زحل

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو
فارسیEnglish
زحل  نماد زحل
کلیک کنید تا توضیحات کامل را ببنید.
تصویر به دست آمده از عکس‌های ارسالی وویجر ۲ از زحل
نیم‌قطر بزرگ ۱٬۴۲۶٬۶۶۶٬۴۲۲ کیلومتر[۱][۲]
۹٫۵۳۶۶۷۵۹۴ AU
خروج از مرکز ۰٫۰۵۳۸۶۱۷۹[۱][۲]
آنومالی متوسط ۳۲۰٫۳۴۶۷۵۰°
زاویه انحراف ۲٫۴۸۵۲۴۰°
طول گره صعودی ۱۱۳٫۶۴۲۸۱۱°
شناسه حضیض ۳۳۶٫۰۱۳۸۶۲°
اوج ۱٬۵۰۳٬۵۰۹٬۲۲۹ کیلومتر[۱][۲]
۱۰٫۰۵ AU
حضیض ۱٬۳۴۹٬۸۲۳٬۶۱۵ کیلومتر[۱][۲]
۹٫۰۲۳ AU
تناوب مداری ۱۰٬۷۵۵٫۷ روز زمین
۲۹٫۴۴۷۴۹۸ سال زمین
قمرها ۶۲ قمر تأیید شده[۳]
مشخصات فیزیکی
متوسط شعاع ۶ ± ۵۸۲۳۲ کیلومتر[۴]
۹٫۱۴ برابر زمین
شعاع استوایی ۴ ± ۶۰۲۶۸ کیلومتر[۴]
۹٫۴۵۵ برابر زمین
شعاع قطبی ۱۰ ± ۵۴۳۶۴ کیلومتر[۴]
۸٫۵۵۲ برابر زمین
پختگی قطبین ۰٫۰۰۰۱۸ ± ۰٫۰۹۷۹۶
مساحت سطح ۴۲٬۶۱۲٬۱۳۳٬۲۸۵ km2
۸۳٫۵۴۳ برابر زمین
حجم ۸۲۷٬۱۲۹٬۹۱۵٬۱۵۰٬۸۹۷ km۳
۷۶۳٫۵۹۴ برابر زمین
جرم ۱۰۲۶ × ۵٫۶۸۳۱۹ کیلوگرم
۹۵٫۱۶۱ برابر زمین
متوسط چگالی ۰٫۶۸۷ g/cm3
(کمتر از آب)
گرانش سطحی۱۰٫۴۴ m/s2
۱٫۰۶۵ برابر g
سرعت گریز۱۲۹٬۹۲۴ km/h
تناوب
چرخش
۱۰٫۵۷ ساعت
(۱۰ ساعت و ۳۴ دقیقه)
سرعت چرخش در استوا ۹٫۸۷ km/s
(۳۵٬۵۰۰ km/h)
انحراف محوری ۲۶٫۷۳°
بعد قطب شمال ۲س ۴۲د ۲۱ث
۴۰٫۵۸۹°
میل قطب شمال ۸۳٫۵۳۸°
دمای سطح
   در فشار ۱ جو
   0.1 bar
حداقلمتوسطحداکثر
۱۳۴ K
۸۴ K
قدر ظاهری +۱٫۴۷ تا −۰٫۲۴
قطر زاویه‌ای ۱۴٫۵ «–۲۰٫۱»
(بدون درنظرگرفتن حلقه‌ها)

زُحَل[۵] یا کِیوان، پس از مشتری، دومین سیارهٔ بزرگ منظومه شمسی و ششمین سیاره نزدیک به خورشید است. زحل یک گلوله گازی غول‌پیکر است که با وجود حجم زیادش تنها ۹۵ برابر زمین جرم دارد. چگالی این سیاره حدود یک‌هشتم زمین و کمتر از آب است. یک روز کامل در کیوان برابر ۱۰ ساعت و ۳۹ دقیقه در زمین و یک سال آن برابر ۲۹٫۵ برابر سال زمین است. از آنجایی که مدار استوایی زحل تقریباً همانند زمین در ۲۷ درجه‌است، تغییرات زاویه سیاره نسبت به خورشید شبیه به زمین است و در این سیاره نیز همان چهار فصل مشاهده می‌شود. جرم سیاره زحل همانند مشتری از گاز است که بیشتر آن را هیدروژن تشکیل می‌دهد. میزان اندکی هلیوم و متان در رده‌های بعدی گازهای تشکیل‌دهندهٔ سیاره قرار دارند.

در آسمان شب زمین، زحل به دلیل اندازه بزرگ، نسبتاً درخشان دیده می‌شود. زیبایی آسمان زحل به خاطر نوارهای روشن حلقه‌های اطراف آن و نیز به خاطر قمرهای زیادش است.

به علت سرعت حرکت کیوان به دور خود در قطب‌های آن نوعی حالت پخی مشاهده می‌شود که سیاره را از شکل کرهٔ کامل دور می‌کند. زحل از جنبه‌های زیادی شبیه مشتری است، جز اینکه در اطراف آن چندین حلقه شگفت‌انگیز وجود دارد.

چرخش و مدار[ویرایش]

زحل با فاصله ۹٫۵۳۹AU از خورشید و تناوب مداری ۲۹٫۵ سال، در مداری که با مدار زمین زاویه ۲٫۴۸ درجه می‌سازد، می‌گردد.

از روی زمین قطر زاویه‌ای زحل در نقطه مقابله حدود ۲۰ ثانیه قوسی است. مانند مشتری، زحل دارای جو پر از ابری است که به صورت جزئی می‌چرخد. از مشاهدات انتقالات دوپلری در عرض سیاره و با زمان‌بندی دقیق علامتهای جوی، دوره تناوب چرخش نجومی آن، در نزدیک استوایش ۱۰ ساعت و ۱۴ دقیقه و در عرضهای جفرافیایی بالا ۱۰ ساعت و ۳۸ دقیقه محاسبه شده‌است. در اینجا هم مجدداً چرخش جزئی مشابه مشتری داریم. استوای زحل به اندازه ۲۶ درجه و ۴۵ دقیقه با صفحه مداری آن زاویه می‌سازد، بطوری که قطبهای سیاره در فاصله‌های زمانی حدود ۱۵ سال یک بار سمت زمین متمایل می‌شوند. چرخش باعث پخی زیاد (۹۶٪) زحل می‌گردد، بطوریکه شعاعهای قطبی و استوایی به نسبت ۱۰/۹ هستند.

فاصله کیوان تا خورشید بیش از ۱٫۴ میلیارد کیلومتر است. یک دور چرخش کامل کیوان به دور خورشید ۱۰۷۵۹ روز یا ۲۹٫۵ سال طول می‌کشد.

ویژگی‌های فیزیکی[ویرایش]

کیوان کمی از مشتری کوچک‌تر است و جرم آن کمتر از جرم مشتری و در حدود ۹۵ برابر جرم زمین است. کیوان یک غول گازی است زیرا سطح آن به صورت کلی از گاز تشکیل شده‌است با اینکه ممکن است دارای یک هسته جامد باشد.[۶] زحل کمترین چگالی میانگین را نسبت به سایر سیارات سامانه خورشیدی دارد. اگر بتوانیم زحل را در دریایی عظیم بیندازیم این سیاره بر روی آب شناور می‌ماند. اندازهٔ شعاع این سیاره در منطقه‌های استوایی با مقدار آن در قطب‌ها نزدیک به ۱۰٪ متفاوت است؛ ۶۰٫۲۶۸ کیلومتر در برابر ۵۴٫۳۶۴ کیلومتر.[۷] درون زحل احتمالاً ترکیب مشتری را دارد. برآوردهای نظری مقادیر حدود ۷۴٪ هیدروژن، ۲۴٪ هلیوم، ۲٪ عناصر سنگین‌تر را پیشنهاد می‌کند. این ترکیب تقریباً مشابه ترکیبات خورشید است. احتمالاً زحل دارای یک هسته سنگین کوچک به قطر ۲۰ هزار کیلومتر و جرمی معادل ۲۰Mφ باشد.

جو[ویرایش]

ساختار جو زحل با کمربندهایی که به موازات استوا امتداد دارند، همانند مشتری است؛ هرچند آشفتگی‌های این کمربندها بسیار کمتر از مشتری است (تاکنون از روی زمین فقط ۱۰ لکه مشاهده شده‌اند). ترکیب جو کیوان نیز شباهت زیادی با جو مشتری دارد. تاکنون متان (CH4آمونیاک (NH3)، اتان (C2H6فسفین (PH3استیلن (C2H2متیل استیل (C3H4پروپان (C3H8) و هیدروژن مولکولی (H2) آشکار شده‌است. لایه خارجی زحل دارای ۹۶٫۳٪ هیدروژن و ۳٫۲۵٪ هلیم می‌باشد. درصد المانهای دیگر به صورت کامل مشخص نیست ولیکن تصور می‌شود درصد بسیار کمی از آنان وجود داشته باشد. ابرهای زحل خیلی کمرنگ تر از ابرهای مشتری به نظر می‌رسند. ابرهای مشتری اغلب به رنگ زرد کم‌رنگ و نارنجی هستند، به این دلیل که دما در زحل کمتر از مشتری است، ابرهای زحل در لایه پایین‌تری از جو آن قرار می‌گیرند.

شش ضلعی قطب شمال[ویرایش]

تصاویر فروسرخ جدید فضاپیمای کاسینی از زحل یکی از عجیب‌ترین عوارض سطح این سیاره را نمایان کرد. ساختار ابر مانند یک شش ضلعی که به دور نقطهٔ قطب شمال زحل در گردش است می‌باشد. این ساختار بیست سال پیش درگذر فضاپیمای وویجر از کنار زحل در درجه ۷۸ شمال کشف شده‌است. هر ضلع این شش ضلعی حدود ۱۳۰۰۰ کیلومتر است که از شعاع زمین بزرگتر است. از این رو این شش ضلعی به قدری بزرگ است که شش زمین در آن قابل جاسازی است. ساختار شش ضلعی هر ۱۰ ساعت و ۳۹ دقیقه و ۲۴ ثانیه یکبار می‌چرخد که تصور می‌شود این زمان زمان چرخش درون زحل باشد. علت تشکیل این ساختار برای محققین معلوم نیست ولیکن بیشتر آنان تصور می‌کنند این ساختار از برهمکنش موج و ماده ایجاد شده‌است. محققین موفق شدند در آزمایشگاه نیز ساختارهای هندسی به وسیله موج ایجاد کنند.

شش ضلعی قطب شمال زحل

قطب جنوب[ویرایش]

در قطب جنوب زحل نیز یک ساختار چرخشی بزرگ وجود دارد. در سال ۲۰۰۶ ناسا اعلام کرد که فضاپیمای کاسینی یک طوفان بزرگ در قطب جنوب زحل دیده‌است که دارای ساختاری شبیه یک چشم است. اندازه این ساختار تقریباً دارای اندازه زمین است.

