نظریه آشوب

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو
نمودار فضای فاز آونگ دوتایی با اصطکاک که لورنتس آن را کشید.

نظریّهٔ آشوب یا نظریّهٔ بی‌نظمی‌ها به مطالعهٔ سیستم‌های دینامیکی آشوب‌ناک می‌پردازد. سیستم‌های آشوب‌ناک، سیستم‌های دینامیکی‌ای غیرخطی هستند که نسبت به شرایط اولیه‌شان بسیار حساس‌اند. تغییری اندک در شرایط اولیهٔ چنین سیستم‌هایی باعث تغییرات بسیار در آینده خواهد شد. این پدیده در نظریهٔ آشوب به اثر پروانه‌ای مشهور است.

رفتار سیستم‌های آشوب‌ناک به ظاهر تصادفی می‌نماید. با این‌حال هیچ لزومی به وجود عنصر تصادف در ایجاد رفتار آشوبی نیست و سیستم‌های دینامیکی‌ی معین (deterministic) نیز می‌توانند رفتار آشوب‌ناک از خود نشان دهند.

می‌توان نشان داد که شرط لازم وجود رفتار آشوب‌گونه در سیستم‌های دینامیکی‌ی زمان‌پیوسته مستقل از زمان (time invariant) داشتن کمینه سه متغیر حالت است (سیستم مرتبه سه). دینامیک لورنتس نمونه‌ای از چنین سیستم‌ای است. برای سیستم‌های زمان‌گسسته، وجود یک متغیر حالت کفایت می‌کند. نمونهٔ مشهور چنین سیستم‌ای، مدل جمعیتی‌ی بیان‌شده توسط logistic map است.

تاریخچه[ویرایش]

این نظریه، گسترش خود را بیشتر مدیون کارهای هانری پوانکاره، ادوارد لورنتس، بنوا مندلبروت و مایکل فیگن‌باوم می‌باشد. پوانکاره اولین کسی بود که اثبات کرد، مساله سه جرم (به عنوان مثال، خورشید، زمین، ماه) مساله‌ای آشوبی و غیر قابل حل است. شاخه دیگر از نظریه آشوب که در مکانیک کوانتومی به کار می‌رود، آشوب کوانتومی نام دارد. گفته می‌شود که پیر لاپلاس و عمر خیام قبل از پوانکاره، به این مساله و پدیده پی برده بودند.

اولین آزمایش واقعی در زمینه ی آشوب توسط یک هواشناس به نام ادوارد لورنز انجام شد. در سال ۱٩۶٠، وی روی یک مسئله ی پیش بینی وضع هوا کار می کرد. وی بر روی کامپیوترش ۱۲ معادله برای پیش بینی وضع هوا درنظر گرفته بود. این معادلات وضع هوا را پیش بینی نمی کرد. ولی این برنامه ی کامپیوتری به طور نظری پیش بینی می کرد که هوا چگونه می تواند باشد. او می خواست دنباله ی مشخصی را دوباره ببیند. برای کاهش زمان، وی به جای شروع از اول، از وسط دنباله شروع کرد. او عددی را که دفعه ی قبل از دنباله در دست داشت وارد کرد و کامپیوتر را برای پردازش رها نمود و رفت. وقتی یک ساعت بعد برگشت، دنباله به صورتی متفاوت از دفعه ی قبل پیشرفت کرده بود. به جای حالت قبلی، الگوی جدید آن واگرا می شد و در آخر شکلی کاملا به هم ریخته نسبت به اولی پیدا می کرد. او بالاخره فهمید که مشکل کار کجاست. کامپیوتر تا ۶ رقم اعشار را در خود ذخیره می کرد و برای اینکه وی کاغذ کمتری مصرف کند فقط تا ۳ رقم اعشار را برای خروجی درنظر گرفته بود. در الگوی اولیه، عدد بدست آمده در اصل۵۰۶۱۲۷/٠ بود ولی وی برای حالت بعدی فقط ۵۰۶/۰ را وارد کرد. براساس تمام ایده های آن زمان، این دنباله باید شبیه و یا خیلی نزدیک به حالت اولیه می شد. رقم های پنجم و ششم، که برای بعضی از روش ها غیر قابل اندازه گیری هستند، نمی توانند تاثیر زیادی روی خروجی داشته باشند. لورنز این باور را رد کرد. این اثر به عنوان اثر پروانه ای شناخته شد. مقدار تفاوت بین نقاط شروع دو نمودار آنقدر کم است، که به اندازه ی بال زدن یک پروانه می تواند باشد: بال زدن یک پروانه تغییر بسیار اندکی در وضعیت اتمسفر ایجاد می کند. در طول یک دوره، اتمسفر از حالتی که باید می بود، عملأ دور می شود. به همین دلیل، در طول یک دوره، یک گردباد که قرار بود سواحل اندونزی را تخریب کند، هیچ وقت اتفاق نمی افتد و یا ممکن است، گردبادی که اصلا قرار نبود اتفاق بیفتد، رخ دهد. این پدیده، به عنوان حساسیت بالا به شرایط اولیه نیز شناخته شده است. *[۱]

