ایستگاه فضایی بین‌المللی

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو
فارسیEnglish



ایستگاه فضایی بین‌المللی
‎International Space Station (ISS)‎
‎ Международная космическая станция (МКС)‎
International Space Station after undocking of STS-132.jpg
ISS Logo.svg
تصویر ایستگاه فضایی بین‌المللی در مدار زمین، که در ۲ خرداد ۱۳۸۹ توسط فضاپیمای آتلانتیس برداشته شده‌است.
نشان ایستگاه فضایی بین‌المللی
ISS insignia.svg
ویژگی‌های ایستگاه فضایی بین‌المللی
سرنشین دائم:۶ نفر
(قابل افزایش تا بیش از ۱۰ نفر برای مدت کوتاه)
تاریخ پرتاب:۲۹ آبان ۱۳۷۷
(۲۰ نوامبر ۱۹۹۸)
پرتاب از:پایگاه فضایی بایکونور
پایگاه فضایی کندی
پایگاه فضایی گویان
مرکز فضایی تانگاشیما
جرم:۴۱۹٬۴۵۵ کیلوگرم (۹۲۴٬۷۴۰ هزار پوند)
درازا:۷۲٫۸ متر
پهنا:۱۰۸٫۵ متر
فضای قابل زیست:۹۱۶ متر مکعب فضای پُرهوا
(۳۲٬۳۰۰ فوت مکعب)
فشار هوا:۱۰۱٫۳ کیلو پاسکال
معادل ۷۵٫۹۷ سانتی‌متر جیوه
اوج:۴۱۶ کیلومتر (آمار ۱۲ آبان ۱۳۹۱)
حضیض:۴۰۹ کیلومتر (آمار ۱۲ آبان ۱۳۹۱)
زاویه شیب مدار:۵۱٫۶۴۱ درجه (آمار ۲۶ بهمن ۱۳۸۶)
ارتفاع عمومی مدار:۳۴۰٫۵ کیلومتر
میانگین سرعت:۲۷۷۴۳٫۸ کیلومتر بر ساعت
پیمودن یک مدار کامل:۹۱٫۳۴ دقیقه
گردش روزانه
در مدار زمین:
۱۵ دور (دقیقاً ۱۵٫۷۸ دور)
(آمار ۲۶ بهمن ۱۳۸۶)
تعداد روز در مدار:۶۱۹۱ روز (تا ۱۱ آبان ۱۳۹۴)
تعداد روز در مدار
با سرنشین:
۵۴۷۸ روز (تا ۱۱ آبان ۱۳۹۴)
تعداد گردش‌های مداری:۹۵۹۱۲ دور (تا ۱۱ آبان ۱۳۹۴)
پیکربندی ایستگاه فضایی بین‌المللی
ISS configuration 2017-06 en.svg
پیکربندی ایستگاه فضایی بین‌المللی تا ماه مه ۲۰۱۵

ایستگاه فضایی بین‌المللی (به انگلیسی: International Space Station) یک ایستگاه فضایی است که با مشارکت بیش از ۱۵ کشور ساخته می‌شود. این ایستگاه فضایی در مدار نزدیک زمین و در ارتفاع ۳۳۰ تا ۴۳۵ کیلومتری از سطح زمین در حرکت است. سرعت آن در مدار برابر ۲۷٬۷۰۰ کیلومتر بر ساعت است، که به این ترتیب روزی بیش از ۱۵ بار به دور سیاره زمین گردش می‌کند؛ این ایستگاه فضایی با مانورهای «تجدید ارتفاع» با استفاده از موتورهای زیوزدا (ماژول ایستگاه فضایی)، پیوسته مدار خود را در ارتفاع بین ۳۳۰ و ۴۳۵ کیلومتر (۲۰۵ و ۲۷۰ مایل)، حفظ می‌کند. این به معنی طی کردن ۱۵٫۵۴ مدار در روز است.[۱]

بیشتر بخش‌های اصلی این ایستگاه فضایی ساخته شده اما تا سال‌های پایانی دهه کنونی چند بخش جدید به آن افزوده خواهد شد. پس از تکمیل، ایستگاه فضایی بین‌المللی ۴۵۰ تُن وزن خواهد داشت، و ۱۲۰۰ متر مکعب فضای کار، پژوهش و زندگی برای فضانوردان فراهم خواهد آورد.[۲][۳] ایستگاه فضایی بین‌المللی سومین شیٔ نورانی در آسمان است که با چشم غیرمسلح دیده می‌شود.[۴]

این ایستگاه محصول همکاری مشترک سازمان ناسا، سازمان فضایی روسیه، سازمان فضایی اروپا،[۵][۶] سازمان فضایی ژاپن، و سازمان فضایی کانادا است. سازمان فضایی برزیل از طریق همکاری با ناسا با این برنامه مشارکت می‌کند. سازمان فضایی ایتالیا، هم به عنوان یک عضو فعال در سازمان فضایی اروپا، و هم بطور مستقل در برنامه ایستگاه فضایی مشارکت می‌کند. سازمان فضایی چین نیز علاقه خود را برای پیوستن به جمع مشارکت‌کنندگان، به ویژه از طریق همکاری با سازمان فضایی روسیه اعلام داشته‌است.[۷][۸]

ایستگاه فضایی بین‌المللی در حقیقت ترکیبی از چندین پروژه فضایی است که قبلاً توسط کشورهای مختلف برنامه‌ریزی شده بود. از جمله این برنامه‌ها می‌توان به ایستگاه فضایی میر-۲ (روسیه)، ایستگاه فضایی آزادی (آمریکاآزمایشگاه فضایی کلمبوس (اروپا) و آزمایشگاه فضایی کیبو (ژاپن) اشاره کرد.

ایستگاه فضایی بین‌المللی پس از ایستگاه‌های سالیوت، آلماز و میر روسیه، و ایستگاه اسکای‌لب آمریکا، نهمین ایستگاه فضایی سرنشین‌دار در مدار زمین است. آبان سال ۱۳۹۴ پانزدهمین سالگرد زندگی بی‌وقفهٔ فضانوردان در ایستگاه فضایی بین‌المللی بود. این ایستگاه رکورد ۱۰ سالهٔ زندگی و کار پیوستهٔ انسان‌ها در فضا را که متعلق به ایستگاه میر بود شکست. همچنین در این مدت رکورد طولانی‌ترین اقامت بی‌وقفه در فضا نیز که تا پیش از آن متعلق به ایستگاه میر بود، شکسته شد.[۹]

حضور فضانوردان در ایستگاه فضایی بین‌المللی از آغاز نخستین مأموریت در ۱۲ آبان ۱۳۷۹ تاکنون بدون وقفه ادامه داشته‌است.[۱۰] این ایستگاه در حال حاضر ظرفیت شش سرنشین دائمی را دارا است، اگرچه هنگام اتصال فضاپیماها و ورود اردوهای جدید، تعداد فضانوردان درون ایستگاه بطور موقت تا بیش از ۱۰ نفر هم افزایش می‌یابد. دو فروند فضاپیمای سایوز هر یک با ظرفیت ۳ نفر بطور دائمی برای تخلیه اضطراری ایستگاه در هنگام خطر به آن متصلند.[۲][۱۱][۱۲] در ابتدای کار ایستگاه، سرنشینان آن از سازمان‌های فضایی روسیه و آمریکا انتخاب می‌شدند، تا اینکه در ژوئیه ۲۰۰۶ یک فضانورد آلمانی سازمان فضایی اروپا، در قالب اردوی ۱۳ به ایستگاه فضایی بین‌المللی سفر کرد. تاکنون روی هم رفته فضانوردانی از ۱۷ کشور جهان در این ایستگاه اقامت کرده‌اند؛[۹] این تعداد شامل ۵ توریست فضایی نیز هست؛ انوشه انصاری، فضانورد ایرانی، در روز ۲۷ شهریور ۱۳۸۵ به ایستگاه فضایی بین‌المللی وارد شد و ۹ روز در آن اقامت داشت.[۱۳][۱۴]

در حال حاضر فضاپیماهای سایوز، پروگرس، فضاپیمای ترابری خودکار، فضاپیمای ترابری اچ-۲، فضاپیمای دراگن و فضاپیمای سیگنوس[۱۳][۱۵] مسئولیت رساندن سرنشین، خدمات و پشتیبانی را به ایستگاه فضایی بر عهده دارند. مأموریت‌های پشتیبانی شاتل فضایی در پی بازنشسته شدن شاتل‌ها در سال ۲۰۱۱ به پایان رسید.[۱۶] پس از بازنشستگی شاتل، فضاپیمای سایوز تنها وسیلهٔ سفر فضانوردان به ایستگاه فضایی بین‌المللی است.[۱۷] از فضاپیمای ترابری دراگن نه تنها برای فرستادن بار به ایستگاه، بلکه برای بازگرداندن بار و نتایج آزمایش‌ها از ایستگاه به زمین نیز استفاده می‌شود؛ دیگر فضاپیماهای ترابری به گونه‌ای طراحی شده‌اند که در راه بازگشت، به همراه بارِ خود –که عموماً زباله‌های ایستگاه است– در جو زمین بسوزند و از بین بروند.[۱۸][۱۹] تکمیل ساخت ایستگاه فضایی بین‌المللی برای پایان دهه جاری میلادی برنامه‌ریزی شده‌است. تخمین زده می‌شود که جمع هزینه‌های این ایستگاه از آغاز ساخت تا پایان بیش از ۱۰۰ میلیارد یورو باشد.[۶] به این ترتیب، ایستگاه فضایی بین‌المللی پرهزینه‌ترین دستگاه ساخته شده در طول تاریخ بشر است.[۱۰] مالکیت و حق استفاده از ایستگاه در پیمان‌نامه‌های بین کشوری تشریح شده‌است.[۲۰] ایستگاه بین‌المللی فضایی بطور کلی شامل دو بخش است: بخش روسی مداری، و بخش آمریکایی مداری. فضاپیماهای کشورهای دیگر به یکی از این دو بخش متصل می‌شوند و همه فضانوردان بر اساس پیمان‌نامه‌های همکاری چندجانبه از این دو بخش استفاده می‌کنند. تا سال ۱۳۹۳ (ژانویه ۲۰۱۴) سازمان ناسا به نگهداری بخش مداری آمریکایی تا سال ۲۰۲۴ متعهد شده بود.[۲۱][۲۲] سازمان فضایی روسیه از ادامه کار ایستگاه فضایی بین‌المللی تا سال ۲۰۲۴ حمایت کرده، و در صورت عدم تمایل آمریکا به ادامه فعالیت مشترک پس از آن تاریخ، طرحی برای استفاده از بخش مداری روسی در ساخت ایستگاه جدیدی به نام OPSEK درنظر دارد.[۲۳] ایستگاه فضایی بین‌المللی معمولاً با مخفف نام انگلیسی آن یعنی ISS نامیده می‌شود.

