آنالیز ریاضی

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو

آنالیز ریاضی نام عمومی آن بخش‌هائی از ریاضیات است که با مفاهیم حد و همگرایی مربوط ‌اند و در آن‌ها موضوعاتی مثل پیوستگی و انتگرال‌گیری و مشتق‌پذیری و توابع غیرجبری بررسی می‌شود. این موضوعات را معمولاً در عرصه اعداد حقیقی یا اعداد مختلط و توابع مربوط به آن‌ها بحث می‌کنند ولی می‌توان آنها را در هر فضائی از موجودات ریاضی که در آن مفهوم "نزدیکی" (فضای توپولوژیک) یا "فاصله" (فضای متریک) وجود دارد به‌کار برد. آنالیز ریاضی از کوشش‌های مربوط به دقیق کردن مبانی و تعریف‌های حسابان سر برآورده است.

آنالیز ریاضی در واقع به نقاط استثنایی ریاضیات می‌پردازد . کلمه آنالیز به همین معنی (نقاط استثنایی) است .

مثلا در مورد انتگرال، انتگرال معمولی به انتگرال ریمان–استیلتیس و انتگرال لبگ تعمیم می‌یابد. آنالیز ریاضی زمینه‌ای ظریف و دقیق است.در واقع حسابان قسمت کاربردی و بدون در نظر گرفتن جزییات آنالیز محسوب می‌شود.

زیرشاخه‌ها[ویرایش]

آنالیز ریاضی دارای چندین زیرشاخه به این شرح‌ست: