۹۷۸۱۵۳۹۷۸۰۷۴۷۶۱۵۰۷۷۲۲۱۱۷۵۰۸۲۶ ۹۴۵۸۶۳۹۳۲۰۴۵۶۵۲۰۹۸۹۶۹۸۵۵۵۶۷۸۱۴۱۰۶۹۶۸۳۷۲۸۸۴۰۵۸۷۴۶۱۰۳۳۷۸۱۰۵۴۴۴۳۹۰۹۴۳۶۸۳۵۸۳۵۸۱۳۸۱ ۱۳۱۱۶۸۹۹۳۸۵۵۵۷۶۹۷۵۴۸۴۱۴۹۱۴۴۵۳۴۱۵۰۹۱۲۹۵۴۰۷۰۰۵۰۱۹۴۷۷۵۴۸۶۱۶۳۰۷۵۴۲۲۶۴۱۷۲۹۳۹۴۶۸۰۳۶۷ ۳۱۹۸۰۵۸۶۱۸۳۳۹۱۸۳۲۸۵۹۹۱۳۰۳۹۶۰۷۲۰۱۴۴۵۵۹۵۰۴۴۹۷۷۹۲۱۲۰۷۶۱۲۴۷۸۵۶۴۵۹۱۶۱۶۰۸۳۷۰۵۹۴۹۸۷۸۶ ۰۰۶۹۷۰۱۸۹۴۰۹۸۸۶۴۰۰۷۶۴۴۳۶۱۷۰۹۳۳۴۱۷۲۷۰۹۱۹۱۴۳۳۶۵۰۱۳۷۱۵...
پیشینه[ویرایش]
پیشینه توجه به عدد طلایی نه به زمان فیبوناچی بلکه به زمانهای بسیار دورتر میرسد. اقلیدس در جلد ششم از سیزده جلد کتاب مشهور خود که در آنها هندسه اقلیدسی را بنا نهاد، این نسبت را مطرح کردهاست. لوکا پاچیولی در سال ۱۵۰۹ میلادی کتابی با عنوان نسبت الهی (The Divine Proportion) تألیف کرد. وی در آن نقاشیهایی از لئوناردو دا وینچی آوردهاست که پنج جسم افلاطونی را نمایش میدهند و در آنها نیز به این نسبت اشاره شدهاست.
مصریان، سالها قبل از میلاد از این نسبت آگاه بودهاند و آن را در ساخت اهرام مصر رعایت کردهاند. بسیاری از الگوهای طبیعی در بدن انسان این نسبت را دارا هستند. نسبت طول ضلع پنج پر منتظم به طول ضلع پنج ضلعی منتظم برابر همین عدد است. روانشناسان هم بر این باورند زیباترین مستطیل به دید انسان، مستطیلی است که نسبت طول به عرض آن برابر عدد طلایی باشد. دلیل این امر آن است که این نسبت در شبکیه چشم انسان رعایت شده[نیازمند منبع] و هر مستطیلی که این نسبت را دارا باشد به چشم انسان زیبا میآید.
طبیعت[ویرایش]
لئوناردو دا وینچی اولین کسی بود که نسبت دقیق استخوانهای انسان را اندازهگیری نمود و ثابت کرد که این تناسبات با ضریب عدد طلایی هستند.
کپلر (Johannes Kepler 1571-1630) منجم معروف نیز علاقه بسیاری به نسبت طلایی داشت بگونهای که در یکی از کتابهای خود اینگونه نوشت: «هندسه دارای دو گنج بسیار با اهمیت میباشد که یکی از آنها قضیه فیثاغورث و دومی رابطه تقسیم یک پاره خط با نسبت طلایی میباشد. اولین گنج را میتوان به طلا و دومی را به جواهر تشبیه کرد». تحقیقاتی که کپلر راجع به مثلثی که اضلاع آن به نسبت اضلاع مثلث مصری باشد به حدی بود که امروزه این مثلث به مثلث کپلر نیز معروف میباشد.
نسبت طلایی در ایران[ویرایش]
برج و میدان آزادی:طول بنا ۶۳ و عرض ان ۴۲ است که ۱٫۵=۴۲: ۶۳ و به عدد طلایی نزدیک میباشد سبک معماری آن نیز طاق بزرگی است که تلفیقی از سبک هخامنشی و ساسانی و اسلامی است که منحنی آن با الهام از طاق کسری معماری ایران باستان را تداعی مینماید.