ویژگی‌ها و اهداف[ویرایش]

تریسی کالدول در کوپولا

ایستگاه فضایی بین‌المللی تشکیلات فضایی و سرنشین‌دار بزرگی است که در مدار نزدیک زمین قرار دارد. این ایستگاه از چندین بخش تشکیل شده که توسط کشورهای مختلف ساخته شده‌اند و تکمیل آن تا سال ۲۰۱۵ ادامه خواهد داشت. اولین بخش ایستگاه در ۲۹ آبان ۱۳۷۷ (۲۰ نوامبر ۱۹۹۸) به مدار زمین پرتاب شد، و دو سال بعد در ۱۲ آبان ۱۳۷۹ (۲ نوامبر ۲۰۰۰) با ورود اولین اردوی فضانوردان، استفاده مفید از ایستگاه آغاز گشت. علاوه بر خودِ ایستگاه مداری، تشکیلات زمینی کنترل پرواز در کشورهای مختلف، عملیات ایستگاه فضایی را زیر نظر دارند.

کاربردهای اصلی ایستگاه فضایی بین‌المللی عبارتند از:[۲۴]

  • آزمایشگاه فضایی برای انجام پژوهش‌های نوین، پژوهش‌ها و آزمایش‌هایی که انجام آن‌ها روی زمین به علت وجود جاذبه ممکن نیست یا با دشواری‌هایی همراه است؛[۲۵]
  • رصدخانه دائمی در مدار زمین، برای رصد کردن زمین، خورشید، منظومه شمسی و کیهان؛
  • مرکز حمل و نقل مداری که می‌توان در آن فضاپیماها، بار و قطعات گوناگون را گردآوری کرد، و پس از مونتاژ و تنظیم، آن‌ها را به مقصد مورد نظر فرستاد؛
  • مرکز سرویس برای تعمیر، نگهداری، و تنظیم فضاپیماها و ماهواره‌ها در مدار زمین؛
  • مرکز ساخت و ساز برای مونتاژ و نصب سازه‌های بزرگ فضایی؛
  • مرکز همکاری پژوهشی با بخش خصوصی در زمینه مهندسی هوافضا با هدف پیشبرد فناوری فضایی و تشویق بیشتر بخش خصوصی به سرمایه‌گذاری در آن.

عمر عملیاتی ایستگاه فضایی بین‌المللی که برای استفاده تا سال ۲۰۲۰ میلادی برنامه‌ریزی شده‌بود احتمالاً تا بیش از نیمهٔ دههٔ آینده نیز ادامه خواهد یافت. با این حال، این ایستگاه فضایی حتی دو سال پیش از تکمیل یعنی در سال ۲۰۰۸، رکورددار بزرگترین ایستگاه ساخته شده در مدار زمین در طول تاریخ فضانوردی شد. تخمین زده می‌شود که جمع هزینه‌های این ایستگاه از آغاز ساخت تا پایان بیش از ۱۰۰ میلیارد یورو باشد.[۶] به این ترتیب، ایستگاه فضایی بین‌المللی پرهزینه‌ترین دستگاه ساخته شده در طول تاریخ بشر است.[۱۰] مشارکت‌کنندگان در این پروژه، چنین هزینه گزافی را برای رسیدن به دستاوردهایی بزرگ و درازمدت پرداخت می‌کنند؛ مشارکت در این پروژه باعث می‌شود که در این کشورها بودجه کلانی برای پیشبرد تحقیقات و تولید با استفاده از فناوری‌های پیشرفته اختصاص یابد، «دانش و اطلاعات» به عنوان زیرساختار توسعه آن جوامع نهادینه شود، و تبادل دانش، تجربه، فرهنگ و فناوری از طریق مشارکت در این برنامه بین‌المللی بدست آید.[۶]

کشورهای سازنده بخش‌های اصلی ایستگاه (تا پایان پروژه) عبارتند از: روسیه (۶ بخش)، آمریکا (۴ بخش)، اروپا (۳ بخش)، ژاپن (۲ بخش)، کانادا (۲ بخش)، ایتالیا بطور مستقل (یک بخش)، به همراه دو بخش که یکی ساخت مشترک آمریکا و روسیه و دیگری ساخت مشترک اروپا و ایالات متحده آمریکا است.

شاتلهای فضایی، سایوز و پروگرس از آغاز برای حمل و نقل فضانوردان و بار به ایستگاه فضایی بین‌المللی استفاده می‌شدند. فضاپیمای ترابری خودکار از ۱۹ اسفند ۱۳۸۶ به ناوگان فضاپیماهای پشتیبانی ایستگاه پیوست. ناوگان شاتلهای فضایی ناسا که از آغاز برنامه نقش عمده‌ای در ساخت و پشتیبانی ایستگاه فضایی داشت، در پی فاجعه انفجار فضاپیمای کلمبیا در ژوئیه ۲۰۱۱ بازنشسته شد. فضاپیمای ترابری ژاپنی اچ-۲ از سپتامبر ۲۰۱۱ به ناوگان پشتیبانی ایستگاه پیوست. جدیدترین فضاپیمای پشتیبانی ایستگاه، دراگن است که توسط شرکت خصوصی اسپیس‌اکس ساخته می‌شود.

تولد ایستگاه فضایی بین‌المللی[ویرایش]

زاریا (وسط)، یونیتی (بالا) و زیوزدا (پایین) هستهٔ قابل سکونت ایستگاه فضایی بین‌المللی را تشکیل دادند.

سنگ بنای ایستگاه فضایی بین‌المللی، بخش «زاریا» نام دارد و ساخت روسیه است. با پرتاب زاریا در روز ۲۹ آبان ۱۳۷۷ (۲۰ نوامبر ۱۹۹۸) توسط پروتون از پایگاه فضایی بایکونور به مدار زمین، ایستگاه فضایی عملاً متولد شد.

بخش‌های دوم و سوم ایستگاه بخش آمریکایی یونیتی و بخش روسی زیوزدا هستند که به ترتیب در ۱۵ آذر ۱۳۷۷ (۶ دسامبر ۱۹۹۸) و ۲۲ تیر ۱۳۷۹ (۱۲ ژوئیه ۲۰۰۰) پس از پرتاب به مدار زمین، به بخش زاریا متصل شدند. اتصال این سه بخش به هم امکان زندگی و کار انسان را در ایستگاه فضایی بین‌المللی بوجود آورد، و متعاقب آن اردوی یکم فضانوردان شامل دو کیهان‌نورد روسی و یک فضانورد آمریکایی در روز ۱۲ آبان ۱۳۷۹ (۲ نوامبر ۲۰۰۰) وارد ایستگاه شدند.

ساخت و مونتاژ ایستگاه در فضا[ویرایش]

ساخت و مونتاژ ایستگاه فضایی بین‌المللی، چالش و فرایند بسیار پیچیده‌ای در زمینه مهندسی هوافضا است. در سال ۱۳۷۷ (۱۹۹۸ میلادی)، مونتاژ ایستگاه با قرار دادن بخش زاریا توسط پروتون در مدار زمین آغاز شد. دو هفته بعد، بخش یونیتی در مأموریت اس‌تی‌اس-۸۸ توسط شاتل فضایی اندور در مدار زمین قرار گرفت و به زاریا متصل گردید.

تقریباً یک سال و نیم پس از اتصال بخش یونیتی، بخش سرویس زیوزدا به ایستگاه اضافه شد. زیوزدا یکی از بخش‌های اصلی ایستگاه فضایی است، که با پیوستن آن به دو بخش قبلی، امکان زندگی، کار و پژوهش سه فضانورد در ایستگاه بوجود آمد.

