جبر بولی

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو

جبر بولی ساختاری جبری است که مانند سایر سیستم‌های ریاضی از یکسری عناصر، عملگرها، اصول و بدیهیات تشکیل می‌شود. نام این جبر از نام جرج بول ریاضیدان انگلیسی گرفته شده (1854) که سعی در برخورد جبری به منطق گزاره‌ها داشت. امروزه جبر بول به گستردگی در طراحی مدارهای الکترونیک به‌کار می‌رود. کلود شانون از پیشگامان رایانه‌های دیجیتال نخستین بار از این جبر در طراحی رایانه بهره گرفت.

تعریف[ویرایش]

جبر بول، یک ساختار جبری است که با عناصر مجموعه B و همراه با عملگرهای + و . تعریف می‌شود. اصول جبر بول عبارتند از:

  • مجموعه B نسبت به عملگر + بسته است. یعنی اگر دو مقدار را با هم جمع کنیم، نتیجه عضوی از مجموعه B است.
  • مجموعه نسبت به عملگر . بسته است. یعنی اگر دو مقدار را در هر ضرب کنیم، نتیجه عضوی از مجموعه B است.
  • عنصر خنثی در مجموعه برای عملگر + برابر با 0 است. به طوری که x+0 = 0+x = x
  • عنصر خنثی در مجموعه برای عملگر . برابر با 1 است. به طوری که x.1 = 1.x = x
  • مجموعه برای عملگر + دارای خاصیت جابه‌جایی است. به طوری که x+y = y+x
  • مجموعه برای عملگر . دارای خاصیت جابه‌جایی است. به طوری که x.y = y.x
  • عملگر . روی + توزیع‌پذیر است. یعنی x . (y + z) = (x . y) + (x . z)
  • عملگر +روی . توزیع‌پذیر است. یعنی x + (y . z) = (x . y) + (x . z)
  • به ازای هر عنصر x\in B یک عنصر x'\in B وجود دارد. به طوری که x+x'=1 و x.x'=0 است. x' به صورت «اکس نات» یا «مکمل اکس» خوانده می‌شود.
  • مجموعه B دارای حداقل دو عنصر x, y است به طوری که x \ne y است.

عملگرهای منها و تقسیم برای جبر بول تعریف نمی‌شوند. در جبر معمول، تعداد نامتناهی از عناصر وجود دارد، اما در جبر بول تنها اعضای مجوعه B وجود دارد که معمولاً به صورت 0 و 1 تعریف می‌شوند. (به این نوع جبر بول، جبر بول دو ارزشی می‌گویند)

اصل دوگان[ویرایش]

هر عبارت بولی معتبر، با تعویض عملگرها و عناصر خنثی، باز هم معتبر خواهد بود. یعنی اگر در یک عبارت بولی معتبر (که از اصول اساسی جبر بول ناشی شده) تمام صفرها به یک و تمام یک‌ها به صفر و همینطور تمام + ها به . و تمام .ها به + تبدیل شود، عبارت به دست آمده باز هم معتبر خواهد بود.

تقدم عملگرها[ویرایش]

در ارزیابی عبارات بولی، باید تقدم عملگرها رعایت شود.

تقدم عملگر
بالاترین اولویت پرانتز
NOT
AND
پایینترین اولویت OR

تئوری‌های اساسی[ویرایش]

الف ب
x+0=x x.1=x
x+x'=1 x.x'=0
x+x=x x.x=x
x+1=1 x.0=0
x+y=y+x x.y=y.x
x+(y+z)=(x+y)+z x.(y.z)=(x.y).z
x.(y+z)=xy+xz x+yz=(x+y).(x+z)
(x+y)'=x'.y' (x.y)'=x'+y'
x+xy=x x(x+y)=x

دیاگرام ون[ویرایش]

به کمک دیاگرام ون می‌توان رابطه بین متغیرهای یک عبارت بولی را نمایش داد. دیاگرام ون از یک مستطیل تشکیل شده که در داخل آن به ازای هر متغیر، یک دایره وجود دارد. تمام نقاط داخل دایره مربوط به یک متغیر است و تمام نقاط خارج از دایره مربوط به مکمل آن متغیر است. در این نمودار، ضرب به صورت اشتراک دایره‌ها و جمع به صورت اجتماع دایره‌ها نمایش داده می‌شود.

جدول درستی[ویرایش]

جدول درستی که یک جدول ریاضیاتی می‌باشد و از آن در منطق سوده برده شده و برای محاسبه مقادیری که به صورت منطقی expression شده اند استفاده می‌شود. تعریف جبر بول : پیدا کردن ساده ترین فرم منطقی توابع که به کمترین تعداد گیت و سیم نیاز داشته باشد. تعریف اصولی جبر بول : یک مجموعه مانند B در حالتی که نا مساوی با مجموعه تهی باشد و با دو عمل دو تایی ضرب وجمع و ی. عمل یکتایی پریم و دو عضو صفر و یک را یک جبر بول می گوییم.

جستارهای وابسته[ویرایش]

منابع[ویرایش]

پانویس[ویرایش]

جستجو در ویکی‌انبار در ویکی‌انبار پرونده‌هایی دربارهٔ جبر بولی موجود است.