قطب جنوب زحل

قمرهای طبیعی[ویرایش]

زحل دارای ۱۵۰ قمر است که ۵۳ عدد از آنها دارای نامهای رسمی هستند[۸] و تیتان با قطر ۵۱۵۰ کیلومتر بزرگترین آنهاست. چهار قمر رئا، دیونه، تتیس و یاپتوس نیز قطرهایی بین ۱۰۵۰ کیلومتر و ۱۵۳۰ کیلومتر را دارا می‌باشند. قمر رئا دارای یک سیستم حلقه مجزا و اتمسفر خاص است. بیشتر قمرهای دیگر بسیار کوچک هستند و ۳۴ عدد از آنها دارای قطر کمتر از ۱۰ کیلومتر می‌باشند. ۱۴ قمر دیگر دارای قطر بین ۱۰ تا ۵۰ کیلومتر هستند. بیشتر نامهای قمرهای زحل از نامهای تیتانها در اسطوره‌های یونان باستان اقتباس شده‌است. تیتان تنها قمر در تمامی منظومه شمسی است که دارای اتمسفر کافی برای وجود واکنشهای شیمیایی می‌باشد. همچنین تیتان تنها قمر دارای دریاچه هیدروکربن است.

در روز ۶ ژوئن سال ۲۰۱۳ دانشمندان موفق به کشف هیدروکربنهایی در قسمت بالای اتمسفر تیتان شدند که پیش زمینه حیات هستند. در ماه آوریل سال ۲۰۱۴ محققان ناسا اعلام کردند که یک قمر جدید در حال شکل‌گیری در حلقه آ زحل است.

یکی از پدیده‌های خاص در قمرهای زحل، میان دو قمر جانوس و اپیمتئوس اتفاق می‌افتد این دو قمر در مداری تقریباً یکسان دور سیارهٔ زحل چرخش می‌کنند و هر چهار سال یکبار به یکدیگر بسیار نزدیک می‌شوند. در زمان نزدیک شدن، نیروی جاذبهٔ متقابل آنها باعث می‌شود که مدار چرخش آنها با یکدیگر جابه‌جا شود.

میماس جزء کوچکترین اقمار زحل است که در سال ۱۷۸۹ میلادی توسط ویلیام هرشل کشف شد. این قمر کوچک و آبله گون که به ستاره مرگ معروف است، یکی از بزرگ‌ترین دهانه‌های برخوردی را با پهنایی حدود ۱۳۰ کیلومتر بر روی خود دارد، دلایل شکل‌گیری چنین عوارض سطحی به این دلیل است که جرم میماس آنقدر قوی است که با ایجاد کردن گرانش سطحی، ظاهر آن را کروی نگه می‌دارد و آنقدر ضعیف است که اجازهٔ شکل گرفتن چنین دهانه‌های بزرگی را می‌دهد.[۹]

حلقه‌های سیاره‌ای[ویرایش]

تصویر حلقه‌های زحل

حلقه‌ها یا کمربندهای زحل در فاصله ۱۱۲۰۰ کیلومتری آن جای گرفته‌اند. حلقه‌های زحل از تکه‌های یخ و همچنین تکه‌های سنگ و غبار تشکیل شده‌اند برخی به اندازه یک غبار ریز و برخی به اندازه یک خانه. حلقه‌های زحل پهن هستند ولی بسیار تخت و نازک. پهنای آن‌ها ۲۸۰ هزار کیلومتر است اما کلفتی آنها تنها یک کیلومتر است؛ بنابراین هنگامیکه از پهلو به زحل بنگریم حلقه‌ها تیغه باریکی می‌شوند و دیده نمی‌شوند. پهنای برخی از حلقه‌های زحل به اندازه فاصله زمین تا ماه می‌باشد. مشتری و نپتون و اورانوس هم حلقه دارند اما حلقه زحل از همه بهتر دیده می‌شود. به باور دانشمندان دلیل درخشانتر بودن حلقه‌های زحل تازه تر بودن و جوانتر بودن آن هاست. آن‌ها می‌انگارند که این حلقه‌ها در پی نزدیک شدن یک ماهک (قمر) به زحل و فروپاشی آن ماهک در اثر گرانش زحل پدید آمده‌اند. حلقه‌های زحل به ترتیبی که کشف شده‌اند با حروف الفبا نامگذاری شده‌اند. ای، بی، سی، دی، ای، اف و جی در میان حلقه‌ها سه شکاف وجود دارد به نام‌های آنکه، کیلر و مکسول و یک بازه بزرگ به نام شکاف کاسینی.

تصویر ماورا بنفش از حلقه‌های ب و آ در تقسیمبندی کاسینی. شکاف آنکه به رنگ قرمز نشانداده شده‌است.

نخستین کسی که به حلقه رازآمیز پیرامون کیوان علاقه‌مند شد و آن را کشف کرد گالیله بود. او در سال ۱۶۱۰ به این موضوع پی برد و در آغاز بر این باور بود که این حلقه از جنس جامد می‌باشد. اما امروزه ثابت شده‌است که این حلقه از قطعات سنگ و آب یخ زده تشکیل شده‌است که برخی از آنها در اندازه‌های یک خودروی معمولی می‌باشند. مجموع گرانش (جاذبه) زحل و گرانش ماهک‌های آن حالتی را پدیدمی‌آورند که این قطعات همواره بصورت حلقه‌های نازک به دور این سیاره به نظر ثابت ایستاده‌اند.

شکاف کاسینی[ویرایش]

زحل

در سال ۱۶۷۵ میلادی (۱۰۵۴ خورشیدی) جووانی دومنیکو کاسینی، اخترشناس ایتالیایی، کشف کرد که حلقه زحل از دو حلقه تشکیل یافته‌است و میان آن دو جدایی وجود دارد. این جدایی شکاف کاسینی نامیده می‌شود و در اثر کشش گرانشی قمر غول پیکر تیتان بوجود آمده‌است. بررسی‌های واپسین نشان داده‌اند که در اطراف زحل، بر روی هم چهار حلقه وجود دارد. درونی‌ترین آنها بسیار کم نور و تقریباً با بالای ابرها در تماس است. قطر حلقه نورانی بیرونی به ۱۴۰۰۰۰ کیلومتر می‌رسد. شکاف کاسینی ۴۷۰۰ کیلومتر پهنا دارد.

مطالعات بر روی زحل[ویرایش]

در متون باستانی[ویرایش]

زحل از زمانهای بسیار قدیم شناخته شده‌است. در زمانهای قدیم این سیاره دورترین سیاره شناخته شده نسبت به زمین بود و در تمامی اسطوره‌های گذشتگاه تأثیر مهمی داشت. ستاره شناسان بابل قدیم حرکت سیاره زحل را شناسایی و ضبط می‌کردند. در روم باستان ایزد ساترنوس مرتبط با سیاره زحل و ایزد کشاورزی بود. رومیها اعتقاد داشتند که ساترنوس معادل خدای یونانی کرونوس است. در ستاره‌شناسی هندوها ۹ جرم سماوی وجود دارند که زحل یکی از آنان است شانی نام دارد و اعمال خوب و بد مردم را مورد قضاوت قرار می‌دهد. در زبان عبری و در دین یهودیت زحل به نام شبتای (שבתאי) شناخته می‌شود. فرشته مرتبط با آن کاسیل(Cassiel) نام دارد. روح آن و بعد مثبت آن آگیل (Agiel) و روح منفی آن زازل (Zazel) نام دارد. در متون قدیمی همواره زحل به عنوان سیاره عبریان شناخته می‌شد. همچنین روز مرتبط با زحل (شنبه یا Saturn day) روزی است که خداوند بر قوم یهود به عنوان روز مقدس (سبت) اعلام کرد.[۱۰] در عهد عتیق و عهد جدید نام زحل چندبار تکرار شده‌است. اولین بار در کتاب عاموس فصل ۵ خدای عبریان خطاب به آنان می‌گوید:

ای قوم اسراییل آیا شما برای من قربانی و هدیه در ۴۰ سالی که در بیابان سرگردان بودید آوردید؟ شما معبد مولوخ و ستاره کیوان خدایتان را برافرشتید، بتهایی که شما برای خود ساختید. حال من شما را به سمت دمشق اخراج می‌کنم." -عهد عتیق کتاب عاموس فصل ۵

در کتاب اعمال از کتب عهد جدید استفان از پیروان عیسی نیز سخنان عاموس را بار دیگر تکرار می‌کند.

شما معبد مولوخ و ستاره کیوان خدایتان را برافراشتید، بتهایی که شما برای خود ساخته‌اید. حال من شما را به سرزمینی بعد از بابل اخراج می‌کنم." - کتاب اعمال ۷:۴۳

این سخنان باعث خشم دادگاه شرعی یهود (سنهدرین) و نهایتاً سنگسار شدن استفان می‌شود.

در اروپا (قرن ۱۷ تا ۱۹)[ویرایش]

مشاهده حلقه‌های زحل به یک تلسکوپ حداقل ۱۵ میلیمتری احتیاج دارد. اولین بار این حلقه‌ها توسط گالیله در سال ۱۶۱۰ مشاهده شدند؛ ولیکن گالیله تصور می‌کرد که این حلقه‌ها دو قمر زحل هستند. این باور تا زمانی که کریستیان هویگنس موفق شد با تلسکوپ قویتری آن را مشاهده کند ادامه داشت. هویگنس قمر تیتان را کشف کرد. بعداً جیوانی کاسینی موفق شد این حلقه را مشاهده کند و چهار قمر زحل به نامهای رئا، دیونه، تتیس و یاپتوس را کشف کرد. در سال ۱۶۷۵ کاسینی شکاف کاسینی را برای اولین بار مشاهده نمود.

تا سال ۱۷۸۹ مشاهدات مهم دیگری انجام نشد. در این زمان ویلیام هرشل دو قمر میماس و آنکلادوس را کشف کرد. قمر هایپریون که دارای شکل نامنظمی است و دارای رزونانس با تیتان می‌باشد در سال ۱۸۴۸ به دست یک تیم بریتانیایی کشف گردید.

در سال ۱۸۹۹ ویلیام هنری پیکرینگ قمر فیبی را کشف کرد که دارای شکل بسیار نامنظمی است و چرخش آن به دور زحل همزمان با گردش آن نیست. فیبی اولین قمری بود که دارای این ویژگی بود و چرخش آن به دور زحل حدود یکسال طول می‌کشد. در قرن ۲۰ مطالعات بر روی تیتان نشان داد که این قمر دارای اتمسفر ضخیمی می‌باشد که ویژگی منحصر به فردی در تمامی منظومه شمسی می‌باشد.

رابرت هوک متوجه سایه کره و حلقه‌های زحل بر یکدیگر شد. این نقاشی از سال ۱۶۶۶ میلادی است.

مشاهدات مدرن[ویرایش]

فضاپیمای پایونیر ۱۱ برای نخستین بار در سال ۱۹۷۹ از این سیاره دیدن کرد و پس از آن در سالهای بعد وویجر ۱ و سپس وویجر ۲. از جمله مواردی که فضاپیمای وویجر ۲ در مأموریت خود توانست به آن دست پیدا کند اثبات وجود باد، میدان‌های مغناطیسی، شفق صبحگاهی و همچنین تندر و آذرخش در این سیاره زیبا می‌باشد. سرعت بادهایی که در قسمت استوایی این سیاره می‌وزد به ۵۰۰ کیلومتر بر ساعت نیز می‌رسد. پایونیر ۱۱ موفق شد تصاویری از زحل و چندین قمر آن تهیه کند ولیکن کیفیت این تصاویر بسیار پایین بود. این فضاپیما همچنین حلقه‌های زحل را مورد بررسی قرار داد.

