اعداد فیبوناچی

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو

در ریاضیات سری فیبوناچی به دنباله‌ای از اعداد گفته می‌شود که بصورت زیر تعریف می‌شود:

غیر از دو عدد اول اعداد بعدی از جمع دو عدد قبلی خود بدست می‌آید. اولین اعداد این سری عبارت‌اند از:

۰٬ ۱٬ ۱٬ ۲٬ ۳٬ ۵٬ ۸٬ ۱۳٬ ۲۱٬ ۳۴٬ ۵۵٬ ۸۹٬ ۱۴۴٬ ۲۳۳٬ ۳۷۷٬ ۶۱۰٬ ۹۸۷٬ ۱۵۹۷٬ ۲۵۸۴٬ ۴۱۸۱٬ ۶۷۶۵٬ ۱۰۹۴۶٬ ۱۷۷۱۱

این اعداد به نام لئوناردو فیبوناچی ریاضیدان ایتالیایی نام گذاری شده‌است.

دنباله فیبوناچی[ویرایش]

در واقع فيبوناچي در سال 1202 به مسئله عجيبي علاقمند شد. او مي خواست بداند اگر يک جفت خرگوش نر و ماده داشته باشد و رفتاري براي زاد و ولد آنها تعريف کند در نهايت نتيجه چگونه خواهد شد. فرضيات اينگونه بود :

- شما يک جفت خرگوش نر و ماده داريد که همين الآن بدنيا آمده اند.

- خرگوشها پس از يک ماه بالغ مي شوند.

- دوران بارداري خرگوشها يک ماه است.

- هنگامي که خرگوش ماده به سن بلوغ مي رسد حتما" باردار مي شود.

- در هر بار بارداري خرگوش ماده يک خرگوش نر و يک ماده بدنيا مي آورد.

- خرگوش ها هرگز نمي ميرند.

حساب کنید پس از n ماه چند جفت از این نوع خرگوش خواهیم داشت؟

فرض کنیم xn تعداد جفت خرگوش پس از n ماه باشد، میدانیم که x۲=۱,x۱=۱، تعداد جفت خرگوشها در ماه n+۱ ام برابر خواهد بود با حاصل جمع تعداد جفت خرگوشهایی که در این ماه متولد می‌شوند با تعداد جفت خرگوشهای موجود(xn).اما چون هر جفت خرگوش که از دو ماه قبل موجود بوده هم اکنون حداقل دوماه سن خواهند داشت و به سن زادو ولد رسیده‌اند تعداد جفت خرگوش های متولد شده برابر خواهد بود با xn-۱، پس خواهیم داشت:

x۱ = ۱ , x۲ = ۱ , xn + ۱ = xn + xn - ۱

که اگر از قواعد مذکور پیروی کنیم به دنباله زیر خواهیم رسید که به دنباله فیبوناچی مشهور است.

۱, ۱, ۲, ۳, ۵, ۸, ۱۳, ۲۱, ۳۴, ۵۵, ۸۹, ۱۴۴, ۲۳۳, ۳۷۷, ۶۱۰, ۹۸۷, ۱۵۹۷, ۲۵۸۴,…

فیبوناچی با حل این مسئله از راه حل فوق دنباله حاصل را به جهان ریاضیات معرفی کرد که خواص شگفت‌انگیز و کاربردهای فراوان آن تا به امروز نه تنها نظر ریاضی‌دانان بلکه دانشمندان بسیاری از رشته‌های دیگر را به خود جلب کرده.

رابطهٔ دنبالهٔ فیبوناچی به این شکل است:

برای مثال برای به دست آوردن جملهٔ دهم باید جملهٔ نهم (۳۴) و جملهٔ هشتم (۲۱) را با هم جمع کنیم که برابر ۵۵ می‌شود.

جمله عمومی دنباله فیبوناچی[ویرایش]

چند فرمول برای احتساب جملهٔ nام دنبالهٔ فیبوناچی، بدون استفاده از جملات ماقبل وجود دارد.