پایان فرایند ساخت ایستگاه برای سال ۱۳۸۹ (۲۰۱۰ میلادی) برنامه‌ریزی شده‌است. پس از تکمیل، ایستگاه فضایی، نزدیک به ۱۲۰۰ متر مکعب فضا برای زندگی، کار و پژوهش فضانوردان، دارا خواهد بود.[۲]

اردوهای ایستگاه فضایی بین‌المللی[ویرایش]

یوری گیدزنکو، ویلیام شپرد و سرگئی کریکالیوف، فضانوردان ارودی ۱ ایستگاه فضایی بین‌المللی

به گروهی از فضانوردان که به ایستگاه فضایی سفر و برای مدت و اهداف مشخصی در آن اقامت می‌کنند، «اردو» (به انگلیسی: Expedition) گفته می‌شود. هر اردو شامل سه فضانورد است و معمولاً حدود ۶ ماه به طول می‌انجامد. نام‌گذاری اردوها با شماره و به صورت «اردوی [شمارهٔ اردو]» انجام می‌شود.

بسته به توافق و برنامه، برخی از اردوها از فضاپیمای سایوز و برخی از شاتل فضایی برای رفتن به ایستگاه استفاده می‌کنند. در پایان هر اردو، سه فضانورد سوار بر فضاپیمای سایوز به زمین بازمی‌گردند و جای خود را به اردوی بعدی می‌دهند.

ایستگاه فضایی بین‌المللی تا تاریخ ۲۳ فروردین ۱۳۸۷ (۱۱ آوریل ۲۰۰۸) میزبان ۱۵۸ فضانورد بوده، و با این وصف رکورددار بیشترین تعداد مسافر در تاریخ فضانوردی است. با توجه به اینکه برخی فضانوردان بیش از یک بار به ایستگاه سفر کرده‌اند، تعداد کل بازدیدها از ایستگاه با احتساب تکرار به ۲۱۳ نوبت بالغ می‌شود. در مقابل، ایستگاه فضایی میر میزبان ۱۳۷ بازدید بوده‌است.

بخش‌های پُرهوای ایستگاه[ویرایش]

ایستگاه فضایی بین‌المللی پس از تکمیل دارای ۱۴ بخش خواهد بود که دارای فشار هوا و مناسب برای زندگی و کار انسان هستند. کل این مجموعه فضای مفیدی معادل ۱۲۰۰ متر مکعب فراهم خواهد آورد.[۲] این بخش‌ها شامل چندین آزمایشگاه، بخش‌های ویژه اتصال، محفظه‌های هوایی و واحدهای مسکونی هستند. بخش‌های ایستگاه فضایی بین‌المللی بوسیله شاتل فضایی، پروتون یا موشک سایوز به مدار زمین فرستاده می‌شوند.

جدول زیر شامل لیستی از تمام بخش‌های پُرهوای ایستگاه فضایی بین‌المللی است. این لیست هم بخش‌های فعلی در مدار زمین را دارا است، هم بخش‌هایی که قرار است تا سال ۲۰۱۰ و تکمیل ایستگاه به فضا فرستاده شوند.

بخش پرتاب پرتابه اتصال جرم کاربرد تصویر
(به تنهایی)
تصویر
(در ایستگاه)
زاریا
Flag of Russia.svg
۲۹ آبان ۱۳۷۷ پروتون ندارد
(نخستین بخش)
۱۹۳۲۳ کیلوگرم تأمین نیروی الکتریکی، فضای انبار، نیروی پیشرانه، و ناوبری در مراحل آغازین فرایند مونتاژ ایستگاه. در حال حاضر از بخش درونی آن به عنوان انبار و از مخازن بیرونی آن برای ذخیره سوخت استفاده می‌شود. Zarya from STS-88.jpg Zarya from STS-88.jpg
یونیتی
(گره ۱)
ایالات متحده آمریکا
۱۳ آذر ۱۳۷۷ شاتل (اس‌تی‌اس-۸۸) ۱۶ آذر ۱۳۷۷ ۱۱۶۱۲ کیلوگرم نخستین بخش آمریکایی ایستگاه، که با اتصال به زاریا امکان پهلو گرفتن بخش‌های دستینی، گره ۳، محفظه هوایی کوئست و بخش Z0 از سازهٔ ستون‌فقراتی را در ایستگاه فراهم کرد. ISS Unity module.jpg Sts088-703-019e.jpg
زیوزدا
Flag of Russia.svg
۲۲ تیر ۱۳۷۹ پروتون ۵ مرداد ۱۳۷۹ ۱۹۰۵۱ کیلوگرم بخش خدمات ایستگاه، تأمین‌کننده سامانه‌های پشتیبانی زیست، فضای کار و زندگی برای سرنشینان، سامانه‌های کنترل جهت و مدار پرواز. با اتصال زیوزدا به دو بخش پیشین، برای نخستین بار امکان زندگی و کار فضانوردان در ایستگاه فضایی بین‌المللی فراهم شد. همچنین، زیوزدا دارای چند دریچه برای اتصال سایوز، پروگرس، و فضاپیمای ترابری خودکار است. ISS Zvezda module-small.jpg Unity-Zarya-Zvezda STS-106.jpg
دستینی ایالات متحده آمریکا ۱۹ بهمن ۱۳۷۹ شاتل (اس‌تی‌اس-۹۸) ۲۲ بهمن ۱۳۷۹ ۱۴۵۱۵ کیلوگرم واحد تحقیقاتی اصلی آمریکا در ایستگاه؛ تأمین‌کننده سامانه‌های پشتیبانی زیست و فضای زندگی و کار برای سرنشینان ISS Destiny Lab.jpg Sts098-312-0020.jpg
کوئست ایالات متحده آمریکا
Flag of Russia.svg
۲۱ تیر ۱۳۸۰ شاتل (اس‌تی‌اس-۱۰۴) ۲۳ تیر ۱۳۸۰ ۶۰۶۴ کیلوگرم محفظهٔ هوایی اصلی در ایستگاه فضایی، که از آن برای آماده‌سازی فضانوردان برای راهپیمایی فضایی استفاده می‌شود. محفظه هوایی مشترک کوئست دارای سامانه‌های سازگار با لباس فضایی ارولان روسی و لباس فضایی ای‌ام‌یو آمریکایی است. فضانوردان پیش از آغاز راهپیمایی فضایی، مدتی را در این بخش می‌گذرانند تا بدن خود را به فشار هوای متفاوت از سایر بخش‌های ایستگاه عادت دهند، و با تنفس اکسیژن خالص، میزان گاز نیتروژن محلول در خون را تا حد ممکن پایین می‌آورند. ISS Quest airlock.jpg ISS on 20 August 2001.jpg
پیرس
Flag of Russia.svg
۲۳ شهریور ۱۳۸۰ موشک سایوز ۲۵ شهریور ۱۳۸۰ ۳۶۳۰ کیلوگرم بخش اتصالی پیرس چندین دریچه برای اتصال فضاپیماهای سایوز و پروگرس به ایستگاه دربردارد. فضانوردان می‌توانند از این بخش به عنوان محفظهٔ هوایی برای راهپیمایی فضایی با لباس فضایی اورلان روسی استفاده کنند. پیرس دارای فضای کافی برای ذخیره‌سازی لباس‌های اورلان است. Pirs docking module taken by STS-108.jpg S108e5628.jpg
هارمونی (گره ۲) ایالات متحده آمریکا یکم آبان ۱۳۸۶ شاتل (اس‌تی‌اس-۱۲۰) ۲۳ آبان ۱۳۸۶ ۱۳۶۰۸ کیلوگرم بخش هارمونی (گره ۲) مرکز ابزار و ادوات مورد نیاز ایستگاه است. چهار قفسه در گره ۲ شامل زیرساختارهای الکترونیکی مرکزی برای تبادل داده در سراسر ایستگاه هستند. این بخش همچنین شامل ۶ دریچه استاندارد اتصال است که برای پهلو گرفتن بخش‌های غیر روسی به ایستگاه استفاده می‌شود. آزمایشگاه کلمبوس به یکی از این دریچه‌ها متصل شده‌است. در میان دریچه‌های هارمونی، فضایی به قطر ۱۲۷ سانتی‌متر برای عبور فضانوردان بین ایستگاه و بخش‌های متصل شده و نقل و انتقال محموله‌های بسته‌بندی شده وجود دارد. بخش پشتیبانی چندمنظوره و آزمایشگاه کیبو پس از پرتاب به مدار زمین به هارمونی متصل خواهند شد. Harmony Relocation.jpg ISS seen from STS-122.jpg
کلمبوس Flag of Europe.svg ۱۸ بهمن ۱۳۸۶ شاتل (اس‌تی‌اس-۱۲۲) ۲۰ بهمن ۱۳۸۶ ۱۲۸۰۰ کیلوگرم واحد تحقیقاتی اصلی اروپا در ایستگاه؛ این بخش مجهز به ۱۰ قفسه با ابعاد استاندارد است. هرکدام از این قفسه‌ها با اندازه‌ای به بزرگی یک اتاقک تلفن، قابلیت پشتیبانی یک آزمایشگاه مستقل به همراه تمام تجهیزات آن را دارا است. این تجهیزات شامل واحدهای نیرودهنده، خنک‌کننده، و سیستم‌های ارتباط داده‌ای و ویدئویی به پژوهشگران مستقر در زمین است. S122e007873.jpg STS-122 ISS Flyaround.jpg
کیبو (۱) Flag of Japan.svg ۲۱ اسفند ۱۳۸۶ شاتل (اس‌تی‌اس-۱۲۳) ۲۲ اسفند ۱۳۸۶ ۴۲۰۰ کیلوگرم اولین قسمت از آزمایشگاه فضایی کیبو «بخش پشتیبانی آزمایش‌ها» (JEM-ELM) نام دارد، و شامل انبار و قفسه‌بندی لازم برای ابزار و وسایل آزمایشگاهی است. در بیرون این قسمت چند فضا برای انجام آزمایش‌ها در خلاء فضا درنظر گرفته شده‌است. ELMcroppedIsolated.jpg STS-123 ISS Flyaround cropped.jpg
کیبو (۲) Flag of Japan.svg ۵ خرداد ۱۳۸۷ شاتل (اس‌تی‌اس-۱۲۴) نامشخص ۱۵۹۰۰ کیلوگرم قسمت دوم آزمایشگاه فضایی کیبو «بخش آزمایشگاهی» (ELM-PM) نام دارد. این بخش دارای فشار هوا است و فضانوردان می‌توانند در آن به انجام آزمایش‌ها مورد نظر بپردازند. این بخش مجهز به ۱۰ قفسه با ابعاد استاندارد است. ISS Kibo module.jpg
بخش آزمایشگاهی چندمنظوره Flag of Russia.svg آذر ۱۳۸۹ پروتون نامشخص ۲۱۳۰۰ کیلوگرم هنوز پرتاب نشده واحد تحقیقاتی اصلی روسیه در ایستگاه؛ تأمین‌کننده سامانه‌های پشتیبانی زیست و فضای زندگی، کار و استراحت برای سرنشینان، به اضافه دریچه‌های اتصال برای نقل و انتقال بار. این بخش همچنین مجهز به تجهیزات کنترل جهت ایستگاه فضایی است که می‌توان از آن‌ها در صورت بروز مشکل در سامانه‌های اصلی استفاده کرد. MLM - ISS module.jpg
بخش باری اتصالی ۱
Flag of Russia.svg
۲۰۱۰ شاتل (اس‌تی‌اس-۱۳۱) نامشخص ۴۷۰۰ کیلوگرم از این بخش در ابتدا برای حمل بار و ابزارآلات از زمین به ایستگاه، و سپس بیشتر به عنوان انبار استفاده خواهد شد. در راستای تعهدات طرف آمریکایی در چهارچوب برنامه ایستگاه فضایی بین‌المللی، حمل این بخش به مدار زمین توسط ناسا (به جای روسیه) انجام خواهد گرفت.
گره ۳
ایالات متحده آمریکا
ایتالیا
اتحادیه اروپا
۱۹ بهمن ۱۳۸۸ شاتل (اس‌تی‌اس-۱۳۰) یونیتی ۱۳۰۰۴ کیلوگرم گره ۳ آخرین بخش آمریکایی ایستگاه است. این بخش دارای سامانه‌های پیشرفته برای پشتیبانی زیست، از جمله دستگاه تولیدکننده اکسیژن و بازیافت آب است. گره ۳ دارای چندین دریچه پهلوگیری است که برای اتصال فضاپیماهای سرنشین‌دار و باری مورد استفاده قرار خواهد گرفت. بخش کوپولا نیز به گره ۳ متصل شده‌است. Iss Node 3.JPG STS-130 PMA-3 relocation 3.jpg
کوپولا
Flag of Europe.svg
۱۹ بهمن ۱۳۸۸ شاتل (اس‌تی‌اس-۱۳۰) گره ۳ ۱۸۰۰ کیلوگرم کوپولا بخشی است که به عنوان برج مراقبت و نظارت ایستگاه عمل می‌کند. پنجره‌های بزرگ این بخش به فضانوردان امکان تماشای مستقیم عملکرد بازوهای روباتی و مانور فضاپیماهای نزدیک به ایستگاه را می‌دهد. از کوپولا برای رصد کردن زمین نیز استفاده می‌گردد. پنجره‌های کوپولا دارای درپوش‌های ویژه‌ای هستند که آن‌ها را از صدمهٔ خرده‌شهاب‌سنگ‌ها محافظت خواهند کرد. Cupola at KSC.jpg ISS STS130 Cupola view of Algeria coast.jpg
بخش باری اتصالی ۲
Flag of Russia.svg
نامشخص موشک سایوز نامشخص هنوز پرتاب نشده! طرح ساخت این بخش به‌تازگی توسط روسکاسموس ارائه شده، و به احتمال زیاد دارای کاربردی شبیه بخش باری اتصالی ۱ خواهد بود.