در نوامبر ۱۹۸۰ وویجر ۱ به زحل رسید. اولین تصاویر با کیفیت بالا از زحل توسط این فضاپیما تهیه شد. ساختار بعضی قمرها برای اولین بار دیده شد. وویجر ۱ از نزدیکی قمر تیتان گذر کرد و تصاویری از اتمسفر آن تهیه نمود. این تصاویر نشان داد که اتمسفر تیتان بسیار ضخیم است و نور مریی از آن گذر نمی‌کند. در سال ۱۹۸۱ وویجر ۲ به مطالعه زحل ادامه داد. تصاویر نزدیکتری از زحل و حلقه‌های آن تهیه شد؛ ولیکن مشکلات فنی باعث شد که این فضاپیما نتواند به قدر کافی تصویر از زحل تهیه کند.

میدان مغناطیسی[ویرایش]

میدان مغناطیسی دارای یک گشتاور کلی برابر ۳۵/۱ گشتاور مشتری است. اما این مقدار به حد کافی قوی است که یک میدان مغناطیسی سپهر مشتری گون با کمربندهای تابشی مشابه زمین ایجاد کند. گشتاور دوقطبی مغناطیسی با میل یک درجه نسبت به محور چرخش زحل قرار می‌گیرد که این مقدار با انحراف مشخص محورهای مغناطیسی مشتری و زمین تفاوت آشکار دارد. مغناط کرهٔ زحل ذرات بسیار کمتری از ذرات مغناط‌کرهٔ مشتری را در خود جای می‌دهد.

تصویر فرابنفش گرفته شده از کیوان که هاله اطراف دو قطب را نشان می‌دهد.

دو دلیل عمده این تفاوت شامل کمبود یک منبع محلی ذرات بار دار که در مورد مشتری توسط فورانهای آیو تولید می‌شوند و حلقه‌های قابل رویت زحل که بطور مؤثری ذرات باردار را جذب کرده و مغناطیس‌سپهر داخلی را از ذرات باردار خالی می‌کنند، است. در خارج لبه حلقه‌ها چگالی ذرات باردار به سرعت افزایش می‌یابد و در حدود ۵Rs تا ۱۰Rs به یک قله می‌رسد. در اینجا، ذرات باردار بطور محکم به میدان مغناطیسی در حال دوران سریع جفت می‌شوند. این برهمکنش، لایه‌ای از پلاسما به ضخامت تقریباً ۲Rs ایجاد می‌کند که تا حدود ۱۵Rs ادامه می‌یابد. در ورای این مقدار، مغناط‌کره شکل خود را از دست می‌دهد. اندازه آن با دمای خورشید تغییر می‌یابد.

هم‌سنجی سیاره‌های منظومه خورشیدی با تعدادی از ستاره‌های مشهور:
الف:
زمین (۴) > ناهید (۳) > مریخ (۲) > تیر (۱)
ب:
مشتری (۸) > زحل (۷) > اورانوس(۶) > نپتون (۵) > زمین (بدون شماره)
پ:
شباهنگ (۱۱) > خورشید (۱۰) > ولف ۳۵۹ (۹) > مشتری (بدون شماره)
ت:
دبران (۱۴) > نگهبان شمال (۱۳) > رأس پیکر پسین (۱۲) > شباهنگ (بدون شماره)
ث:
ابط‌الجوزا (۱۷) >قلب عقرب (۱۶) > پای شکارچی (۱۵) > دبران (بدون شماره)
ج:
وی‌وای سگ بزرگ (۲۰) >وی‌وی قیفاووس (۱۹) > مو قیفاووس (۱۸) > ابط‌الجوزا (بدون شماره)

جستارهای وابسته[ویرایش]

پانویس[ویرایش]

  1. ۱٫۰ ۱٫۱ ۱٫۲ ۱٫۳ “Solar System Exploration: Planets: Saturn: Facts & Figures”. NASA, 22 Mar 2011. Retrieved 29 Dec 2011. 
  2. ۲٫۰ ۲٫۱ ۲٫۲ ۲٫۳ اعداد ذکر شده تقریبی هستند و از جدول حقایق ناسا دربارهٔ زحل (منبع پیشین) آورده شده‌اند. برای گرفتن نتایج دقیق‌تر، به HORIZONS System بروید؛ Ephemeris Type را "ELEMENTS" و Target Body را «Saturn Barycenter» و Center را «Sun (body center)» بگذارید.
  3. “Planetary Satellite Discovery Circumstances - Satellites of Saturn”. NASA JPL, 09 Nov 2011. Retrieved 29 Dec 2011. 
  4. ۴٫۰ ۴٫۱ ۴٫۲ Siedelmann, P. Kenneth, B. A. Archinal and others. “Report of the IAU/IAG Working Group on cartographic coordinates and rotational elements: 2006”. Celestial Mechanics and Dynamical Astronomy (Springer) 98, no. 3 (2007): 155-180. doi:10.1007/s10569-007-9072-y. Retrieved 29 Dec 2011. 
  5. «زحل، کیوان» [نجوم] هم‌ارزِ «Saturn»؛ منبع: گروه واژه‌گزینی و زیر نظر حسن حبیبی، «فارسی»، در دفتر دوم، فرهنگ واژه‌های مصوب فرهنگستان، تهران: انتشارات فرهنگستان زبان و ادب فارسی، شابک ‎۹۶۴-۷۵۳۱-۳۷-۰ (ذیل سرواژهٔ زحل) 
  6. Melosh, H. Jay (2011). Planetary Surface Processes. Cambridge Planetary Science 13. Cambridge University Press. p. 5. ISBN 0-521-51418-5.
  7. خطای یادکرد: خطای یادکرد:برچسب <ref>‎ غیرمجاز؛ متنی برای یادکردهای با نام fact وارد نشده‌است. (صفحهٔ راهنما را مطالعه کنید.).
  8. Tiscareno, Matthew (July 17, 2013). "The population of propellers in Saturn's A Ring". Cornell University Library. Retrieved 2013-07-17.
  9. باشگاه خبرنگاران جوان 30 دیماه 1395 http://www.yjc.ir/fa/news/5939873/
  10. http://www.jewishencyclopedia.com/articles/4345-chiun

منابع[ویرایش]

Saturn Saturn symbol.svg
Saturn during Equinox.jpg
Saturn in natural color approaching equinox, photographed by Cassini in July 2008. The dot in the bottom left corner is Titan.
Designations
Pronunciation /ˈsætərn/ (About this sound listen)[1]
Named after
Saturn
Adjectives Saturnian, Cronian
Orbital characteristics[5]
Epoch J2000.0
Aphelion 1,514.50 million km (10.1238 AU)
Perihelion 1,352.55 million km (9.0412 AU)
1,433.53 million km (9.5826 AU)
Eccentricity 0.0565
  • 29.4571 yr
  • 10,759.22 d
  • 24,491.07 Saturnian solar days[2]
378.09 days
9.68 km/s (6.01 mi/s)
317.020°[3]
Inclination
113.665°
339.392°[3]
Known satellites 62 with formal designations; innumerable additional moonlets.[5]
Physical characteristics[5]
Mean radius
58,232 km (36,184 mi)[a]
Equatorial radius
  • 60,268 km (37,449 mi)[a]
  • 9.449 Earths
Polar radius
  • 54,364 km (33,780 mi)[a]
  • 8.552 Earths
Flattening 0.09796
  • 4.27×1010 km2 (1.65×1010 sq mi)[6][a]
  • 83.703 Earths
Volume
  • 8.2713×1014 km3 (1.9844×1014 cu mi)[a]
  • 763.59 Earths
Mass
  • 5.6834×1026 kg (1.2530×1027 lb)
  • 95.159 Earths
Mean density
0.687 g/cm3 (0.0248 lb/cu in)[b] (less than water)
0.210 I/MR2 estimate
35.5 km/s (22.1 mi/s)[a]
10.55 hours[7]
(10 hr 33 min)
Equatorial rotation velocity
9.87 km/s (6.13 mi/s; 35,500 km/h)[a]
26.73° (to orbit)
North pole right ascension
40.589°; 2h 42m 21s
North pole declination
83.537°
Albedo
Surface temp. min mean max
1 bar 134 K (−139 °C)
0.1 bar 84 K (−189 °C)
+1.47 to −0.24[8]
14.5″ to 20.1″ (excludes rings)
Atmosphere[5]
Surface pressure
140 kPa[9]
59.5 km (37.0 mi)
Composition by volume

by volume:

96.3±2.4% hydrogen (H
2
)
3.25±2.4% helium (He)
0.45±0.2% methane (CH
4
)
0.0125±0.0075% ammonia (NH
3
)
0.0110±0.0058% hydrogen deuteride (HD)
0.0007±0.00015% ethane (C
2
H
6
)
Ices:

Saturn is the sixth planet from the Sun and the second-largest in the Solar System, after Jupiter. It is a gas giant with an average radius about nine times that of Earth.[10][11] It has only one-eighth the average density of Earth, but with its larger volume Saturn is over 95 times more massive.[12][13][14] Saturn is named after the Roman god of agriculture; its astronomical symbol (♄) represents the god's sickle.

Saturn's interior is probably composed of a core of iron–nickel and rock (silicon and oxygen compounds). This core is surrounded by a deep layer of metallic hydrogen, an intermediate layer of liquid hydrogen and liquid helium, and finally a gaseous outer layer. Saturn has a pale yellow hue due to ammonia crystals in its upper atmosphere. Electrical current within the metallic hydrogen layer is thought to give rise to Saturn's planetary magnetic field, which is weaker than Earth's, but has a magnetic moment 580 times that of Earth due to Saturn's larger size. Saturn's magnetic field strength is around one-twentieth of Jupiter's.[15] The outer atmosphere is generally bland and lacking in contrast, although long-lived features can appear. Wind speeds on Saturn can reach 1,800 km/h (1,100 mph), higher than on Jupiter, but not as high as those on Neptune.[16]

The planet's most famous feature is its prominent ring system that is composed mostly of ice particles, with a smaller amount of rocky debris and dust. At least 62 moons[17] are known to orbit Saturn, of which 53 are officially named. This does not include the hundreds of moonlets in the rings. Titan, Saturn's largest moon, and the second-largest in the Solar System, is larger than the planet Mercury, although less massive, and is the only moon in the Solar System to have a substantial atmosphere.[18]

Physical characteristics

Composite image comparing the sizes of Saturn and Earth

Saturn is a gas giant because it is predominantly composed of hydrogen and helium. It lacks a definite surface, though it may have a solid core.[19] Saturn's rotation causes it to have the shape of an oblate spheroid; that is, it is flattened at the poles and bulges at its equator. Its equatorial and polar radii differ by almost 10%: 60,268 km versus 54,364 km.[5] Jupiter, Uranus, and Neptune, the other giant planets in the Solar System, are also oblate but to a lesser extent. Saturn is the only planet of the Solar System that is less dense than water—about 30% less.[20] Although Saturn's core is considerably denser than water, the average specific density of the planet is 0.69 g/cm3 due to the atmosphere. Jupiter has 318 times the Earth's mass,[21] and Saturn is 95 times the mass of the Earth.[5] Together, Jupiter and Saturn hold 92% of the total planetary mass in the Solar System.[22]

