درگاه:ریاضیات

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو
صفحه اصلی   رده‌ها و موضوعات   درگاه‌ها و پروژه‌ها

درگاه ریاضیات

Sciences exactes.svg دانش: P history-lightblue.png تاریخ   P philosophy.png فلسفه   Racine carrée bleue.svg ریاضیات   Blue morpho butterfly.jpg زیست‌شناسی   Gnome-applications-science.svg شیمی   Logo physics.svg فیزیک   Psi2.svg روان‌شناسی   Terrestrial globe.svg جغرافیا   Nuvola apps display.png فناوری   Celestia.png اخترشناسی  


نماد ریاضی

ریاضیات یا مزداهیک (Mathematics) را معمولاً دانش بررسی کمیت‌ها و ساختار‌ها و فضا و دگرگونی تعریف می‌کنند. دیدگاه دیگری ریاضی را دانشی می‌داند که در آن با استدلال منطقی از اصول و تعریف‌ها به نتایج دقیق و جدیدی می‌رسیم، دیدگاه‌های دیگری نیز در فلسفه ریاضیات بیان شده‌است.

ریاضیات خود یکی از علوم طبیعی به‌شمار نمی‌رود، ولی ساختارهای ویژه‌ای که ریاضی‌دانان می‌پژوهند بیشتر از دانش‌های طبیعی به ویژه فیزیک سرچشمه می‌گیرند و در فضایی جدا از طبیعت و محض‌گونه گسترش پیدا می‌کند به طوری که علوم طبیعی برای حل مسائل خود به ریاضی باز می‌گردند تا جوابشان را با آن مقایسه و بررسی کنند.

علوم طبیعی، مهندسی و اقتصاد، بسیار به ریاضیات تکیه دارند. آن بخش از ریاضیات را که علوم کاربردی به آن بیشتر می‌پردازند، ریاضیات کاربردی می‌نامند. ولی گاه ریاضی‌دانان به دلایل صرفاً ریاضی و نه کاربردی به تعریف و بررسی برخی ساختارها می‌پردازند که به آن ریاضیات محض گفته می‌شود.

نوشتار برگزیده

Venn A intersect B.svg

نظریهٔ مجموعه‌ها شالودهٔ بنیادین و سنگ اساسی بنای ریاضیات جدید است. تعریف‌های دقیق جمیع مفاهیم ریاضی، مبتنی بر نظریهٔ مجموعه‌هاست. گذشته از این، روش‌های استنتاج ریاضی با استفاده از ترکیبی از استدلال‌های منطقی و مجموعه- نظری تنظیم شده‌اند. زبان نظریهٔ مجموعه‌ها، زبان مشترکی است که ریاضیدانان در سراسر دنیا با آن صحبت کرده و آن را درک می‌کنند. چنان که اگر کسی بخواهد پیشرفتی در ریاضیات عالی یا کاربردهای عملی آن داشته باشد، باید با مفاهیم اساسی و زبان نظریهٔ مجموعه‌ها آشنا شود. نظریه مجموعه‌ها در اواخر قرن نوزدهم به طور عمده توسط جرج کانتور بنیان گذاشته شد.

زندگی‌نامهٔ برگزیده

Leonardo self.jpg

لئوناردو داوینچی دانشمند و هنرمند ایتالیایی دوره رنسانس است که در رشته‌های نقاشی، ریاضی، معماری، موسیقی، کالبدشناسی، مهندسی، تندیسگری، و هندسه برجسته بود. داوینچی را کهن‌الگوی «فرد رنسانسی» دانسته‌اند. وی فردی بی‌نهایت خلاق و کنجکاو بود.او طرحهای مبتکرانه‌ای را برای ساخت سلاحهایی مانند توپ‌های بخار، ماشین‌های پرنده و ادوات زرهی ارائه کرده بود، هرچند که بسیاری از آنها هرگز ساخته نشدند. داوینچی اولین طراح هواپیما و صدها اثر معماری دیگر به‌شمار می‌رود. یکی از طرح‌های ابتکاری او لباس غواصی و زیر دریایی جنگی است. او همچنین مسلسل، تانک نظامی، ساعتی که به ساعت داوینچی معروف است، کیلومتر شمار و چیزهای دیگر را طراحی یا اختراع کرد.
بیشتر...

مفاهیم

Integral.svg

انتگرال از مفاهیم اساسی در ریاضیات است که در کنار مشتق دو عملگر اصلی حساب دیفرانسیل و انتگرال را تشکیل می‌دهند.اولین بار لایب نیتس نماد استانداردی برای انتگرال معرفی کرد. \int_{a}^{b} f(x)\, dx aو b نقاط ابتدا و انتهای بازه هستند و f تابعی انتگرال‌پذیر است و dx نمادی برای متغیر انتگرال گیری است. از لحاظ تاریخی dx یک کمیت بی نهایت کوچک را نشان می‌دهد. هر چند در تئوریهای جدید، انتگرال گیری بر پایه متفاوتی پایه گذاری شده‌است. هر گاه معادله مشتق تابعی معلوم باشد وبخواهیم معادله اصلی تابع را تعیین کنیم این عمل را تابع اولیه می‌نامیم.

نوشتارهای برگزیده

نگارهٔ برگزیده

Mandel zoom 07 satellite.jpg

مجموعهٔ مندلبرو مجموعه‌ای از نقطه‌ها روی صفحهٔ مختلط است که یک برخال (فرکتال) را تشکیل می‌دهند. این مجموعه به خاطر زیبایی‌اش و نیز به خاطر ساختار پیچیده‌ای که فقط از چند تعریف سادهٔ ریاضی ناشی شده است، در بیرون از دنیای ریاضیات هم شناخته شده است.

گفتاورد

« ریاضی ملکه علوم است و نظریه اعداد ملکه ریاضی.»

کارل فریدریش گاوس

هندسه

مثلث.

مثلث یا سه‌گوش شکلی مسطح است که از اتصال سه نقطه غیرهم‌خط در صفحه به وجود می‌آید. مثلث دارای سه ضلع و سه زاویه است.مساحت یک مثلث برابر یک دوم طول یک ضلع، ضرب در طول ارتفاع وارد بر آن، یعنی فاصله رأس سوم تا خط شامل ضلع انتخاب‌شده، است. مساحت مثلث را از رابطه زیر به دست می‌آورند:

  • مساحت مثلث = (قاعده × ارتــــــفاع) ÷ ۲

درگاه‌های وابسته

در دیگر پروژه‌های ویکی‌مدیا