در شمارش بخش‌ها، دو قسمت آزمایشگاه کیبو یه عنوان یک بخش شمرده شده‌اند.

سامانه‌های اصلی ایستگاه فضایی بین‌المللی[ویرایش]

منبع اصلی تأمین نیرو در ایستگاه فضایی بین‌المللی، انرژی خورشیدی است.

منبع نیرو[ویرایش]

منبع نیروی الکتریکی ایستگاه فضایی بین‌المللی انرژی خورشیدی است. انرژی خورشیدی ابتدا فقط توسط صفحات خورشیدی متصل به بخش‌های روسی ایستگاه یعنی زاریا و زیوزدا تأمین می‌شد. بخش‌های روسی ایستگاه از جریان برق مستقیم ۲۸ ولتی بهره می‌برند. (سامانه برق فضاپیمای شاتل نیز همینگونه است)

آرایه صفحات خورشیدی دارای طولی معادل ۵۸ متر و سطحی برابر ۳۷۵ متر مربع است. این صفحات با حرکت‌های دورانی و چرخشی، خود را برای گرفتن بیشترین مقدار نور از خورشید تنظیم می‌کنند.

پس از توسعه ایستگاه و نصب بخش‌ها و سازه‌های جدید، صفحات خورشیدی متصل به ستون فقرات ایستگاه، با تولید برق مستقیم ۱۳۰ تا ۱۸۰ ولتی، برق مورد نیاز بخش‌های دیگر را با تأمین می‌کنند. این برق پس از دریافت از سامانه انرژی خورشیدی، در سراسر ایستگاه با ولتاژ ۱۶۰ ولت (مستقیم) پخش می‌شود و در صورت نیاز به صورت ۱۲۴ ولت (مستقیم) در اختیار فضانوردان قرار می‌گیرد. تبادل نیروی الکتریکی با توان و ولتاژ متفاوت بین بخش‌های مختلف ایستگاه به‌وسیله ترانسفورماتور انجام می‌شود.

در تاریخ ۲۰ مارس ۲۰۰۹ میلادی، قسمت چهارم و نهایی صفحات خورشیدی ایستگاه (حاوی دو بال) با هدایت کنترل‌کننده‌های زمینی باز و آماده کار شدند. به این ترتیب ایستگاه بین‌المللی فضایی، ده سال پس از شروع عملیات مونتاژ، با نصب آخرین صفحات خورشیدی به حداکثر ظرفیت الکتریکی خود دست‌یافت.[۲۶]

پشتیبانی زندگی[ویرایش]

در ایستگاه فضایی بین‌المللی، نظارت بر فشار هوا، میزان اکسیژن، آب، و اطفاء حریق توسط «سامانه کنترل محیط و پشتیبانی زندگی» انجام می‌گیرد. کنترل هوای قابل تنفس (اتمسفر) داخل ایستگاه فضایی بین‌المللی مهم‌ترین وظیفه این سامانه‌است. وظیفه تولید اکسیژن در ایستگاه به عهده دستگاهی موسوم به الکترون است. الکترون نه تنها هوای درون ایستگاه را تصفیه می‌کند، بلکه با روش الکترولیز اکسیژن و هیدروژن را از آب مصرف‌شده در ایستگاه جدا کرده، اکسیژن را به اتمسفر ایستگاه برمی‌گرداند و هیدروژن را در فضا تخلیه می‌نماید. روش اصلی تصفیه هوای داخل ایستگاه در دستگاه الکترون، استفاده فیلترهایی مجهز به زغال فعال است.[۲۷]

در کنار آن، تمام آب مصرف شده در ایستگاه ذخیره و بازیابی می‌شود. فاضلاب ایستگاه شامل پسماند و پیشاب سرنشینان از دستشویی‌ها و حمام، و بخار آب داخل ایستگاه جمع‌آوری شده، پس از تصفیه مجدداً آب خالص از آن بازیافته می‌شود و مورد استفاده قرار می‌گیرد.

فضای داخلی ایستگاه فضایی بین‌المللی نسبت به ایستگاه روسی میر بسیار بزرگ‌تر و کم‌سروصداتر است در آی‌اس‌اس پنجره‌های بیشتری نیز برای مشاهده زمین و محیط فضا جاسازی شده‌اند.[۲۸]

کنترل جهت[ویرایش]

جهت پرواز مداری ایستگاه فضایی بین‌المللی توسط یکی از دو سامانه موجود کنترل می‌شود. یکی از سامانه‌ها دارای چندین ژیروسکوپ کنترل‌کنندهٔ اندازهٔ حرکت زاویه‌ای (CMG) است که در حالت عادی جهت حرکت ایستگاه را تنظیم می‌کند. در صورتی که اشباع شدن سامانه CMG آن را از انجام کار بازدارد، سامانه کنترل جهت روسی، به‌طور خودکار کنترل ایستگاه را در دست می‌گیرد. این سامانه با استفاده از پیشرانه‌های موجود در بخش‌های روسی، جهت ایستگاه را ثابت نگه می‌دارد.