On 8 January 2015, NASA reported that a team of scientists from the Jet Propulsion Laboratory determined the barycenter of the planet Saturn and its family of moons to within 4 km (2.5 mi) using data from an experiment conducted with the Cassini spacecraft and the Very Large Baseline Array.[23]

Internal structure

Diagram of Saturn, to scale

Despite consisting mostly of hydrogen and helium, most of Saturn's mass is not in the gas phase, because hydrogen becomes a non-ideal liquid when the density is above 0.01 g/cm3, which is reached at a radius containing 99.9% of Saturn's mass. The temperature, pressure, and density inside Saturn all rise steadily toward the core, which causes hydrogen to be a metal in the deeper layers.[22]

Standard planetary models suggest that the interior of Saturn is similar to that of Jupiter, having a small rocky core surrounded by hydrogen and helium with trace amounts of various volatiles.[24] This core is similar in composition to the Earth, but more dense. Examination of Saturn's gravitational moment, in combination with physical models of the interior, has allowed constraints to be placed on the mass of Saturn's core. In 2004, scientists estimated that the core must be 9–22 times the mass of the Earth,[25][26] which corresponds to a diameter of about 25,000 km.[27] This is surrounded by a thicker liquid metallic hydrogen layer, followed by a liquid layer of helium-saturated molecular hydrogen that gradually transitions to a gas with increasing altitude. The outermost layer spans 1,000 km and consists of gas.[28][29][30]

Saturn has a hot interior, reaching 11,700 °C at its core, and it radiates 2.5 times more energy into space than it receives from the Sun. Jupiter's thermal energy is generated by the Kelvin–Helmholtz mechanism of slow gravitational compression, but such a process alone may not be sufficient to explain heat production for Saturn, because it is less massive. An alternative or additional mechanism may be generation of heat through the "raining out" of droplets of helium deep in Saturn's interior. As the droplets descend through the lower-density hydrogen, the process releases heat by friction and leaves Saturn's outer layers depleted of helium.[31][32] These descending droplets may have accumulated into a helium shell surrounding the core.[24] Rainfalls of diamonds have been suggested to occur on Saturn, as well as on Jupiter[33] and ice giants Uranus and Neptune.[34]

Atmosphere

Methane bands circle Saturn. The moon Dione hangs below the rings to the right.

The outer atmosphere of Saturn contains 96.3% molecular hydrogen and 3.25% helium by volume.[35] The proportion of helium is significantly deficient compared to the abundance of this element in the Sun.[24] The quantity of elements heavier than helium (metallicity) is not known precisely, but the proportions are assumed to match the primordial abundances from the formation of the Solar System. The total mass of these heavier elements is estimated to be 19–31 times the mass of the Earth, with a significant fraction located in Saturn's core region.[36]

Trace amounts of ammonia, acetylene, ethane, propane, phosphine and methane have been detected in Saturn's atmosphere.[37][38][39] The upper clouds are composed of ammonia crystals, while the lower level clouds appear to consist of either ammonium hydrosulfide (NH4SH) or water.[40] Ultraviolet radiation from the Sun causes methane photolysis in the upper atmosphere, leading to a series of hydrocarbon chemical reactions with the resulting products being carried downward by eddies and diffusion. This photochemical cycle is modulated by Saturn's annual seasonal cycle.[39]

Cloud layers

A global storm girdles the planet in 2011. The head of the storm (bright area) passes the tail circling around the left limb.

Saturn's atmosphere exhibits a banded pattern similar to Jupiter's, but Saturn's bands are much fainter and are much wider near the equator. The nomenclature used to describe these bands is the same as on Jupiter. Saturn's finer cloud patterns were not observed until the flybys of the Voyager spacecraft during the 1980s. Since then, Earth-based telescopy has improved to the point where regular observations can be made.[41]

The composition of the clouds varies with depth and increasing pressure. In the upper cloud layers, with the temperature in the range 100–160 K and pressures extending between 0.5–2 bar, the clouds consist of ammonia ice. Water ice clouds begin at a level where the pressure is about 2.5 bar and extend down to 9.5 bar, where temperatures range from 185–270 K. Intermixed in this layer is a band of ammonium hydrosulfide ice, lying in the pressure range 3–6 bar with temperatures of 190–235 K. Finally, the lower layers, where pressures are between 10–20 bar and temperatures are 270–330 K, contains a region of water droplets with ammonia in aqueous solution.[42]

Saturn's usually bland atmosphere occasionally exhibits long-lived ovals and other features common on Jupiter. In 1990, the Hubble Space Telescope imaged an enormous white cloud near Saturn's equator that was not present during the Voyager encounters, and in 1994 another smaller storm was observed. The 1990 storm was an example of a Great White Spot, a unique but short-lived phenomenon that occurs once every Saturnian year, roughly every 30 Earth years, around the time of the northern hemisphere's summer solstice.[43] Previous Great White Spots were observed in 1876, 1903, 1933 and 1960, with the 1933 storm being the most famous. If the periodicity is maintained, another storm will occur in about 2020.[44]

The winds on Saturn are the second fastest among the Solar System's planets, after Neptune's. Voyager data indicate peak easterly winds of 500 m/s (1800 km/h).[45] In images from the Cassini spacecraft during 2007, Saturn's northern hemisphere displayed a bright blue hue, similar to Uranus. The color was most likely caused by Rayleigh scattering.[46] Thermography has shown that Saturn's south pole has a warm polar vortex, the only known example of such a phenomenon in the Solar System.[47] Whereas temperatures on Saturn are normally −185 °C, temperatures on the vortex often reach as high as −122 °C, suspected to be the warmest spot on Saturn.[47]

North pole hexagonal cloud pattern

Saturn's north pole (IR;animation)

A persisting hexagonal wave pattern around the north polar vortex in the atmosphere at about 78°N was first noted in the Voyager images.[48][49][50] The sides of the hexagon are each about 13,800 km (8,600 mi) long, which is longer than the diameter of the Earth.[51] The entire structure rotates with a period of 10h 39m 24s (the same period as that of the planet's radio emissions) which is assumed to be equal to the period of rotation of Saturn's interior.[52] The hexagonal feature does not shift in longitude like the other clouds in the visible atmosphere.[53] The pattern's origin is a matter of much speculation. Most scientists think it is a standing wave pattern in the atmosphere. Polygonal shapes have been replicated in the laboratory through differential rotation of fluids.[54][55]

South pole vortex

Saturn's south pole

HST imaging of the south polar region indicates the presence of a jet stream, but no strong polar vortex nor any hexagonal standing wave.[56] NASA reported in November 2006 that Cassini had observed a "hurricane-like" storm locked to the south pole that had a clearly defined eyewall.[57][58] Eyewall clouds had not previously been seen on any planet other than Earth. For example, images from the Galileo spacecraft did not show an eyewall in the Great Red Spot of Jupiter.[59]

The south pole storm may have been present for billions of years.[60] This vortex is comparable to the size of Earth, and it has winds of 550 km/h.[60]

Other features

Cassini has observed a series of cloud features nicknamed "String of Pearls" found in northern latitudes. These features are cloud clearings that reside in deeper cloud layers.[61]

Magnetosphere

Polar aurorae on Saturn
Auroral lights at Saturn’s north pole[62]

Saturn has an intrinsic magnetic field that has a simple, symmetric shape – a magnetic dipole. Its strength at the equator – 0.2 gauss (20 µT) – is approximately one twentieth of that of the field around Jupiter and slightly weaker than Earth's magnetic field.[15] As a result, Saturn's magnetosphere is much smaller than Jupiter's.[63] When Voyager 2 entered the magnetosphere, the solar wind pressure was high and the magnetosphere extended only 19 Saturn radii, or 1.1 million km (712,000 mi),[64] although it enlarged within several hours, and remained so for about three days.[65] Most probably, the magnetic field is generated similarly to that of Jupiter – by currents in the liquid metallic-hydrogen layer called a metallic-hydrogen dynamo.[63] This magnetosphere is efficient at deflecting the solar wind particles from the Sun. The moon Titan orbits within the outer part of Saturn's magnetosphere and contributes plasma from the ionized particles in Titan's outer atmosphere.[15] Saturn's magnetosphere, like Earth's, produces aurorae.[66]

Orbit and rotation

Saturn and rings as viewed by the Cassini spacecraft (28 October 2016)

The average distance between Saturn and the Sun is over 1.4 billion kilometers (9 AU). With an average orbital speed of 9.68 km/s,[5] it takes Saturn 10,759 Earth days (or about 29 12 years),[67] to finish one revolution around the Sun.[5] The elliptical orbit of Saturn is inclined 2.48° relative to the orbital plane of the Earth.[5] The perihelion and aphelion distances are, respectively, 9.195 and 9.957 AU, on average.[5][68] The visible features on Saturn rotate at different rates depending on latitude and multiple rotation periods have been assigned to various regions (as in Jupiter's case).

Astronomers use three different systems for specifying the rotation rate of Saturn. System I has a period of 10 hr 14 min 00 sec (844.3°/d) and encompasses the Equatorial Zone, the South Equatorial Belt and the North Equatorial Belt. The polar regions are considered to have rotation rates similar to System I. All other Saturnian latitudes, excluding the north and south polar regions, are indicated as System II and have been assigned a rotation period of 10 hr 38 min 25.4 sec (810.76°/d). System III refers to Saturn's internal rotation rate. Based on radio emissions from the planet in the period of the Voyager flybys, it has been assigned a rotation period of 10 hr 39 min 22.4 sec (810.8°/d). Because it is close to System II, it has largely superseded it.[69]

A precise value for the rotation period of the interior remains elusive. While approaching Saturn in 2004, Cassini found that the radio rotation period of Saturn had increased appreciably, to approximately 10 hr 45 min 45 sec (± 36 sec).[70][71] The latest estimate of Saturn's rotation (as an indicated rotation rate for Saturn as a whole) based on a compilation of various measurements from the Cassini, Voyager and Pioneer probes was reported in September 2007 is 10 hr 32 min 35 sec.[72]

In March 2007, it was found that the variation of radio emissions from the planet did not match Saturn's rotation rate. This variance may be caused by geyser activity on Saturn's moon Enceladus. The water vapor emitted into Saturn's orbit by this activity becomes charged and creates a drag upon Saturn's magnetic field, slowing its rotation slightly relative to the rotation of the planet.[73][74][75]

Natural satellites

A montage of Saturn and its principal moons (Dione, Tethys, Mimas, Enceladus, Rhea and Titan; Iapetus not shown). This famous image was created from photographs taken in November 1980 by the Voyager 1 spacecraft.

