پرش به محتوا

ترانهاده

از ویکی‌پدیا، دانشنامهٔ آزاد
ماتریس ترانهاده

در جبر خطی ترانهاده (به انگلیسی: Transpose) یک ماتریس مانند A ماتریس دیگری است که با نماد AT (به شکل‌های دیگر A′، Atr یا tA نوشته می‌شود) مشخص شده و نسبت به ماتریس A دارای تفاوت با تعریف زیر است:

به عبارت دیگر باید هنگام نوشتن ترانهاده هر ماتریسی سطرهای ماتریس را به شکل ستون نوشت و ستون‌های ماتریس را به شکل سطر؛

در واقع یک ماتریس n×m اگر ترانهاده شود یک ماتریس m×n خواهد بود. ترانهاده یک عدد همان عدد است.

مثال‌ها

[ویرایش]

خواص ترانهاد

[ویرایش]

برای دو ماتریس دلخواه A و B و عدد C خواص زیر صدق می‌کند

  • ماتریس مربعی A وارون‌پذیر است اگر و فقط اگر AT وارون‌پذیر باشد
  • ضرب داخلی دو ماتریس a و b می‌توان به شکل زیر محاسبه شود.

که در نمادگذاری اینشتینai bi نوشته می‌شود.

  • اگر A یک ماتریس مربعی باشد مقدار ویژه این ماتریس برابر مقدار ویژه ماتریس ترانهاده آن است.

ماتریس‌های خاص

[ویرایش]

ماتریس مربعی در صورتی ماتریس متقارن نامید می‌شود که ترانهاده‌اش با خودش برابر باشد

ماتریس G در صورتی ماتریس متعامد است که:

&nbsp؛ که I ماتریس همانی است. GT = G.

ماتریسی که ترانهاده‌اش با قرینه‌اش برابر باشد ماتریس پادمتقارن نامیده می‌شود

همیوغ ترانهاده ماتریس A، به شکل A*، نوشته می‌شود برابر است با ترانهاده آن ماتریس و ماتریس همیوغ آن.

جستارهای وابسته

[ویرایش]

پیوند به بیرون

[ویرایش]