کنترل ارتفاع[ویرایش]

ارتفاع ایستگاه فضایی بین‌المللی از سطح زمین بین ۳۳۰ کیلومتر تا ۴۳۵ کیلومتر در تغییر است. ارتفاع پایین‌تر معمولاً برای اتصال شاتل با محموله سنگین، و ارتفاع حداکثر ۴۳۵ کیلومتر برای اتصال فضاپیمای پشتیبانی سایوز حامل سرنشینان به ایستگاه مناسب است. به دلیل نیروی گرانش زمین، و اصطکاک جزئی ولی دائمی با اتمسفر بسیار رقیق لایه‌های فوقانی جو، ارتفاع ایستگاه فضایی بین‌المللی حدود ۲٫۵ کیلومتر در ماه کاهش می‌یابد.[۲۹] به همین علت ارتفاع ایستگاه باید چندین مرتبه در سال اصلاح گردد.[۳۰] این اصلاح ارتفاع توسط پیشرانه‌های موجود در بخش زیوزدا، و همچنین پس از اتصال شاتل، پروگرس و فضاپیمای ترابری خودکار با استفاده از پیشرانه‌های آن‌ها میسر است. اصلاح ارتفاع حدود ۳ ساعت (دو گردش مداری دور زمین) به طول می‌انجامد.[۳۰]

تاریخچه[ویرایش]

ایستگاه فضایی سالیوت-۷ یکی از ایستگاه‌های نسل دوم شوروی بود.

ایستگاه‌های فضایی شوروی[ویرایش]

پیشینه ایستگاه فضایی بین‌المللی به دوران جنگ سرد و مسابقه فضایی بازمی‌گردد. در این دوره، اتحاد شوروی با ساخت سه نسل ایستگاه فضایی در مدار زمین، پیشگام سکونت دائمی انسان در فضا و استفاده از فناوری فضایی بود.[۳۱] از سال ۱۹۷۱ تا ۱۹۸۲ میلادی شوروی با موفقیت هفت ایستگاه فضایی نسل اول و دوم سالیوت و آلماز را در مدار زمین ساخته و راه‌اندازی کرد. در سال ۱۹۸۶ نسل سوم ایستگاه فضایی یعنی ایستگاه میر در مدار زمین ساخته شد. بر اساس برنامه‌ریزی سازمان فضایی شوروی، این روند با ساخت ایستگاه فضایی عظیم نسل چهارم با نام میر-۲ در سال ۱۹۹۳ وارد مرحله جدیدی می‌شد.[۳۲] اما با فروپاشی شوروی و بحران مالی دهه ۱۹۹۰ در روسیه، ابعاد برنامه ایستگاه میر-۲ به دلیل کسر بودجه کاهش یافت، و با لغو پروازهای شاتل بوران، پروژه ایستگاه فضایی میر-۲ با تاخیرات پی در پی مواجه گشت. در سال ۱۹۹۲ سازمان‌های فضایی روسیه و اروپا مذاکراتی برای همکاری مشترک در ساخت و توسعه ایستگاه فضایی میر-۲ آغاز کردند.[۳۲]

طرح ایستگاه فضایی آزادی[ویرایش]

در همین حال در دهه ۱۹۸۰ میلادی، ایالات متحده برای رقابت با ایستگاه‌های فضایی سالیوت و میر شوروی، طرحی برای ساخت ایستگاه فضایی در دست داشت. این طرح رسماً در ۵ بهمن ۱۳۶۲ (۲۵ ژانویه ۱۹۸۴) توسط رونالد ریگان رئیس‌جمهور وقت ایالات متحده اعلام شد.[۳۳] در سال ۱۹۸۸، ریگان رسماً این ایستگاه را «آزادی» نام نهاد. ایستگاه فضایی آزادی دومین برنامه ساخت ایستگاه فضایی آمریکا پس از اسکای‌لب بود، و پس از فشار کنگره و کاهش بودجه اولیه، مبلغ ۱۲٫۲ میلیارد دلار در مارس ۱۹۸۷ برای توسعه برنامه تخصیص داده شد. علی‌رغم برنامه‌ریزی‌های اولیه، با کاهش پی در پی بودجه و افزایش هزینه‌های مورد نیاز برای ساخت ایستگاه، ناسا چندین بار وادار به بازبینی ابعاد طرح شد و برنامه ساخت ایستگاه با تأخیر طولانی مواجه گشت. فاجعه انفجار فضاپیمای چلنجر، افزایش هزینه‌های عملیاتی ناوگان شاتل فضایی، و تردید نسبت به امنیت پرواز آن، ضربه دیگری بر این پروژه وارد کرد. سر انجام در سال ۱۹۹۰ برنامه ساخت ایستگاه فضایی آزادی زیر بار خود کمر خم کرد و علی‌رغم تلاش ناسا برای بازبینی آن، بطور کلی لغو شد.[۳۴][۳۵]

همکاری پس از پایان جنگ سرد[ویرایش]

پس از پایان جنگ سرد و از سال ۱۹۹۰، دولت‌های آمریکا و روسیه گفتگوهایی را برای تلفیق تلاش‌هایشان برای ساخت ایستگاه فضایی جدید آغاز کردند. در تابستان سال ۱۹۹۳ دولت‌های آمریکا و روسیه برای تلفیق پروژه ایستگاه‌های فضایی میر-۲ و آزادی به توافق اولیه دست یافتند. سپس موافقت شد که برنامه‌های ساخت ابزار و آزمایشگاه‌های فضایی ژاپن و سازمان فضایی اروپا نیز در این برنامه گنجانده شود. با ترکیب طرح‌های پیشین، توافق نهایی برای ساخت ایستگاه فضایی در ۱۰ آبان ۱۳۷۲ (یکم نوامبر ۱۹۹۳) حاصل شد. طرح ایستگاه فضایی بین‌المللی نسبت به طرح‌های پیشین دارای مزایای زیادی بود که از جمله آن‌ها می‌توان به حجم مفید بیشتر ایستگاه، استفاده از تجربه طولانی روسیه در توسعه ایستگاه‌های فضایی، آماده‌سازی سریع‌تر، و توزیع هزینه‌های پروژه بین همه مشارکت‌کنندگان اشاره کرد. قرار بر این شد که از تمام برنامه‌های کشورهای مشارکت‌کننده در ساخت و توسعه ایستگاه فضایی بین‌المللی استفاده شود. این برنامه‌ها شامل ایستگاه فضایی میر-۲، ایستگاه فضایی آزادی، آزمایشگاه کلمبوس، و آزمایشگاه کیبو بود.[۳۴][۳۵]

پروژه شاتل-میر[ویرایش]

در همین حال و به منظور آماده‌سازی، هماهنگی سامانه‌ها و آشنایی کارشناسان طرفین پروژه با سامانه‌های فضایی یکدیگر، توافق‌نامه دیگری با هدف «همکاری بین ایالات متحده آمریکا و فدراسیون روسیه برای استفاده از فضا برای مقاصد صلح‌آمیز» در سال ۱۹۹۲ بین بوریس یلتسین و جرج بوش (پدر) امضاء شد که برنامه شاتل-میر نام دارد. اجرای این توافق‌نامه گامی عمده پیش از ساخت ایستگاه بین‌المللی بود و به «فاز یکم» مشهور است («فاز دوم» ساخت ایستگاه بین‌المللی است).

برنامه شاتل-میر امکان سفر فضانوردان آمریکایی به ایستگاه فضایی میر، توسعه سامانه‌های لازم برای اتصال شاتل فضایی آمریکا به ایستگاه، و امکان پرواز فضانوردان روسی با شاتل فضایی را فراهم آورد. همچنین کارشناسان آمریکایی به دانش و تجربه روسیه در زمینه اقامت بلندمدت انسان در فضا دسترسی پیدا کردند. در پی این موافقت‌نامه، فضاپیماهای شاتل آمریکایی در ۱۲ نوبت بین سال‌های ۱۹۹۴ تا ۱۹۹۸ به ایستگاه فضایی میر متصل شدند. این دومین همکاری فضایی آمریکا و روسیه پس از پروژه آپولو-سایوز محسوب می‌شود، و سابقه همکاری دو کشور در آن پروژه، در تسریع روند برنامه شاتل-میر بی‌تاثیر نبوده‌است.[۳۶][۳۷][۳۸]

مشارکت اروپا و ژاپن[ویرایش]

سازمان فضایی اروپا دارای تجربه در ساخت ایستگاه فضایی نیست، اما فضانوردان این سازمان چندین بار در قالب برنامه‌های مشترک به ایستگاه فضایی میر سفر کرده بودند. آزمایشگاه فضایی کلمبوس در اصل به عنوان یک آزمایشگاه مداری مستقل طراحی شده بود. پس از ورود اروپا به پروژه ایستگاه فضایی بین‌المللی، تغییراتی در طراحی آزمایشگاه داده، قابلیت اتصال به ایستگاه در آن تعبیه شد. مشارکت دیگر اروپا در این پروژه، فرستادن فضاپیمای ترابری خودکار توسط موشک پرقدرت آریان-۵ به ایستگاه فضایی است.

سازمان فضایی ژاپن نیز به مانند همتای اروپایی خود، آزمایشگاه فضایی کیبو را به عنوان آزمایشگاه مداری مستقل طراحی کرده بود. آن طرح نیز مانند طرح کلمبوس تبدیل به یکی از بخش‌های ایستگاه فضایی بین‌المللی شد.