Saturn has 62 known moons, 53 of which have formal names.[76][77] In addition, there is evidence of dozens to hundreds of moonlets with diameters of 40–500 meters in Saturn's rings,[78] which are not considered to be true moons. Titan, the largest moon, comprises more than 90% of the mass in orbit around Saturn, including the rings.[79] Saturn's second-largest moon, Rhea, may have a tenuous ring system of its own,[80] along with a tenuous atmosphere.[81][82][83]

Possible beginning of a new moon (white dot) of Saturn (image taken by Cassini on 15 April 2013)

Many of the other moons are small: 34 are less than 10 km in diameter and another 14 between 10 and 50 km in diameter.[84] Traditionally, most of Saturn's moons have been named after Titans of Greek mythology. Titan is the only satellite in the Solar System with a major atmosphere,[85][86] in which a complex organic chemistry occurs. It is the only satellite with hydrocarbon lakes.[87][88]

On 6 June 2013, scientists at the IAA-CSIC reported the detection of polycyclic aromatic hydrocarbons in the upper atmosphere of Titan, a possible precursor for life.[89] On 23 June 2014, NASA claimed to have strong evidence that nitrogen in the atmosphere of Titan came from materials in the Oort cloud, associated with comets, and not from the materials that formed Saturn in earlier times.[90]

Saturn's moon Enceladus, which seems similar in chemical makeup to comets,[91] has often been regarded as a potential habitat for microbial life.[92][93][94][95] Evidence of this possibility includes the satellite's salt-rich particles having an "ocean-like" composition that indicates most of Enceladus's expelled ice comes from the evaporation of liquid salt water.[96][97][98] A 2015 flyby by Cassini through a plume on Enceladus found most of the ingredients to sustain life forms that live by methanogenesis.[99]

In April 2014, NASA scientists reported the possible beginning of a new moon within the A Ring, which was imaged by Cassini on 15 April 2013.[100]

Planetary rings

The rings of Saturn (imaged here by Cassini in 2007) are the most massive and conspicuous in the Solar System.[29]
False-color UV image of Saturn's outer B and A rings; dirtier ringlets in the Cassini Division and Encke Gap show up red.

Saturn is probably best known for the system of planetary rings that makes it visually unique.[29] The rings extend from 6,630 km to 120,700 km outward from Saturn's equator, average approximately 20 meters in thickness and are composed of 93% water ice with traces of tholin impurities and 7% amorphous carbon.[101] The particles that make up the rings range in size from specks of dust up to 10 m.[102] While the other gas giants also have ring systems, Saturn's is the largest and most visible.

There are two main hypotheses regarding the origin of the rings. One hypothesis is that the rings are remnants of a destroyed moon of Saturn. The second hypothesis is that the rings are left over from the original nebular material from which Saturn formed. Some ice in the E ring comes from the moon Enceladus's geysers.[103][104][105]

In the past, astronomers once thought the rings formed alongside the planet when it formed billions of years ago.[106] Instead, the age of these planetary rings is probably some hundreds of millions of years.[107]

Beyond the main rings at a distance of 12 million km from the planet is the sparse Phoebe ring, which is tilted at an angle of 27° to the other rings and, like Phoebe, orbits in retrograde fashion.[108]

Some of the moons of Saturn, including Pandora and Prometheus, act as shepherd moons to confine the rings and prevent them from spreading out.[109] Pan and Atlas cause weak, linear density waves in Saturn's rings that have yielded more reliable calculations of their masses.[110]

History of observation and exploration

There have been three main phases in the observation and exploration of Saturn. The first era was ancient observations (such as with the naked eye), before the invention of the modern telescopes. Starting in the 17th century progressively more advanced telescopic observations from Earth have been made. The other type is visitation by spacecraft, either by orbiting or flyby. In the 21st century observations continue from the Earth (or Earth-orbiting observatories) and from the Cassini orbiter at Saturn.

Ancient observations

Saturn has been known since prehistoric times.[111] In ancient times, it was the most distant of the known planets in the Solar System and thus a major character in various mythologies. Babylonian astronomers systematically observed and recorded the movements of Saturn.[112] In ancient Roman mythology, the god Saturnus, from which the planet takes its name, was the god of agriculture.[113] The Romans considered Saturnus the equivalent of the Greek god Cronus.[113] The Greeks had made the outermost planet sacred to Cronus,[114] and the Romans followed suit. (In modern Greek, the planet retains its ancient name Cronus—Κρόνος: Kronos.)[115]

The Greek scientist Ptolemy based his calculations of Saturn's orbit on observations he made while it was in opposition.[116] In Hindu astrology, there are nine astrological objects, known as Navagrahas. Saturn is known as "Shani" and judges everyone based on the good and bad deeds performed in life.[113][116] Ancient Chinese and Japanese culture designated the planet Saturn as the "earth star" (土星). This was based on Five Elements which were traditionally used to classify natural elements.[117][118][119]

In ancient Hebrew, Saturn is called 'Shabbathai'.[120] Its angel is Cassiel. Its intelligence or beneficial spirit is Agiel (layga) and its spirit (darker aspect) is Zazel (lzaz). In Ottoman Turkish, Urdu and Malay, its name is 'Zuhal', derived from Arabic زحل.

European observations (17th–19th centuries)

Robert Hooke noted the shadows (a and b) cast by both the globe and the rings on each other in this drawing of Saturn in 1666.

Saturn's rings require at least a 15-mm-diameter telescope[121] to resolve and thus were not known to exist until Galileo first saw them in 1610.[122][123] He thought of them as two moons on Saturn's sides.[124][125] It was not until Christiaan Huygens used greater telescopic magnification that this notion was refuted. Huygens discovered Saturn's moon Titan; Giovanni Domenico Cassini later discovered four other moons: Iapetus, Rhea, Tethys and Dione. In 1675, Cassini discovered the gap now known as the Cassini Division.[126]

No further discoveries of significance were made until 1789 when William Herschel discovered two further moons, Mimas and Enceladus. The irregularly shaped satellite Hyperion, which has a resonance with Titan, was discovered in 1848 by a British team.[127]

In 1899 William Henry Pickering discovered Phoebe, a highly irregular satellite that does not rotate synchronously with Saturn as the larger moons do.[127] Phoebe was the first such satellite found and it takes more than a year to orbit Saturn in a retrograde orbit. During the early 20th century, research on Titan led to the confirmation in 1944 that it had a thick atmosphere – a feature unique among the Solar System's moons.[128]

Modern NASA and ESA probes

Pioneer 11 flyby

Pioneer 11 image of Saturn

Pioneer 11 made the first flyby of Saturn in September 1979, when it passed within 20,000 km of the planet's cloud tops. Images were taken of the planet and a few of its moons, although their resolution was too low to discern surface detail. The spacecraft also studied Saturn's rings, revealing the thin F-ring and the fact that dark gaps in the rings are bright when viewed at high phase angle (towards the Sun), meaning that they contain fine light-scattering material. In addition, Pioneer 11 measured the temperature of Titan.[129]

Voyager flybys

In November 1980, the Voyager 1 probe visited the Saturn system. It sent back the first high-resolution images of the planet, its rings and satellites. Surface features of various moons were seen for the first time. Voyager 1 performed a close flyby of Titan, increasing knowledge of the atmosphere of the moon. It proved that Titan's atmosphere is impenetrable in visible wavelengths; therefore no surface details were seen. The flyby changed the spacecraft's trajectory out from the plane of the Solar System.[130]

Almost a year later, in August 1981, Voyager 2 continued the study of the Saturn system. More close-up images of Saturn's moons were acquired, as well as evidence of changes in the atmosphere and the rings. Unfortunately, during the flyby, the probe's turnable camera platform stuck for a couple of days and some planned imaging was lost. Saturn's gravity was used to direct the spacecraft's trajectory towards Uranus.[130]

The probes discovered and confirmed several new satellites orbiting near or within the planet's rings, as well as the small Maxwell Gap (a gap within the C Ring) and Keeler gap (a 42 km wide gap in the A Ring).

Cassini–Huygens spacecraft

Earth and Moon by Cassini (19 July 2013).
Earth and Moon viewed from the rings of Saturn (12 April 2017)

On 1 July 2004, the Cassini–Huygens space probe performed the SOI (Saturn Orbit Insertion) maneuver and entered orbit around Saturn. Before the SOI, Cassini had already studied the system extensively. In June 2004, it had conducted a close flyby of Phoebe, sending back high-resolution images and data. Cassini's flyby of Saturn's largest moon, Titan, has captured radar images of large lakes and their coastlines with numerous islands and mountains. The orbiter completed two Titan flybys before releasing the Huygens probe on 25 December 2004. Huygens descended onto the surface of Titan on 14 January 2005, sending a flood of data during the atmospheric descent and after the landing.[131] Cassini has since conducted multiple flybys of Titan and other icy satellites.

Starting in early 2005, scientists used Cassini to track lightning on Saturn. The power of the lightning is approximately 1,000 times that of lightning on Earth.[132]

At Enceladus's south pole geysers spray water from many locations along the tiger stripes.[133]

In 2006, NASA reported that Cassini had found evidence of liquid water reservoirs that erupt in geysers on Saturn's moon Enceladus. Images had shown jets of icy particles being emitted into orbit around Saturn from vents in the moon's south polar region. According to Andrew Ingersoll, California Institute of Technology, "Other moons in the Solar System have liquid-water oceans covered by kilometers of icy crust. What's different here is that pockets of liquid water may be no more than tens of meters below the surface."[134] Over 100 geysers have been identified on Enceladus.[133] In May 2011, NASA scientists at an Enceladus Focus Group Conference reported that Enceladus "is emerging as the most habitable spot beyond Earth in the Solar System for life as we know it".[135][136]

Cassini photographs have led to other significant discoveries. They have revealed a previously undiscovered planetary ring, outside the brighter main rings of Saturn and inside the G and E rings. The source of this ring is hypothesized to be the crashing of a meteoroid off Janus and Epimetheus.[137] In July 2006, Cassini images provided evidence of hydrocarbon lakes near Titan's north pole, the presence of which were confirmed in January 2007. In March 2007, additional images near Titan's north pole revealed hydrocarbon seas, the largest of which is almost the size of the Caspian Sea.[138] In October 2006, the probe detected an 8,000 km diameter cyclone-like storm with an eyewall at Saturn's south pole.[139]

From 2004 to 2 November 2009, the probe discovered and confirmed eight new satellites. Its primary mission ended in 2008 when the spacecraft had completed 74 orbits around the planet. The probe's mission was extended to September 2010 and then extended again to 2017, to study a full period of Saturn's seasons.[140]

In April 2013 Cassini sent back images of a hurricane at the planet's north pole 20 times larger than those found on Earth, with winds faster than 530 km/h.[141]

On 19 July 2013, "The Day the Earth Smiled", Cassini was pointed towards Earth to capture an image of the Earth and the Moon (and, as well, Venus and Mars) as part of a natural light, multi-image portrait of the entire Saturn system. It was the first time NASA informed the people of Earth that a long-distance photo was being taken in advance.[142]

On 15 September 2017, the Cassini-Huygens spacecraft performed the "Grand Finale" of its mission: a number of passes through gaps between Saturn and Saturn's inner rings.[143][144] The atmospheric entry of Cassini ended the mission.