، یکی از این فرمول هاست.
(فی) همان عدد طلایی است که برابر با : می‌باشد.

ارتباط عدد طلایی با دنباله فیبوناچی[ویرایش]

روشهای متفاوتی برای بیان رابطه بین عدد طلایی و دنباله فیبوناچی وجود دارد که ما در اینجا به دو نمونه بسنده می‌کنیم.

نسبت دو عضو متوالی دنباله[ویرایش]

اولین مطلبی که در زمینه ارتباط با دنباله فیبوناچی قابل ذکر است به این قرار است: دنباله را بار دیگر در نظر می‌بینیم:

۱۰----۹----۸----۷----۶----۵----۴----۳----۲----۱----شماره جمله

۵۵----۳۴----۲۱----۱۳----۸----۵----۳----۲----۱----۱----مقدار جمله

نسبت جمله دوم به اول برابر است با ۱

نسبت جمله سوم به دوم برابر است با ۲

نسبت جمله چهارم به سوم برابر است با ۱٫۵

نسبت جمله پنجم به چهارم برابر است با ۱٫۶۶

نسبت جمله ششم به پنجم برابر است با ۱٫۶

نسبت جمله هفتم به ششم برابر است با ۱٫۶۲۵

نسبت جمله هشتم به هفتم برابر است با ۱٫۶۱۵

نسبت جمله نهم به هشتم برابر است با ۱٫۶۱۹

نسبت جمله دهم به نهم برابر است با ۱٫۶۱۷

به نظر می‌رسد که این رشته به عدد طلایی نزدیک می‌شود. اگر نسبت عدد چهلم این رشته را به عدد قبلی حساب کنیم به عدد ۱٫۶۱۸۰۳۳۹۸۸۷۴۹۸۹۵ می‌رسیم که با تقریب ۱۴ رقم اعشار نسبت طلایی را نشان می‌دهد. نسبت جملات متوالی به عدد طلایی میل می‌کند.

معادله خط[ویرایش]

معادلهٔ خطی به صورت y=mx در نظر می‌گیریم. m به معنی شیب خط است و یک عدد حقیقی است. می‌دانیم اگر m گنگ باشد، خط y=mx از هیچ نقطه‌ای با مختصات صحیح به جز مبدأ عبور نخواهد کرد. در واقع این خط امکان ندارد از نقطه‌ای (جز مبدأ) عبور کند که هم x و هم y آن عدد صحیح باشند.
حال به جای m قرار می‌دهیم: φ. یعنی خط y=φx را در نظر می‌گیریم. چون φ هم یک عدد گنگ است، این خط از هیچ نقطه‌ای با x و y صحیح (جز مبدأ) عبور نخواهد کرد. به همین دلیل نقطه‌هایی را با x و y صحیح در نظر می‌گیریم که کمترین فاصله را از این خط دارند. ابتدا به نظر می‌رسد نقطهٔ (۱، ۱) کمترین فاصله را با این خط دارد. ولی فاصلهٔ نقطهٔ (۲، ۱) از این خط کمتر است. نقطهٔ (۳، ۲) فاصلهٔ کمتری با این خط دارد. همچنین فاصلهٔ نقطهٔ (۵، ۳) از این هم کمتر است. این نقاط به همین ترتیب ادامه خواهند یافت و در زیر چند نقطهٔ بعدی را که فاصله‌شان از این خط کمتر می‌شود را می‌بینید:...،(۵۵، ۳۴)، (۳۴، ۲۱)، (۲۱، ۱۳)، (۱۳، ۸)، (۸، ۵)، (۵، ۳)، (۳، ۲)، (۲، ۱)، (۱، ۱)

صحت مطالب فوق به راحتی قابل بررسی است. با کمی دقت در مختصات این نقاط درخواهیم یافت که این مختصات از الگوی دنباله فیبوناچی پیروی می‌کنند. این نقاط را نقاط فیبوناچی می‌نامند.

منابع[ویرایش]

پیوند به بیرون[ویرایش]

http://www.kanoon.ir/Article/9351