آشوب دقیقا چیست؟[ویرایش]

اگر فقط ذره ای در هر سوی این بازه جابجا شوید همه چیز به بی نهایت میرود ! یک بار به هم خوردن بالهای یک پروانه کافیست تا شما با یک رفتار آشوبگونه روبرو شوید. این رفتار به آرامی به آشوبگونگی میل نمیکند بلکه سیستم از نقطه ای ناگهان به سمت بی نهایت می رود . آیا در طبیعت پدیده ای – مثلا دانه های برف یا کریستال ها – وجود دارد که در قالب ابعاد کلاسیک طبیعت که تا به امروز می شناختیم نگنجد؟ پدیده هایی مثل دانه برف دارای ویژگی جالبی به نام خود متشابهی هستند به این معنا که شکل کلی شان از قسمت هایی تشکیل شده است که هرکدام به شدت شبیه به این شکل کلی هستند. ایده اصلی آشوب تعریف رفتار سیستمهای مشخصی است که شدیدا به شرایط اولیه شان حساسند. ادوارد لورنتز در دهه ۶۰ میلادی اعلام کرد که معادلات دیفرانسیل می توانند خاصیت فوق را داشته باشند. این ویژگی اثر پروانه ای نام گرفت.

آشوب از نقطه نظر ریاضی به چه معناست؟[ویرایش]

یک سیستم جوی ساده را در نظر بگیرید. تابع f (x)= x + 2 برای تخمین دمای فردا از روی دمای امروز در دست است. اوربیت یک نقطه تحت یک تابع مجموعه اتفاقاتی است که در اثر تکرار تابع (دینامیک) برای آن نقطه می افتد. برای مثال اربیت نقطه 1 تحت تابع ما این است که ۱ ابتدا ۳ سپس ۵ بعد ۷ و ... می شود. مهمترین گونه اربیت ها نقطه ثابت است که هرگز تحت اجرای تابع تغییر نمی کند ولی تابع ما چنین نقطه ای ندارد. حال f (x)= x^2 + 3 را در نظر بگیرید. این تابع ما را به دنیای آشوب می برد. به نظر می رسد اربیتهای تمام نقاط به بی نهایت میل می کنند. باید اشاره شود که نقاط پایانی هر بازه ای روی این تابع ثابتند. با اجرای تابع و ادامه دادن آن می بینیم که تمام نقاط داخل بازه به بی نهایت میل می کنند ولی حدود بازه همچنان متناهی اند . این رفتار یک رفتار آشوب گونه است. مثلث سرپینسکی و پوست مار کخ دو فرکتال یا برخال معروف اند. در مورد پوست مار کخ جالب اینکه ناحیه متناهی ولی پارامتر نامتناهی دارد. می توان سطح خود تشابهی در فرکتالها را با مفهوم جدیدی از بعد که مبتنی بر تعداد کپی های مجموعه های خودمتشابه در فرکتال و میزان بزرگنمایی هر مجموعه است اندازه گیری کرد. به این معنی که بعد فرکتالی یک مجموعه از تقسیم لگاریتم تعداد کپی ها به لگاریتم بزرگنمایی به دست می آید. این مقدار برای مثلث سرپینسکی 1.584 و برای پوست مار کخ 1.261 است.

منابع[ویرایش]

جستجو در ویکی‌انبار در ویکی‌انبار پرونده‌هایی دربارهٔ نظریه آشوب موجود است.
  • Ott, Edward (2002). Chaos in Dynamical Systems. Cambridge University Press New, York. ISBN 0-521-01084-5.
  • Moon, Francis (1990). Chaotic and Fractal Dynamics. Springer-Verlag New York, LLC. ISBN 0-471-54571-6.
  • Tufillaro, Abbott, Reilly (1992). An experimental approach to nonlinear dynamics and chaos. Addison-Wesley New York. ISBN 0-201-55441-0
  • Devaney, Robert. A First Course in Chaotic Dynamical Systems(1992).
  • Devaney, R. Chaos and Fractals: The Mathematics Behind Computer Graphics. Proceedings of symposia in Applied Mathematics, American Mathematical Society. [1998].
  1. ^  Christian Gerthsen, Gerthsen Physik. ISBN 3-540-62988-2