Possible future missions

The continued exploration of Saturn is still considered to be a viable option for NASA as part of their ongoing New Frontiers program of missions. NASA previously requested for plans to be put forward for a mission to Saturn that included an atmospheric entry probe and possible investigations into the habitability and possible discovery of life on Saturn's moons Titan and Enceladus.[145]

Observation

Amateur telescopic view of Saturn

Saturn is the most distant of the five planets easily visible to the naked eye from Earth, the other four being Mercury, Venus, Mars and Jupiter. (Uranus and occasionally 4 Vesta are visible to the naked eye in dark skies.) Saturn appears to the naked eye in the night sky as a bright, yellowish point of light with an apparent magnitude of usually between +1 and 0. It takes approximately 29.5 years for the planet to complete an entire circuit of the ecliptic against the background constellations of the zodiac. Most people will require an optical aid (very large binoculars or a small telescope) that magnifies at least 30 times to achieve an image of Saturn's rings, in which clear resolution is present.[29][121] Twice every Saturnian year (roughly every 15 Earth years), the rings briefly disappear from view, due to the way in which they are angled and because they are so thin. Such a "disappearance" will next occur in 2025, but Saturn will be too close to the Sun for any ring-crossing observation to be possible.[146]

Simulated appearance of Saturn as seen from Earth (at opposition) during an orbit of Saturn, 2001-2029
Saturn eclipses the Sun, as seen from Cassini. The rings are visible, including the F Ring.

Saturn and its rings are best seen when the planet is at, or near, opposition, the configuration of a planet when it is at an elongation of 180°, and thus appears opposite the Sun in the sky. A Saturnian opposition occurs every year—approximately every 378 days—and results in the planet appearing at its brightest. Both the Earth and Saturn orbit the Sun on eccentric orbits, which means their distances from the Sun vary over time, and therefore so do their distances from each other, hence varying the brightness of Saturn from one opposition to the next. Saturn also appears brighter when the rings are angled such that they are more visible. For example, during the opposition of 17 December 2002, Saturn appeared at its brightest due to a favorable orientation of its rings relative to the Earth,[147] even though Saturn was closer to the Earth and Sun in late 2003.[147]

From time to time Saturn is occulted by the Moon (that is, the Moon covers up Saturn in the sky). As with all the planets in the Solar System, occultations of Saturn occur in "seasons". Saturnian occultations will take place 12 or more times over a 12-month period, followed by about a five-year period in which no such activity is registered.[148] Australian astronomy experts Hill and Horner explain the seasonal nature of Saturnian occultations:

This is the result of the fact that the moon’s orbit around the Earth is tilted to the orbit of the Earth around the Sun – and so most of the time, the moon will pass above or below Saturn in the sky, and no occultation will occur. It is only when Saturn lies near the point that the moon’s orbit crosses the "plane of the ecliptic" that occultations can happen – and then they occur every time the moon swings by, until Saturn moves away from the crossing point.[148]

Farewell to Saturn and moons (Enceladus, Epimetheus, Janus, Mimas, Pandora and Prometheus) (21 November 2017).

Notes

  1. ^ a b c d e f g h Refers to the level of 1 bar atmospheric pressure
  2. ^ Based on the volume within the level of 1 bar atmospheric pressure

