بینایی رایانه‌ای

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو

بینایی رایانه‌ای یا بینایی کامپیوتری (Computer vision) یا بینایی ماشینی (Machine vision) یکی از شاخه‌های مدرن، و پرتنوع هوش مصنوعی است که با ترکیب روش های مربوط به پردازش تصاویر[۱] و ابزارهای یادگیری ماشینی[۲] رایانه‌ها را به بینایی اشیاء، مناظر، و "درک" هوشمند خصوصیات گوناگون آنها توانا می‌گرداند.

کاوش در داده‌ها[ویرایش]

مقالهٔ اصلی: کاوش‌های ماشینی در داده‌ها

بینایی ماشینی را می‌شود یکی از مصادیق و نمونه‌های بارز زمینهٔ مادر و اصلی‌تر کاوش‌های ماشینی داده‌ها به‌حساب آورد که در آن داده‌ها تصاویر دوبعدی یا سه‌بعدی هستند، که آن‌ها را با استفاده از هوش مصنوعی آنالیز می کنند.

وظایف اصلی در بینایی رایانه‌ای[ویرایش]

تشخیص شیء[ویرایش]

تشخیص حضور و/یا حالت شیء در یک تصویر. به عنوان مثال:

پیگیری[ویرایش]

پیگیری اشیاء شناخته شده در میان تعدادی تصویر پشت سر هم. به عنوان مثال:

  • پیگیری یک شخص هنگامی که در یک مرکز خرید راه می‌رود.

تفسیر منظره[ویرایش]

ساختن یک مدل از یک تصویر/تصویر متحرک. به‌عنوان مثال:

  • ساختن یک مدل از ناحیهٔ پیرامونی به کمک تصاویری که از دوربین نصب شده بر روی یک ربات گرفته می‌شوند.

خودمکان‌یابی[ویرایش]

مشحص کردن مکان و حرکت خود دوربین به عنوان عضو بینایی رایانه. به‌عنوان مثال:

سامانه‌های بینایی رایانه‌ای[ویرایش]

یک سامانهٔ نوعی بینایی رایانه‌ای را می‌توان به زیرسامانه‌های زیر تقسیم کرد:

تصویربرداری[ویرایش]

تصویر یا دنباله تصاویر با یک سامانه تصویربرداری(دوربین، رادار، لیدار، سامانه توموگرافی) برداشته می‌شود. معمولاً سامانه تصویربرداری باید پیش از استفاده تنظیم شود.

پیش‌پردازش[ویرایش]

در گام پیش‌پردازش، تصویر در معرض اَعمال "سطح پایین" قرار می‌گیرد. هدف این گام کاهش نوفه (کاهش نویز - جدا کردن سیگنال از نویز) و کم‌کردن مقدار کلی داده ها است. این کار نوعاً با به‌کارگیری روش‌های گوناگون پردازش تصویر(دیجیتال) انجام می‌شود. مانند:

استخراج ویژگی[ویرایش]

هدف از استخراج ویژگی کاهش دادن بیش تر داده‌ها به مجموعه‌ای از ویژگی‌هاست، که باید به اغتشاشاتی چون شرایط نورپردازی، موقعیت دوربین، نویز و اعوجاج ایمن باشند. نمونه‌هایی از استخراج ویژگی عبارت‌اند از:

ثبت[ویرایش]

هدف گام ثبت برقراری تناظر میان ویژگی‌های مجموعه برداشت شده و ویژگی‌های اجسام شناخته‌شده در یک پایگاه داده‌های مدل و/یا ویژگی‌های تصویر قبلی است. در گام ثبت باید به یک فرضیه نهایی رسید. چند روش این کار عبارت‌اند از:

پانوشته‌ها[ویرایش]

  1. Image processing
  2. Machine learning

پیوندهای برونی[ویرایش]

جستارهای وابسته[ویرایش]

منابع[ویرایش]

  • Gonzalez, R. C., and Woods, R. E. Digital Image Processing, 2nd edition, Prentice-Hall, Inc., 2002