قلعه دالاهو، کرمانشاه:خطی از استحکامات به طول دو و نیم کیلومتر و عرض چهار متر با قلوه و لاشه سنگ به همراه ملات دیوار گچ را میسازد. سرتاسر نمای خارجی این دیوار با مجموعهای از برجهای نیم دایرهای شکل تقویت شدهاست. میدانیم۱٫۶=۵/۲: ۴ که همان عدد طلایی است.
بیستون از دوره هخامنشی، کرمانشاه:به طول ۵ کیلومتر و عرض ۳ کیلومتراست. اعداد۵و۳هر دو جزو دنباله فیبوناتچی هستندو۱٫۶=۵:۳ و ابعاد برجسته کاری ۱۸ در ۱۰ پاست که قامت "داریوش"۵ پا و ۸ اینچ (۱۷۰ سانتیمتر) بلندی داردکه هر دو اعداد فیبوناتچی هستند.
یکی از هنرهای معماری در تخت جمشید این است که نسبت ارتفاع سر درها به عرض آنها و همینطور نسبت ارتفاع ستونها به فاصلهٔ بین دو ستون نسبت طلایی است. نسبت طلایی نسبت مهمی در هندسه است که در طبیعت وجود دارد. این نشانگر هنر ایرانیان باستان در معماری است.
پل ورسک در مازندران: این پل بر روی رودخانه ورسک در مجاورت سواد کوه بنا شد. بلندی این پل ۱۱۰ متر است و طول قوس آن ۶۶ متر میباشد(۱٫۶ = ۶۶: ۱۱۰).
مقبره ابن سینا:آرامگاه دروسط تالاری مربع شکل قرارگرفته که پله مدور (مارپیچ فیبوناتچی) و پایههای دوازدهگانه برج را احاطه کردهاند. سطح حیاط باسه پله سراسری به ایوان متصل است. ایوان با دری به ارتفاع ۲/۳ متر و عرض ۹/۱ متر به سرسرای آرامگاه متصل است (۱٫۶=۹/۱: ۲/۳)در دو طرف سرسرا دو تالار قرار دارد یکی در جنوب که تالار سخنرانی و اجتماعات است؛ و یکی در شمال که کتابخانه آرامگاه است. طول تالار کتابخانه ۴۵/۹ متر و عرض آن ۷۵/۵ متر است(۱٫۶=۷۵/۵: ۴۵/۹)
ارگ بم:این بنا ۳۰۰ متر طول و ۲۰۰ متر عرض داشته و از ۲ قسمت تشکیل شدهاست. این دژ ۵ شیوه ساختاری از خشت خام دارد. (۳ و ۲ و ۵ اعداد دنباله فیبوناتچی هستند)
میدان نقش جهان و مسجد لطفالله:در کتب اخیر، نویسنده جیسون الیوت بر این باور است که نسبت طلایی توسط طراحان میدان نقش جهان و در مجاورت مسجد لطفالله مورد استفاده قرار گرفتهاست.[۳]
خوشنویسی میرعماد حسنی:با بررسی اکثریت قاطع حروف و کلمات میرعماد متوجه میشویم که این نسبت به عنوان یک الگو در تار و پود حروف و واژهها وجود دارد و زاویه ۴۴۸/۶۳ درجه که مبنای ترسیم مستطیل طلایی است، در شروع قلمگذاری و ادامه رانش قلم، حضوری تعیینکننده دارد.[۳]
مساحت مزرعه های یک شهر:
در استان گیلان شهری وجود دارد که نامش پَرِه سَر است که از توابع شهرستان رضوانشهر میباشد مزرعه ها به چند یکا تقسیم میابند مانند که یکی از آنها (لِکَه) میباشد لکه به معنای قسمت یا پاره ای از مزرعه میباشد لکه اندازه های متفاوتی دارد و ثابت نیست مانند یک قطعه کاغذ اجتماع لکه ها یک کمیت جدید به نام (کِردو) را به وجود می آورد هر کردو در این شهر ۱۶۳۰ متر است یعنی تقریبا همان نسبت طلایی.