References

  1. ^ Walter, Elizabeth (21 April 2003). Cambridge Advanced Learner's Dictionary (Second ed.). Cambridge University Press. ISBN 978-0-521-53106-1. 
  2. ^ Seligman, Courtney. "Rotation Period and Day Length". Archived from the original on 11 August 2011. Retrieved 13 August 2009. 
  3. ^ a b c d Simon, J.L.; Bretagnon, P.; Chapront, J.; Chapront-Touzé, M.; Francou, G.; Laskar, J. (February 1994). "Numerical expressions for precession formulae and mean elements for the Moon and planets". Astronomy and Astrophysics. 282 (2): 663–683. Bibcode:1994A&A...282..663S. 
  4. ^ "The MeanPlane (Invariable plane) of the Solar System passing through the barycenter". 3 April 2009. Archived from the original on 14 May 2009. Retrieved 10 April 2009.  (produced with Solex 10 Archived 29 April 2009 at WebCite written by Aldo Vitagliano; see also Invariable plane)
  5. ^ a b c d e f g h i j Williams, David R. (23 December 2016). "Saturn Fact Sheet". NASA. Archived from the original on 12 October 2017. Retrieved 12 October 2017. 
  6. ^ "NASA: Solar System Exploration: Planets: Saturn: Facts & Figures". Solarsystem.nasa.gov. 22 March 2011. Archived from the original on 6 October 2011. Retrieved 8 August 2011. 
  7. ^ "'Nature' (Saturn's fast spin determined from its gravitational field and oblateness)". Nature. 2 February 2015. 
  8. ^ Schmude Jr., Richard W.; Hallsworth Jr., William (2001). "Shorter Communications: Wideband photoelectric magnitude measurements of Saturn in 2000". 59 (3). Georgia Journal of Science: 123–127. Retrieved 27 October 2017. 
  9. ^ Knecht, Robin (24 October 2005). "On The Atmospheres Of Different Planets" (PDF). Archived from the original (PDF) on 14 October 2017. Retrieved 14 October 2017. 
  10. ^ Brainerd, Jerome James (24 November 2004). "Characteristics of Saturn". The Astrophysics Spectator. Archived from the original on 5 October 2011. Retrieved 5 July 2010. 
  11. ^ "General Information About Saturn". Scienceray. 28 July 2011. Archived from the original on 6 October 2011. Retrieved 17 August 2011. 
  12. ^ Brainerd, Jerome James (6 October 2004). "Solar System Planets Compared to Earth". The Astrophysics Spectator. Archived from the original on 6 October 2011. Retrieved 5 July 2010. 
  13. ^ Dunbar, Brian (29 November 2007). "NASA – Saturn". NASA. Archived from the original on 6 October 2011. Retrieved 21 July 2011. 
  14. ^ Cain, Fraser (3 July 2008). "Mass of Saturn". Universe Today. Retrieved 17 August 2011. 
  15. ^ a b c Russell, C. T.; et al. (1997). "Saturn: Magnetic Field and Magnetosphere". UCLA – IGPP Space Physics Center. Archived from the original on 5 October 2011. Retrieved 29 April 2007. 
  16. ^ "The Planets ('Giants')". Science Channel. 8 June 2004. 
  17. ^ Piazza, Enrico. "Saturn's Moons". Cassini, Equinox Mission. JPL NASA. Archived from the original on 5 October 2011. Retrieved 22 June 2010. 
  18. ^ Munsell, Kirk (6 April 2005). "The Story of Saturn". NASA Jet Propulsion Laboratory; California Institute of Technology. Archived from the original on 22 August 2011. Retrieved 7 July 2007. 
  19. ^ Melosh, H. Jay (2011). Planetary Surface Processes. Cambridge Planetary Science. 13. Cambridge University Press. p. 5. ISBN 0-521-51418-5. 
  20. ^ "Saturn – The Most Beautiful Planet of our solar system". Preserve Articles. 23 January 2011. Archived from the original on 5 October 2011. Retrieved 24 July 2011. 
  21. ^ Williams, David R. (16 November 2004). "Jupiter Fact Sheet". NASA. Archived from the original on 5 October 2011. Retrieved 2 August 2007. 
  22. ^ a b Fortney, Jonathan J.; Nettelmann, Nadine (May 2010). "The Interior Structure, Composition, and Evolution of Giant Planets". Space Science Reviews. 152 (1–4): 423–447. arXiv:0912.0533Freely accessible. Bibcode:2010SSRv..152..423F. doi:10.1007/s11214-009-9582-x. 
  23. ^ Dyches, Preston; et al. (8 January 2015). "Scientists Pinpoint Saturn With Exquisite Accuracy". NASA. Retrieved 9 January 2015. 
  24. ^ a b c Guillot, Tristan; et al. (2009). "Saturn's Exploration Beyond Cassini-Huygens". In Dougherty, Michele K.; Esposito, Larry W.; Krimigis, Stamatios M. Saturn from Cassini-Huygens. Springer Science+Business Media B.V. p. 745. arXiv:0912.2020Freely accessible. Bibcode:2009sfch.book..745G. doi:10.1007/978-1-4020-9217-6_23. ISBN 978-1-4020-9216-9. 
  25. ^ Fortney, Jonathan J. (2004). "Looking into the Giant Planets". Science. 305 (5689): 1414–1415. doi:10.1126/science.1101352. PMID 15353790. 
  26. ^ Saumon, D.; Guillot, T. (July 2004). "Shock Compression of Deuterium and the Interiors of Jupiter and Saturn". The Astrophysical Journal. 609 (2): 1170–1180. arXiv:astro-ph/0403393Freely accessible. Bibcode:2004ApJ...609.1170S. doi:10.1086/421257. 
  27. ^ "Saturn". BBC. 2000. Archived from the original on 21 August 2011. Retrieved 19 July 2011. 
  28. ^ Faure, Gunter; Mensing, Teresa M. (2007). Introduction to planetary science: the geological perspective. Springer. p. 337. ISBN 1-4020-5233-2. 
  29. ^ a b c d "Saturn". National Maritime Museum. Archived from the original on 6 October 2011. Retrieved 6 July 2007. 
  30. ^ "Structure of Saturn's Interior". Windows to the Universe. Archived from the original on 21 August 2011. Retrieved 19 July 2011. 
  31. ^ de Pater, Imke; Lissauer, Jack J. (2010). Planetary Sciences (2nd ed.). Cambridge University Press. pp. 254–255. ISBN 0-521-85371-0. 
  32. ^ "NASA – Saturn". NASA. 2004. Archived from the original on 21 August 2011. Retrieved 27 July 2007. 
  33. ^ Kramer, Miriam (9 October 2013). "Diamond Rain May Fill Skies of Jupiter and Saturn". Space.com. Retrieved 27 August 2017. 
  34. ^ Kaplan, Sarah (25 August 2017). "It rains solid diamonds on Uranus and Neptune". The Washington Post. Retrieved 27 August 2017. 
  35. ^ Saturn. Universe Guide. Retrieved 29 March 2009.
  36. ^ Guillot, Tristan (1999). "Interiors of Giant Planets Inside and Outside the Solar System". Science. 286 (5437): 72–77. Bibcode:1999Sci...286...72G. doi:10.1126/science.286.5437.72. PMID 10506563. 
  37. ^ Courtin, R.; et al. (1967). "The Composition of Saturn's Atmosphere at Temperate Northern Latitudes from Voyager IRIS spectra". Bulletin of the American Astronomical Society. 15: 831. Bibcode:1983BAAS...15..831C. 
  38. ^ Cain, Fraser (22 January 2009). "Atmosphere of Saturn". Universe Today. Archived from the original on 5 October 2011. Retrieved 20 July 2011. 
  39. ^ a b Guerlet, S.; Fouchet, T.; Bézard, B. (November 2008). Charbonnel, C.; Combes, F.; Samadi, R., eds. "Ethane, acetylene and propane distribution in Saturn's stratosphere from Cassini/CIRS limb observations". SF2A-2008: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics: 405. Bibcode:2008sf2a.conf..405G. 
  40. ^ Martinez, Carolina (5 September 2005). "Cassini Discovers Saturn's Dynamic Clouds Run Deep". NASA. Archived from the original on 5 October 2011. Retrieved 29 April 2007. 
  41. ^ Orton, Glenn S. (September 2009). "Ground-Based Observational Support for Spacecraft Exploration of the Outer Planets". Earth, Moon, and Planets. 105 (2–4): 143–152. Bibcode:2009EM&P..105..143O. doi:10.1007/s11038-009-9295-x. 
  42. ^ Dougherty, Michele K.; Esposito, Larry W.; Krimigis, Stamatios M. (2009). Dougherty, Michele K.; Esposito, Larry W.; Krimigis, Stamatios M., eds. "Saturn from Cassini-Huygens". Saturn from Cassini-Huygens. Springer: 162. Bibcode:2009sfch.book.....D. doi:10.1007/978-1-4020-9217-6. ISBN 1-4020-9216-4. 
  43. ^ Pérez-Hoyos, S.; Sánchez-Laveg, A.; French, R. G.; J. F., Rojas (2005). "Saturn's cloud structure and temporal evolution from ten years of Hubble Space Telescope images (1994–2003)". Icarus. 176 (1): 155–174. Bibcode:2005Icar..176..155P. doi:10.1016/j.icarus.2005.01.014. 
  44. ^ Kidger, Mark (1992). "The 1990 Great White Spot of Saturn". In Moore, Patrick. 1993 Yearbook of Astronomy. London: W.W. Norton & Company. pp. 176–215. 
  45. ^ Hamilton, Calvin J. (1997). "Voyager Saturn Science Summary". Solarviews. Archived from the original on 5 October 2011. Retrieved 5 July 2007. 
  46. ^ Watanabe, Susan (27 March 2007). "Saturn's Strange Hexagon". NASA. Archived from the original on 1 February 2010. Retrieved 6 July 2007. 
  47. ^ a b "Warm Polar Vortex on Saturn". Merrillville Community Planetarium. 2007. Archived from the original on 5 October 2011. Retrieved 25 July 2007. 
  48. ^ Godfrey, D. A. (1988). "A hexagonal feature around Saturn's North Pole". Icarus. 76 (2): 335. Bibcode:1988Icar...76..335G. doi:10.1016/0019-1035(88)90075-9. 
  49. ^ Sanchez-Lavega, A.; et al. (1993). "Ground-based observations of Saturn's north polar SPOT and hexagon". Science. 260 (5106): 329–32. Bibcode:1993Sci...260..329S. doi:10.1126/science.260.5106.329. PMID 17838249. 
  50. ^ Overbye, Dennis (6 August 2014). "Storm Chasing on Saturn". New York Times. Retrieved 6 August 2014. 
  51. ^ "New images show Saturn's weird hexagon cloud". MSNBC. 12 December 2009. Archived from the original on 5 October 2011. Retrieved 29 September 2011. 
  52. ^ Godfrey, D. A. (9 March 1990). "The Rotation Period of Saturn's Polar Hexagon". Science. 247 (4947): 1206–1208. Bibcode:1990Sci...247.1206G. doi:10.1126/science.247.4947.1206. PMID 17809277. 
  53. ^ Baines, Kevin H.; et al. (December 2009). "Saturn's north polar cyclone and hexagon at depth revealed by Cassini/VIMS". Planetary and Space Science. 57 (14–15): 1671–1681. Bibcode:2009P&SS...57.1671B. doi:10.1016/j.pss.2009.06.026. 
  54. ^ Ball, Philip (19 May 2006). "Geometric whirlpools revealed". Nature. doi:10.1038/news060515-17.  Bizarre geometric shapes that appear at the center of swirling vortices in planetary atmospheres might be explained by a simple experiment with a bucket of water but correlating this to Saturn's pattern is by no means certain.
  55. ^ Aguiar, Ana C. Barbosa; et al. (April 2010). "A laboratory model of Saturn's North Polar Hexagon". Icarus. 206 (2): 755–763. Bibcode:2010Icar..206..755B. doi:10.1016/j.icarus.2009.10.022. Retrieved 20 February 2013.  Laboratory experiment of spinning disks in a liquid solution forms vortices around a stable hexagonal pattern similar to that of Saturn's.
  56. ^ Sánchez-Lavega, A.; et al. (8 October 2002). "Hubble Space Telescope Observations of the Atmospheric Dynamics in Saturn's South Pole from 1997 to 2002". Bulletin of the American Astronomical Society. American Astronomical Society. p. 857. Bibcode:2002DPS....34.1307S. Retrieved 6 July 2007. 
  57. ^ "NASA catalog page for image PIA09187". NASA Planetary Photojournal. Archived from the original on 5 October 2011. Retrieved 23 May 2007. 
  58. ^ "Huge 'hurricane' rages on Saturn". BBC News. 10 November 2006. Archived from the original on 5 October 2011. Retrieved 29 September 2011. 
  59. ^ "NASA Sees into the Eye of a Monster Storm on Saturn". NASA. 9 November 2006. Archived from the original on 5 October 2011. Retrieved 20 November 2006. 
  60. ^ a b Nemiroff, R.; Bonnell, J., eds. (13 November 2006). "A Hurricane Over the South Pole of Saturn". Astronomy Picture of the Day. NASA. Retrieved 1 May 2013. 
  61. ^ "Cassini Image Shows Saturn Draped in a String of Pearls" (Press release). Carolina Martinez, NASA. 10 November 2006. Retrieved 3 March 2013. 
  62. ^ "Hubble sees a flickering light display on Saturn". ESA/Hubble Picture of the Week. Retrieved 20 May 2014. 
  63. ^ a b McDermott, Matthew (2000). "Saturn: Atmosphere and Magnetosphere". Thinkquest Internet Challenge. Archived from the original on 5 October 2011. Retrieved 15 July 2007. 
  64. ^ "Voyager – Saturn's Magnetosphere". NASA Jet Propulsion Laboratory. 18 October 2010. Archived from the original on 6 October 2011. Retrieved 19 July 2011. 
  65. ^ Atkinson, Nancy (14 December 2010). "Hot Plasma Explosions Inflate Saturn's Magnetic Field". Universe Today. Archived from the original on 6 October 2011. Retrieved 24 August 2011. 
  66. ^ Russell, Randy (3 June 2003). "Saturn Magnetosphere Overview". Windows to the Universe. Archived from the original on 6 October 2011. Retrieved 19 July 2011. 
  67. ^ Cain, Fraser (26 January 2009). "Orbit of Saturn". Universe Today. Archived from the original on 6 October 2011. Retrieved 19 July 2011. 
  68. ^ Jean Meeus, Astronomical Algorithms (Richmond, VA: Willmann-Bell, 1998). Average of the nine extremes on p 273. All are within 0.02 AU of the averages.
  69. ^ Benton, Julius (2006). Saturn and how to observe it. Astronomers' observing guides (11th ed.). Springer Science & Business. p. 136. ISBN 1-85233-887-3. 
  70. ^ "Scientists Find That Saturn's Rotation Period is a Puzzle". NASA. 28 June 2004. Archived from the original on 21 August 2011. Retrieved 22 March 2007. 