نام‌گذاری ایستگاه فضایی[ویرایش]

این ایستگاه بطور رسمی با نام «ایستگاه فضایی بین‌المللی» شناخته می‌شود. در آغاز پروژه، ناسا نام «آلفا» را برای ایستگاه پیشنهاد کرده بود،[۳۹] اما این نام با مخالفت سازمان فضایی روسیه مواجه و کنار گذاشته شد. از نظر روس‌ها، حرف «آلفا» به عنوان «نخستین» حرف الفبای یونانی بیانگر گام «نخست» در ساخت ایستگاه‌های فضایی است، در حالیکه این پروژه به عنوان نسل سوم ایستگاه‌های فضایی شناخته می‌شود. سازمان فضایی روسیه نام «آتلانت» را پیشنهاد کرد که آن هم به علت شباهت به نام فضاپیمای آتلانتیس، مورد قبول واقع نشد.[۴۰][۴۱] معدودی از منابع آمریکایی هنوز نام «آلفا» را بطور غیررسمی برای ایستگاه بکار می‌برند.[۴۲]

فضاپیماهای پشتیبانی[ویرایش]

شاتل دیسکاوری در حال نزدیک شدن به ایستگاه؛ بخش هارمونی در محفظهٔ بار شاتل دیده می‌شود.
فضاپیمای سایوز پس از جدا شدن از ایستگاه
پرواز فضاپیمای اریون در دهه آینده به ایستگاه آغاز خواهد شد.

برای حمل و نقل فضانوردان، رساندن وسایل مورد نیاز زندگی آنها، ابزار آزمایشگاهی و قطعات و قسمت‌های جدید برای گسترش فضای ایستگاه فضایی بین‌المللی از فضاپیماهای روسی، آمریکایی و اروپایی استفاده می‌شود.

فضاپیماهای فعلی[ویرایش]

فضاپیماهای کنونی
فضاپیما مأموریت درگاه اتصال متصل‌شده در (UTC) جداشدن در (UTC) یادداشت‌ها
روسیه Progress M-14M Progress 46 Cargo پیرس ۰۲۰۱۲-۰۱-۲۸ ۲۸ ژانویه ۲۰۱۲ ۰۲۰۱۲-۰۴-۲۴ ۲۴ آوریل ۲۰۱۲


  • روسیه (روسکاسموس): فضاپیمای سایوز برای نقل و انتقال فضانوردان؛ تخلیه اضطراری فضانوردان از ایستگاه؛ هر فضاپیمای سایوز می‌تواند تا ۶ ماه به ایستگاه فضایی بین‌المللی متصل باقی بماند.
  • روسیه (روسکاسموس): فضاپیمای پروگرس برای پشتیبانی ایستگاه فضایی بین‌المللی؛ ترابری، حمل بار، مواد، وسایل و ابزار مورد نیاز برای زندگی و کار و پژوهش؛ اصلاح مدار ایستگاه؛ تخلیه زباله و دور ریختنی‌های ایستگاه
  • اروپا (اِسا): فضاپیمای ترابری خودکار برای پشتیبانی ایستگاه فضایی بین‌المللی؛ ترابری، حمل بار، مواد، وسایل و ابزار مورد نیاز برای زندگی و کار و پژوهش؛ اصلاح مدار ایستگاه؛ تخلیه زباله و دور ریختنی‌های ایستگاه
  • آمریکا (ناسا): فضاپیمای دراگن برای پشتیبانی ایستگاه فضایی بین‌المللی؛ ترابری، حمل بار، مواد، وسایل و ابزار مورد نیاز برای زندگی و کار و پژوهش؛ بازگرداندن بار و نتایج آزمایش‌ها از ایستگاه به زمین[۱۸]

فضاپیماهای پیشین[ویرایش]

  • آمریکا (ناسا): ناوگان شاتل فضایی برای رساندن بخش‌های جدید ایستگاه، ابزار و وسایل مورد نیاز، و نقل و انتقال فضانوردان. سه فروند شاتل فضایی با نام‌های اندور، دیسکاوری و آتلانتیس به کار پشتیبانی ایستگاه فضایی گمارده شده بودند. این ناوگان از سال ۱۹۹۸ تا ۲۰۱۱ تقریباً فقط به ساخت و پشتیبانی ایستگاه فضایی بین‌المللی اختصاص داده شده بود.[۴۳] فضاپیمای کلمبیا، نخستین فضاپیمای این ناوگان و یکی از فضاپیماهای پشتیبانی ایستگاه فضایی بین‌المللی، در راه بازگشت از ایستگاه در روز ۱۲ بهمن ۱۳۸۱ منفجر شد و تمامی ۷ سرنشین آن کشته شدند.[۴۴]

برنامه‌ریزی شده برای آینده[ویرایش]

فضاپیمای سایوز تی‌ام‌ای-۱۶ در حالت ویژه برای نزدیکی به ایستگاه فضایی بین‌المللی حامل فضانورد آمریکایی ناسا جفری ویلیامز و فضانورد روسی ماکسیم سورایف (فرمانده سفینه)

پیشنهاد شده برای آینده[ویرایش]

  • آمریکا (شرکت اسپیس‌اکس): فضاپیمای سرنشین‌دار دراگن برای نقل و انتقال فضانوردان (پیش‌بینی شده برای ۲۰۱۰)[۴۸]
  • روسیه (روسکاسموس): فضاپیمای شاتل کلیپر برای نقل و انتقال فضانوردان؛ حمل بار و ابزار و ادوات مورد نیاز (پیش‌بینی شده برای ۲۰۱۲)
  • اروپا-روسیه: سایوز-کی (موسوم به یورو-سایوز یا ACTS) برای نقل و انتقال فضانوردان؛ حمل بار و ابزار و ادوات مورد نیاز (پیش‌بینی شده برای ۲۰۱۴)[۴۹]

ایستگاه‌های پرتاب فضاپیما[ویرایش]

نگارخانه[ویرایش]

جستارهای وابسته[ویرایش]

منابع[ویرایش]