ترسیم[ویرایش]
برای رسم کردن مستطیل طلایی ابتدا مربع ABCD با استفاده از ضلع کوچک رسم میشود. سپس ضلع AB را نصف کرده، از وسط آن (نقطه G) با پرگار یک قوس به شعاع GC ترسیم کرده و ضلع بزرگ مستطیل (AE) را به دست میآورند. با توجه به شکل ترسیم شده، نصف طول این ضلع برابر نسبت طلایی است.[۱]
محاسبات[ویرایش]
برای بدست آوردن نسبت طلائی از تعریف هندسی آن استفاده میکنیم:
از این معادله که تعریف عدد است، که از معادله سمت راست میتوان نتیجه گرفت: ، پس خواهیم داشت:
با حذف b از طرفین به دست میآید:
پس از سادهسازی این معادله، معادله درجه دومی بر حسب به دست میآید:
و پاسخ مثبت آن:
که همان نسبت طلائی است.
همچنین با استفاده از رابطهٔ اول میتوان با ساده کردن به کسر مسلسل زیر برای عدد گنگ فی رسید:
یکی از کاربردهای این کسر محاسبهٔ تقریبی عدد فی بدون نیاز به محاسبه گر پیشرفته میباشد.
نسبت طلایی در طبیعت[ویرایش]
نسبت طلایی به صورت نامحدود در جاهای مختلف استفاده شده است و در واقع کسی نمیتواند میزان آنها را حساب کند. اغلب میتوان اعداد فیبوناچی را به تعداد معین در طبیعت پیدا کرد که مطالعه در نحوه رشد گیاهان گوناگون یکی از چیزهایی است که میتوان نسبت طلایی را مشاهده کرد. بیشتر هنرمندان به همین دلیل از نسبت طلایی در طراحی های خود استفاده میکنند. چند نمونه از نسبت طلایی در طبیعت را در زیر معرفی کردهایم:
- میوه و دانههای آن و سبزیجات: اگر کمی به مرکز دانهها توجه کنید و روند تعدادی مارپیچ را دنبال کنید به یکی از اعداد فیبوناچی خواهید رسید. به عنوان مثال اگر تعداد مارپیچهای به کار رفته در دانهی آفتابگردان را بشمرید به عدد پی در دنبالهی فیبوناچی خواهید رسید. همچنین میتوان الگوری این مارپیچها را در کلم، کاهو و آناناس نیز مشاهده کرد.
- گلها و شاخههای درختان: گیاهان و شاخههای درختان جزو مواردی هستند که به راحتی میتوانید نسبت طلایی را در آنها مشاهده کنید. اگر به روند رشد یک درخت در طولانی مدت نگاه کنید، مسیر رشد یم دنباله فیبوناچی را تشکیل میدهد. برای گلها نیز این چنین است و اگر تعداد گلبرگهای یک گل را بشمارید، غالبا تعداد کل را به عنوان یکی از اعداد در دنباله فیبوناچی خواهید دید. نم.نهی بارز آن نیز گلبرگهای گل رز است.
- آناتومی بدن انسان: اگر به خود در آینه نگاه کنید این نسبت را درک خواهید کرد. در بدن انسان این تقسیم بندی به درستی اجرا شده است و حتی در مولکولهای DNA نیز وجود دارد و در هر مارپیچ از DNA این میزان کملا قابل اندازه گیری است.
جستارهای وابسته[ویرایش]
پانویس[ویرایش]
- ↑ ۱٫۰ ۱٫۱ عبدالمجید حسینیراد، ص. ۷۲
- ↑ «نسخه آرشیو شده». بایگانیشده از اصلی در ۱۱ دسامبر ۲۰۱۲. دریافتشده در ۶ دسامبر ۲۰۱۲.
- ↑ ۳٫۰ ۳٫۱ Jason Elliot (2006). "Mirrors+of+the+Unseen"+golden-ratio+maidan Mirrors of the Unseen: Journeys in Iran. Macmillan. pp. 277, 284. ISBN 978-0-312-30191-0.
منابع[ویرایش]
- حسینیراد، عبدالمجید (۱۳۸۲)، مبانی هنرهای تجسمی (قسمت اول)، شرکت چاپ و نشر کتابهای درسی ایران، ص. ص٫ ۷۲
- Jason Elliot (2006). "Mirrors+of+the+Unseen"+golden-ratio+maidan Mirrors of the Unseen: Journeys in Iran. Macmillan. pp. 277, 284. ISBN 978-0-312-30191-0.
- ظهیری پریسا (۱۳۸۲). آموزش ریاضی. ص. ۲۷. پارامتر
|عنوان= یا |title=
ناموجود یا خالی (کمک)
![]() |
در ویکیانبار پروندههایی دربارهٔ نسبت طلایی موجود است. |