  71. ^ Cain, Fraser (30 June 2008). "Saturn". Universe Today. Archived from the original on 6 October 2011. Retrieved 17 August 2011. 
  72. ^ Anderson, J. D.; Schubert, G. (2007). "Saturn's gravitational field, internal rotation and interior structure". Science. 317 (5843): 1384–1387. Bibcode:2007Sci...317.1384A. doi:10.1126/science.1144835. PMID 17823351. 
  73. ^ "Enceladus Geysers Mask the Length of Saturn's Day" (Press release). NASA Jet Propulsion Laboratory. 22 March 2007. Archived from the original on 6 October 2011. Retrieved 22 March 2007. 
  74. ^ Gurnett, D. A.; et al. (2007). "The Variable Rotation Period of the Inner Region of Saturn's Plasma Disc". Science. 316 (5823): 442–5. Bibcode:2007Sci...316..442G. doi:10.1126/science.1138562. PMID 17379775. 
  75. ^ Bagenal, F. (2007). "A New Spin on Saturn's Rotation". Science. 316 (5823): 380–1. doi:10.1126/science.1142329. PMID 17446379. 
  76. ^ "Solar System Dynamics - Planetary Satellite Discovery Circumstances". NASA. 9 March 2015. Retrieved 26 February 2016. 
  77. ^ Wall, Mike (21 June 2011). "Saturn's 'Ice Queen' Moon Helene Shimmers in New Photo". Space.com. Archived from the original on 6 October 2011. Retrieved 19 July 2011. 
  78. ^ Tiscareno, Matthew (17 July 2013). "The population of propellers in Saturn's A Ring". The Astronomical Journal. 135: 1083–1091. arXiv:0710.4547Freely accessible. Bibcode:2008AJ....135.1083T. doi:10.1088/0004-6256/135/3/1083. 
  79. ^ Brunier, Serge (2005). Solar System Voyage. Cambridge University Press. p. 164. ISBN 978-0-521-80724-1. 
  80. ^ Jones, G. H.; et al. (7 March 2008). "The Dust Halo of Saturn's Largest Icy Moon, Rhea". Science. 319 (5868): 1380–1384. Bibcode:2008Sci...319.1380J. doi:10.1126/science.1151524. PMID 18323452. 
  81. ^ Atkinson, Nancy (26 November 2010). "Tenuous Oxygen Atmosphere Found Around Saturn's Moon Rhea". Universe Today. Archived from the original on 6 October 2011. Retrieved 20 July 2011. 
  82. ^ NASA (30 November 2010). "Thin air: Oxygen atmosphere found on Saturn's moon Rhea". ScienceDaily. Archived from the original on 6 October 2011. Retrieved 23 July 2011. 
  83. ^ Ryan, Clare (26 November 2010). "Cassini reveals oxygen atmosphere of Saturn′s moon Rhea". UCL Mullard Space Science Laboratory. Archived from the original on 6 October 2011. Retrieved 23 July 2011. 
  84. ^ "Saturn's Known Satellites". Department of Terrestrial Magnetism. Archived from the original on 6 October 2011. Retrieved 22 June 2010. 
  85. ^ "Cassini Finds Hydrocarbon Rains May Fill Titan Lakes". ScienceDaily. 30 January 2009. Archived from the original on 6 October 2011. Retrieved 19 July 2011. 
  86. ^ "Voyager – Titan". NASA Jet Propulsion Laboratory. 18 October 2010. Archived from the original on 6 October 2011. Retrieved 19 July 2011. 
  87. ^ "Evidence of hydrocarbon lakes on Titan". MSNBC. Associated Press. 25 July 2006. Archived from the original on 6 October 2011. Retrieved 19 July 2011. 
  88. ^ "Hydrocarbon lake finally confirmed on Titan". Cosmos Magazine. 31 July 2008. Archived from the original on 6 October 2011. Retrieved 19 July 2011. 
  89. ^ López-Puertas, Manuel (6 June 2013). "PAH's in Titan's Upper Atmosphere". CSIC. Retrieved 6 June 2013. 
  90. ^ Dyches, Preston; et al. (23 June 2014). "Titan's Building Blocks Might Pre-date Saturn". NASA. Retrieved 24 June 2014. 
  91. ^ Battersby, Stephen (26 March 2008). "Saturn's moon Enceladus surprisingly comet-like". New Scientist. Retrieved 16 April 2015. 
  92. ^ NASA (21 April 2008). "Could There Be Life On Saturn's Moon Enceladus?". ScienceDaily. Archived from the original on 6 October 2011. Retrieved 19 July 2011. 
  93. ^ Madrigal, Alexis (24 June 2009). "Hunt for Life on Saturnian Moon Heats Up". Wired Science. Archived from the original on 6 October 2011. Retrieved 19 July 2011. 
  94. ^ Spotts, Peter N. (28 September 2005). "Life beyond Earth? Potential solar system sites pop up". USA Today. Archived from the original on 6 October 2011. Retrieved 21 July 2011. 
  95. ^ Pili, Unofre (9 September 2009). "Enceladus: Saturn′s Moon, Has Liquid Ocean of Water". Scienceray. Archived from the original on 6 October 2011. Retrieved 21 July 2011. 
  96. ^ "Strongest evidence yet indicates Enceladus hiding saltwater ocean". Physorg. 22 June 2011. Archived from the original on 6 October 2011. Retrieved 19 July 2011. 
  97. ^ Kaufman, Marc (22 June 2011). "Saturn′s moon Enceladus shows evidence of an ocean beneath its surface". Washington Post. Archived from the original on 6 October 2011. Retrieved 19 July 2011. 
  98. ^ Greicius, Tony; et al. (22 June 2011). "Cassini Captures Ocean-Like Spray at Saturn Moon". NASA. Archived from the original on 6 October 2011. Retrieved 17 September 2011. 
  99. ^ Chou, Felicia; Dyches, Preston; Weaver, Donna; Villard, Ray (13 April 2017). "NASA Missions Provide New Insights into 'Ocean Worlds' in Our Solar System". NASA. Retrieved 20 April 2017. 
  100. ^ Platt, Jane; et al. (14 April 2014). "NASA Cassini Images May Reveal Birth of a Saturn Moon". NASA. Retrieved 14 April 2014. 
  101. ^ Poulet F.; et al. (2002). "The Composition of Saturn's Rings". Icarus. 160 (2): 350. Bibcode:2002Icar..160..350P. doi:10.1006/icar.2002.6967. 
  102. ^ Porco, Carolyn. "Questions about Saturn's rings". CICLOPS web site. Retrieved 18 June 2017. 
  103. ^ Spahn, F.; et al. (2006). "Cassini Dust Measurements at Enceladus and Implications for the Origin of the E Ring" (PDF). Science. 311 (5766): 1416–1418. Bibcode:2006Sci...311.1416S. doi:10.1126/science.1121375. PMID 16527969. 
  104. ^ "Finger-like Ring Structures In Saturn's E Ring Produced By Enceladus' Geysers". CICLOPS web site. 
  105. ^ "Icy Tendrils Reaching into Saturn Ring Traced to Their Source". CICLOPS web site (Press release). 14 April 2015. 
  106. ^ "The Real Lord of the Rings". Science@NASA. 12 February 2002. Archived from the original on 6 October 2011. Retrieved 24 August 2011. 
  107. ^ "Age and Fate of Saturn's Rings" (PD). Creation Concepts. Retrieved 23 July 2011. 
  108. ^ Cowen, Rob (7 November 1999). "Largest known planetary ring discovered". Science News. Archived from the original on 6 October 2011. Retrieved 9 April 2010. 
  109. ^ Russell, Randy (7 June 2004). "Saturn Moons and Rings". Windows to the Universe. Archived from the original on 6 October 2011. Retrieved 19 July 2011. 
  110. ^ NASA Jet Propulsion Laboratory (3 March 2005). "NASA's Cassini Spacecraft Continues Making New Discoveries". ScienceDaily. Archived from the original on 6 October 2011. Retrieved 19 July 2011. 
  111. ^ "Saturn > Observing Saturn". National Maritime Museum. Archived from the original on 22 April 2007. Retrieved 6 July 2007. 
  112. ^ Sachs, A. (2 May 1974). "Babylonian Observational Astronomy". Philosophical Transactions of the Royal Society of London. Royal Society of London. 276 (1257): 43–50. Bibcode:1974RSPTA.276...43S. doi:10.1098/rsta.1974.0008. JSTOR 74273. 
  113. ^ a b c "Starry Night Times". Imaginova Corp. 2006. Archived from the original on 21 August 2011. Retrieved 5 July 2007. 
  114. ^ Evans, James (1998). The History and Practice of Ancient Astronomy. Oxford University Press. pp. 296–7. ISBN 978-0-19-509539-5. 
  115. ^ "Greek Names of the Planets". Retrieved 14 July 2012. The Greek name of the planet Saturn is Kronos. The Titan Cronus was the father of Zeus, while Saturn was the Roman God of agriculture.  See also the Greek article about the planet.
  116. ^ a b Corporation, Bonnier (April 1893). "Popular Miscellany – Superstitions about Saturn". The Popular Science Monthly: 862. 
  117. ^ De Groot, Jan Jakob Maria (1912). Religion in China: universism. a key to the study of Taoism and Confucianism. American lectures on the history of religions. 10. G. P. Putnam's Sons. p. 300. Retrieved 8 January 2010. 
  118. ^ Crump, Thomas (1992). The Japanese numbers game: the use and understanding of numbers in modern Japan. Nissan Institute/Routledge Japanese studies series. Routledge. pp. 39–40. ISBN 0415056098. 
  119. ^ Hulbert, Homer Bezaleel (1909). The passing of Korea. Doubleday, Page & company. p. 426. Retrieved 8 January 2010. 
  120. ^ Cessna, Abby (15 November 2009). "When Was Saturn Discovered?". Universe Today. Archived from the original on 6 October 2011. Retrieved 21 July 2011. 
  121. ^ a b Eastman, Jack (1998). "Saturn in Binoculars". The Denver Astronomical Society. Archived from the original on 21 August 2011. Retrieved 3 September 2008. 
  122. ^ Chan, Gary (2000). "Saturn: History Timeline". Archived from the original on 21 August 2011. Retrieved 16 July 2007. 
  123. ^ Cain, Fraser (3 July 2008). "History of Saturn". Universe Today. Archived from the original on 6 October 2011. Retrieved 24 July 2011. 
  124. ^ Cain, Fraser (7 July 2008). "Interesting Facts About Saturn". Universe Today. Archived from the original on 6 October 2011. Retrieved 17 September 2011. 
  125. ^ Cain, Fraser (27 November 2009). "Who Discovered Saturn?". Universe Today. Archived from the original on 6 October 2011. Retrieved 17 September 2011. 
  126. ^ Micek, Catherine. "Saturn: History of Discoveries". Archived from the original on 21 August 2011. Retrieved 15 July 2007. 
  127. ^ a b Barton, Samuel G. (April 1946). "The names of the satellites". Popular Astronomy. Vol. 54. pp. 122–130. Bibcode:1946PA.....54..122B. 
  128. ^ Kuiper, Gerard P. (November 1944). "Titan: a Satellite with an Atmosphere". Astrophysical Journal. 100: 378–388. Bibcode:1944ApJ...100..378K. doi:10.1086/144679. 
  129. ^ "The Pioneer 10 & 11 Spacecraft". Mission Descriptions. Archived from the original on 30 January 2006. Retrieved 5 July 2007. 
  130. ^ a b "Missions to Saturn". The Planetary Society. 2007. Archived from the original on 21 August 2011. Retrieved 24 July 2007. 
  131. ^ Lebreton, Jean-Pierre; et al. (December 2005). "An overview of the descent and landing of the Huygens probe on Titan". Nature. 438 (7069): 758–764. Bibcode:2005Natur.438..758L. doi:10.1038/nature04347. PMID 16319826. 
  132. ^ "Astronomers Find Giant Lightning Storm At Saturn". ScienceDaily LLC. 2007. Archived from the original on 21 August 2011. Retrieved 27 July 2007. 
  133. ^ a b Dyches, Preston; et al. (28 July 2014). "Cassini Spacecraft Reveals 101 Geysers and More on Icy Saturn Moon". NASA. Retrieved 29 July 2014. 
  134. ^ Pence, Michael (9 March 2006). "NASA's Cassini Discovers Potential Liquid Water on Enceladus". NASA Jet Propulsion Laboratory. Archived from the original on 21 August 2011. Retrieved 3 June 2011. 
  135. ^ Lovett, Richard A. (31 May 2011). "Enceladus named sweetest spot for alien life". Nature. Nature. doi:10.1038/news.2011.337. Archived from the original on 6 October 2011. Retrieved 3 June 2011. 
  136. ^ Kazan, Casey (2 June 2011). "Saturn's Enceladus Moves to Top of "Most-Likely-to-Have-Life" List". The Daily Galaxy. Archived from the original on 21 August 2011. Retrieved 3 June 2011. 
  137. ^ Shiga, David (20 September 2007). "Faint new ring discovered around Saturn". NewScientist.com. Archived from the original on 21 August 2011. Retrieved 8 July 2007. 
  138. ^ Rincon, Paul (14 March 2007). "Probe reveals seas on Saturn moon". BBC. Archived from the original on 6 October 2011. Retrieved 26 September 2007. 
  139. ^ Rincon, Paul (10 November 2006). "Huge 'hurricane' rages on Saturn". BBC. Archived from the original on 6 October 2011. Retrieved 12 July 2007. 
  140. ^ "Mission overview – introduction". Cassini Solstice Mission. NASA / JPL. 2010. Archived from the original on 21 August 2011. Retrieved 23 November 2010. 
  141. ^ "Massive storm at Saturn's north pole". 3 News NZ. 30 April 2013. 
  142. ^ Overbye, Dennis (12 November 2013). "The View From Saturn". New York Times. Retrieved 12 November 2013. 
  143. ^ Brown, Dwayne; Cantillo, Laurie; Dyches, Preston (15 September 2017). "NASA's Cassini Spacecraft Ends Its Historic Exploration of Saturn". NASA. Retrieved 15 September 2017. 
  144. ^ Chang, Kenneth (14 September 2017). "Cassini Vanishes Into Saturn, Its Mission Celebrated and Mourned". The New York Times. Retrieved 15 September 2017. 
  145. ^ Foust, Jeff (8 January 2016). "NASA Expands Frontiers of Next New Frontiers Competition". SpaceNews. Retrieved 20 April 2017. 
  146. ^ "Saturn's Rings Edge-On". Classical Astronomy. 2013. Archived from the original on 5 November 2013. Retrieved 4 August 2013. 
  147. ^ a b Schmude Jr., Richard W. (Winter 2003). "Saturn in 2002–03". Georgia Journal of Science. Georgia Academy of Science. 61 (4). ISSN 0147-9369. Retrieved 29 June 2015. 
  148. ^ a b Tanya Hill; et al. (9 May 2014). "Bright Saturn will blink out across Australia – for an hour, anyway". The Conversation. Retrieved 11 May 2014. 

Further reading

External links