  1. خطای یادکرد: خطای یادکرد:برچسب <ref>‎ غیرمجاز؛ متنی برای یادکردهای با نام tracking وارد نشده‌است. (صفحهٔ راهنما را مطالعه کنید.).
  2. ۲٫۰ ۲٫۱ ۲٫۲ ۲٫۳ «دربارهٔ ایستگاه فضایی بین‌المللی»(انگلیسی)‎. وبگاه سازمان فضایی اروپا، ۱۶ نوامبر ۲۰۰۷. بازبینی‌شده در ۱۰ اردیبهشت ۱۳۸۷. 
  3. "راهنمای مرجع ایستگاه فضایی بین‌المللی". NASA. 
  4. «ایستگاه فضایی بین‌المللی را از شهر خود ببینید»(انگلیسی)‎. وبگاه ناسا. بازبینی‌شده در ۹ شهریور ۱۳۹۴. 
  5. «کشورهای اروپایی مشارکت‌کننده در برنامه ایستگاه فضایی بین‌المللی»(انگلیسی)‎. وبگاه سازمان فضایی اروپا. بازبینی‌شده در ۱۰ اردیبهشت ۱۳۸۷. 
  6. ۶٫۰ ۶٫۱ ۶٫۲ ۶٫۳ «هزینهٔ آن چقدر است؟»(انگلیسی)‎. وبگاه سازمان فضایی اروپا، ۹ اوت ۲۰۰۵. بازبینی‌شده در ۱۰ اردیبهشت ۱۳۸۷. 
  7. «چین خواهان ایفای نقش بر ایستگاه فضایی است»(انگلیسی)‎. وبگاه خبری سی‌ان‌ان، ۱۶ اکتبر ۲۰۰۷. بازبینی‌شده در ۱۰ اردیبهشت ۱۳۸۷. «خبرگزاری آسوشیتد پرس» 
  8. «چین تمایل به مشارکت در برنامه ایستگاه فضایی بین‌المللی را دارد»(انگلیسی)‎. وبگاه اخبار فضایی ‎spacedaily.com، ۱ مه ۲۰۰۱. بازبینی‌شده در ۱۰ اردیبهشت ۱۳۸۷. 
  9. ۹٫۰ ۹٫۱ «International Space Station»(انگلیسی)‎. ناسا، ۱۷ نوامبر ۲۰۰۸. بازبینی‌شده در {{جا:تاریخ}}. 
  10. ۱۰٫۰ ۱۰٫۱ ۱۰٫۲ کالم کانون. «ایستگاه فضایی بین‌المللی: بزرگترین ساختهٔ دست بشر در فضا»(انگلیسی)‎. وبگاه ‎astronomy.ie. بازبینی‌شده در ۱۰ اردیبهشت ۱۳۸۷. 
  11. تاد هالورسون. «ایستگاه فضایی بین‌المللی به نقطه عطف خود نزدیک می‌شود»(انگلیسی)‎. وبگاه ‎space.com، ۳۱ اوت ۲۰۰۱. بازبینی‌شده در ۱۰ اردیبهشت ۱۳۸۷. 
  12. دیوید هیت. «ایستگاه فضایی بین‌المللی چیست؟»(انگلیسی)‎. وبگاه ناسا، ۳۰ نوامبر ۲۰۱۱. بازبینی‌شده در ۱۶ فروردین ۱۳۹۲. 
  13. ۱۳٫۰ ۱۳٫۱ «فضاگرد زن ایرانی عازم ایستگاه فضایی شد»(فارسی)‎. وبگاه بی‌بی‌سی فارسی، ۲۷ شهریور ۱۳۸۵. بازبینی‌شده در ۱۴ اردیبهشت ۱۳۸۷. 
  14. «بازگشت فضاپیمای حامل انوشه انصاری به زمین»(فارسی)‎. وبگاه بی‌بی‌سی فارسی، ۷ مهر ۱۳۸۵. بازبینی‌شده در ۱۴ اردیبهشت ۱۳۸۷. 
  15. «Исполнилось 15 лет с начала работы первой длительной миссии на МКС»(روسی)‎. وبگاه سازمان فضایی روسیه، ۲ نوامبر ۲۰۱۵. بازبینی‌شده در ۲ نوامبر ۲۰۱۵. 
  16. «برنامه شاتل فضایی - ۳۰ سال اکتشاف»(انگلیسی)‎. وبگاه ناسا، ۴ دسامبر ۲۰۱۲. بازبینی‌شده در ۱۶ فروردین ۱۳۹۲. 
  17. «Russian Soyuz TMA Spacecraft»(انگلیسی)‎. ناسا. بازبینی‌شده در {{جا:تاریخ}}. 
  18. ۱۸٫۰ ۱۸٫۱ «What makes a Dragon: A quick guide to SpaceX’s capsule»(انگلیسی)‎. Space Flight Insider، 9 April 2015. بازبینی‌شده در {{جا:تاریخ}}. 
  19. «Commercial Dragon supply ship returns to Earth»(انگلیسی)‎. Space Flight Now، ۱۱ فوریه ۲۰۱۵. بازبینی‌شده در {{جا:تاریخ}}. 
  20. «International Space Station Legal Framework»(انگلیسی)‎. سازمان فضایی اروپا، ۱۹ نوامبر ۲۰۱۳. بازبینی‌شده در {{جا:تاریخ}}. 
  21. انتظار می‌رود از این پروژه تا سال ۲۰۲۸ استفاده شود. «NASA: Obama extends international space station operation until at least 2024»(انگلیسی)‎. روزنامه واشینگتن پست، ۸ ژانویه ۲۰۱۴. بازبینی‌شده در {{جا:تاریخ}}. 
  22. «Canada's space station commitment renewed»(انگلیسی)‎. شبکه خبری CBC کانادا، ۲۹ فوریه ۲۰۱۲. بازبینی‌شده در {{جا:تاریخ}}. 
  23. «Russia May Be Planning National Space Station to Replace ISS»(انگلیسی)‎. روزنامه Moscow Times، ۱۷ نوامبر ۲۰۱۴. بازبینی‌شده در {{جا:تاریخ}}. 
  24. «برنامه ایستگاه فضایی بین‌المللی: مأموریت سایوز تی‌ام‌ای-۴»(روسی، انگلیسی)‎ (PDF). گزارش مأموریت سایوز تی‌ام‌ای-۴. سازمان فضایی فدرال روسیه، آوریل ۲۰۰۴. ۶۴. بازبینی‌شده در ۹ اردیبهشت ۱۳۸۷. 
  25. «International Space Station Research Document Library». NASA. 
  26. صفحات خورشیدی ایستگاه فضایی گشوده شد (بی‌بی‌سی فارسی)
  27. «تنفس آسان در ایستگاه فضایی»(انگلیسی)‎. وبگاه ناسا، ۱۳ نوامبر ۲۰۰۰. بازبینی‌شده در ۱۰ اردیبهشت ۱۳۸۷. 
  28. دانشنامه فضایی ایران. بازدید: اکتبر ۲۰۰۹.
  29. کریس پیت. «نمودار ارتفاع ایستگاه فضایی بین‌المللی»(انگلیسی)‎. وبگاه ‎heavens-above.com. بازبینی‌شده در ۱۴ اردیبهشت ۱۳۸۷. 
  30. ۳۰٫۰ ۳۰٫۱ جرالد اسکوئیول. «محیط ایستگاه فضایی بین‌المللی»(انگلیسی)‎. پایگاه اطلاعاتی محموله‌های ایستگاه فضایی بین‌المللی. وبگاه ناسا. بازبینی‌شده در ۱۴ اردیبهشت ۱۳۸۷. 
  31. Philip Baker. «Freedom: The US Strikes Back». در Manned Space Stations. New York City: Springer New York، ۲۰۰۷. ‎۹۱–۹۸. شابک ‎۹۷۸-۰-۳۸۷-۳۰۷۷۵-۶ (نسخه چاپی)، ۹۷۸-۰-۳۸۷-۶۸۴۸۸-۸ (نسخه آنلاین). 
  32. ۳۲٫۰ ۳۲٫۱ مارک وید. «میر-۲»(انگلیسی)‎. وبگاه ‎astronautix.com. بازبینی‌شده در ۹ اردیبهشت ۱۳۸۷. 
  33. «فرازهایی از سخنان پرزیدنت ریگان در سخنرانی وضعیت کشور آمریکا»(انگلیسی)‎. وبگاه ناسا، بخش تاریخ ناسا، ۲۴ اوت ۲۰۰۷. بازبینی‌شده در ۱۰ اردیبهشت ۱۳۸۷. 
  34. ۳۴٫۰ ۳۴٫۱ مارک وید. «ایستگاه فضایی آزادی»(انگلیسی)‎. وبگاه ‎astronautix.com. بازبینی‌شده در ۹ اردیبهشت ۱۳۸۷. 
  35. ۳۵٫۰ ۳۵٫۱ مارک وید. «ایستگاه فضایی بین‌المللی»(انگلیسی)‎. وبگاه ‎astronautix.com. بازبینی‌شده در ۹ اردیبهشت ۱۳۸۷. 
  36. کیم دیسموکس و جان آیرا پتی. «تاریخچه پروژه شاتل-میر»(انگلیسی)‎. وبگاه ناسا، ۴ آوریل ۲۰۰۴. بازبینی‌شده در ۹ اردیبهشت ۱۳۸۷. 
  37. مارک وید. «ایستگاه فضایی میر»(انگلیسی)‎. وبگاه ‎astronautix.com. بازبینی‌شده در ۸ اردیبهشت ۱۳۸۷. 
  38. آناتولی زاک. «مأموریت‌های ایستگاه میر در سال ۱۹۹۵»(انگلیسی)‎. وبگاه فضایی روسیه. بازبینی‌شده در ۸ اردیبهشت ۱۳۸۷. 
  39. دونا هیولین. «ایستگاه فضایی: تأثیر نقش فزاینده روسیه در تأمین بودجه و تحقیقات»(انگلیسی)‎ (PDF). دفتر پاسخگویی دولت آمریکا (GAO)، ژوئن ۱۹۹۴. بازبینی‌شده در ۲۳ فروردین ۱۳۸۷. 
  40. مشارکت‌کنندگان ویکی‌پدیا. «Международная космическая станция». در دانشنامهٔ ویکی‌پدیای روسی، بازبینی‌شده در ۱۰ اردیبهشت ۱۳۸۷.
  41. مسکویتز، کلارا. «چرا ایستگاه بین‌المللی فضایی نام ویژه ندارد؟»(انگلیسی)‎. وبگاه: space.com، آگوست ۲۰۱۱. بازبینی‌شده در ۹ شهریور ۱۳۹۴. 
  42. اوبرگ، جیمز. «ایستگاه فضایی پایداری خود را در عملیات به نمایش گذاشت»(انگلیسی)‎. وبگاه خبری msnbc، ۹ مه ۲۰۰۵. بازبینی‌شده در ۱۰ اردیبهشت ۱۳۸۷. 
  43. مشارکت‌کنندگان ویکی‌پدیا. «International Space Station». در دانشنامهٔ ویکی‌پدیای انگلیسی، بازبینی‌شده در April ۲۹ ۲۰۰۸.
  44. جین رایبا. «شاتل فضایی کلمبیا»(انگلیسی)‎. ناوگان مدارگردهای ناسا. وبگاه ناسا، ۲۴ فوریه ۲۰۰۸. بازبینی‌شده در ۱۰ اردیبهشت ۱۳۸۷. 
  45. آمیکو نویلز. «اعلامیه تاریخ قطعی پرتاب‌های فضایی»(انگلیسی)‎. برنامه زمانی پرتاب‌ها به ایستگاه فضایی بین‌المللی. وبگاه ناسا، ۱۰ مارس ۲۰۰۸. بازبینی‌شده در ۱۰ اردیبهشت ۱۳۸۷. 
  46. آناتولی زاک. «فضاپیمای یدک‌کش مداری پاروم»(انگلیسی)‎. وبگاه فضایی روسیه. بازبینی‌شده در ۱۰ اردیبهشت ۱۳۸۷. 
  47. آمیکو نویلز. «فضاپیمای سرنشین‌دار اریون»(انگلیسی)‎. وبگاه ناسا، ۲۲ آوریل ۲۰۰۸. بازبینی‌شده در ۱۰ اردیبهشت ۱۳۸۷. 
  48. «فضاپیمای اژدها (Dragon)»(انگلیسی)‎. وبگاه شرکت اسپیس‌اکس (SpaceX). بازبینی‌شده در ۸ اردیبهشت ۱۳۸۷. 
  49. آناتولی زاک. «فضاپیمای پیشرفته حمل و نقل سرنشین»(انگلیسی)‎. وبگاه فضایی روسیه، ۱۹ فوریه ۲۰۰۸. بازبینی‌شده در ۱۰ اردیبهشت ۱۳۸۷. 

پیوند به بیرون[ویرایش]

International Space Station
A rearward view of the International Space Station backdropped by the limb of the Earth. In view are the station's four large, gold-coloured solar array wings, two on either side of the station, mounted to a central truss structure. Further along the truss are six large, white radiators, three next to each pair of arrays. In between the solar arrays and radiators is a cluster of pressurised modules arranged in an elongated T shape, also attached to the truss. A set of blue solar arrays are mounted to the module at the aft end of the cluster.
The International Space Station on 23 May 2010 as seen from the departing Space Shuttle Atlantis during STS-132.
ISS insignia.svg
Station statistics
SATCAT no. 25544
Call sign Alpha, Station
Crew Fully crewed: 6
Currently aboard: 6
(Expedition 55)
Launch 20 November 1998 (1998-11-20)
Launch pad
Mass ≈ 419,455 kg (924,740 lb)[1]
Length 72.8 m (239 ft)
Width 108.5 m (356 ft)
Height ≈ 20 m (66 ft)
nadir–zenith, arrays forward–aft
(27 November 2009)[needs update]
Pressurised volume 931.57 m3 (32,898 cu ft)[2]
(28 May 2016)
Atmospheric pressure 101.3 kPa (29.9 inHg; 1.0 atm)
Perigee 403 km (250 mi) AMSL[3]
Apogee 406 km (252 mi) AMSL[3]
Orbital inclination 51.64 degrees[3]
Orbital speed 7.67 km/s[3]
(27,600 km/h; 17,200 mph)
Orbital period 92.49 minutes[3]
Orbits per day 15.54[3]
Orbit epoch 12 April 2018, 13:09:59 UTC[3]
Days in orbit 19 years, 4 months, 30 days
(19 April 2018)
Days occupied 17 years, 5 months, 17 days
(19 April 2018)
No. of orbits 102,491 as of July 2017[3]
Orbital decay 2 km/month
Statistics as of 9 March 2011
(unless noted otherwise)
References: [1][3][4][5][6][7]
Configuration
The components of the ISS in an exploded diagram, with modules on-orbit highlighted in orange, and those still awaiting launch in blue or pink
Station elements as of June 2017
(exploded view)

The International Space Station (ISS) is a space station, or a habitable artificial satellite, in low Earth orbit. Its first component launched into orbit in 1998, the last pressurised module was fitted in 2011, and the station is expected to be used until 2028. Development and assembly of the station continues, with components scheduled for launch in 2018 and 2019. The ISS is the largest human-made body in low Earth orbit and can often be seen with the naked eye from Earth.[8][9] The ISS consists of pressurised modules, external trusses, solar arrays, and other components. ISS components have been launched by Russian Proton and Soyuz rockets, and American Space Shuttles.[10]

The ISS serves as a microgravity and space environment research laboratory in which crew members conduct experiments in biology, human biology, physics, astronomy, meteorology, and other fields.[11][12][13] The station is suited for the testing of spacecraft systems and equipment required for missions to the Moon and Mars.[14] The ISS maintains an orbit with an altitude of between 330 and 435 km (205 and 270 mi) by means of reboost manoeuvres using the engines of the Zvezda module or visiting spacecraft. It completes 15.54 orbits per day.[15]

The ISS programme is a joint project among five participating space agencies: NASA, Roscosmos, JAXA, ESA, and CSA.[16][17] The ownership and use of the space station is established by intergovernmental treaties and agreements.[18] The station is divided into two sections, the Russian Orbital Segment (ROS) and the United States Orbital Segment (USOS), which is shared by many nations. As of January 2014, the American portion of ISS is being funded until 2024.[19][20][21] Roscosmos has endorsed the continued operation of ISS through 2024[22] but has proposed using elements of the Russian Orbital Segment to construct a new Russian space station called OPSEK.[23]

The ISS is the ninth space station to be inhabited by crews, following the Soviet and later Russian Salyut, Almaz, and Mir stations as well as Skylab from the US. The station has been continuously occupied for 17 years and 168 days since the arrival of Expedition 1 on 2 November 2000. This is the longest continuous human presence in low Earth orbit, having surpassed the previous record of 9 years and 357 days held by Mir. The station is serviced by a variety of visiting spacecraft: the Russian Soyuz and Progress, the American Dragon and Cygnus, the Japanese H-II Transfer Vehicle,[16] and formerly the American Space Shuttle and the European Automated Transfer Vehicle. It has been visited by astronauts, cosmonauts and space tourists from 17 different nations.[24]

After the American Space Shuttle programme ended in 2011, Soyuz rockets became the only provider of transport for astronauts at the International Space Station, and Dragon became the only provider of bulk cargo return to Earth (called downmass). Soyuz has very limited downmass capability.

On 28 March 2015, Russian sources announced that Roscosmos and NASA had agreed to collaborate on the development of a replacement for the current ISS.[25][26] NASA later issued a guarded statement expressing thanks for Russia's interest in future co-operation in space exploration but fell short of confirming the Russian announcement.[27][28]

Contents

Purpose

Sunrise at Zvezda
Fisheye view of several labs
CubeSats are deployed by the NanoRacks CubeSat Deployer attached to the end of the Japanese robotic arm

According to the original Memorandum of Understanding between NASA and Rosaviakosmos, the International Space Station was intended to be a laboratory, observatory and factory in low Earth orbit. It was also planned to provide transportation, maintenance, and act as a staging base for possible future missions to the Moon, Mars and asteroids.[29] In the 2010 United States National Space Policy, the ISS was given additional roles of serving commercial, diplomatic[30] and educational purposes.[31]

Scientific research

The ISS provides a platform to conduct scientific research. Small unmanned spacecraft can provide platforms for zero gravity and exposure to space, but space stations offer a long-term environment where studies can be performed potentially for decades, combined with ready access by human researchers over periods that exceed the capabilities of manned spacecraft.[24][32]

The ISS simplifies individual experiments by eliminating the need for separate rocket launches and research staff. The wide variety of research fields include astrobiology, astronomy, human research including space medicine and life sciences, physical sciences, materials science, space weather, and weather on Earth (meteorology).[11][12][13][33][34] Scientists on Earth have access to the crew's data and can modify experiments or launch new ones, which are benefits generally unavailable on unmanned spacecraft.[32] Crews fly expeditions of several months' duration, providing approximately 160-man-hours per week of labour with a crew of 6.[11][35]

To detect dark matter and answer other fundamental questions about our universe, engineers and scientists from all over the world built the Alpha Magnetic Spectrometer (AMS), which NASA compares to the Hubble space telescope, and says could not be accommodated on a free flying satellite platform partly because of its power requirements and data bandwidth needs.[36][37] On 3 April 2013, NASA scientists reported that hints of dark matter may have been detected by the Alpha Magnetic Spectrometer.[38][39][40][41][42][43] According to the scientists, "The first results from the space-borne Alpha Magnetic Spectrometer confirm an unexplained excess of high-energy positrons in Earth-bound cosmic rays."

Comet Lovejoy photographed by Expedition 30 commander Dan Burbank
Expedition 8 Commander and Science Officer Michael Foale conducts an inspection of the Microgravity Science Glovebox

The space environment is hostile to life. Unprotected presence in space is characterised by an intense radiation field (consisting primarily of protons and other subatomic charged particles from the solar wind, in addition to cosmic rays), high vacuum, extreme temperatures, and microgravity.[44] Some simple forms of life called extremophiles,[45] including small invertebrates called tardigrades[46] can survive in this environment in an extremely dry state called desiccation.

Medical research improves knowledge about the effects of long-term space exposure on the human body, including muscle atrophy, bone loss, and fluid shift. This data will be used to determine whether lengthy human spaceflight and space colonisation are feasible. As of 2006, data on bone loss and muscular atrophy suggest that there would be a significant risk of fractures and movement problems if astronauts landed on a planet after a lengthy interplanetary cruise, such as the six-month interval required to travel to Mars.[47][48] Medical studies are conducted aboard the ISS on behalf of the National Space Biomedical Research Institute (NSBRI). Prominent among these is the Advanced Diagnostic Ultrasound in Microgravity study in which astronauts perform ultrasound scans under the guidance of remote experts. The study considers the diagnosis and treatment of medical conditions in space. Usually, there is no physician on board the ISS and diagnosis of medical conditions is a challenge. It is anticipated that remotely guided ultrasound scans will have application on Earth in emergency and rural care situations where access to a trained physician is difficult.[49][50][51]

Free fall

A comparison between the combustion of a candle on Earth (left) and in a free fall environment, such as that found on the ISS (right)

The Earth's gravity is only slightly weaker at the altitude of the ISS than at the surface, but objects in orbit are in a continuous state of freefall, resulting in an apparent state of weightlessness. This perceived weightlessness is disturbed by five separate effects:[52]

  • Drag from the residual atmosphere; when the ISS enters the Earth's shadow, the main solar panels are rotated to minimise this aerodynamic drag, helping reduce orbital decay.
  • Vibration from movements of mechanical systems and the crew.
  • Actuation of the on-board attitude control moment gyroscopes.
  • Thruster firings for attitude or orbital changes.
  • Gravity-gradient effects, also known as tidal effects. Items at different locations within the ISS would, if not attached to the station, follow slightly different orbits. Being mechanically interconnected these items experience small forces that keep the station moving as a rigid body.
ISS crew member storing samples

Researchers are investigating the effect of the station's near-weightless environment on the evolution, development, growth and internal processes of plants and animals. In response to some of this data, NASA wants to investigate microgravity's effects on the growth of three-dimensional, human-like tissues, and the unusual protein crystals that can be formed in space.[12]

Investigating the physics of fluids in microgravity will provide better models of the behaviour of fluids. Because fluids can be almost completely combined in microgravity, physicists investigate fluids that do not mix well on Earth. In addition, examining reactions that are slowed by low gravity and low temperatures will improve our understanding of superconductivity.[12]

The study of materials science is an important ISS research activity, with the objective of reaping economic benefits through the improvement of techniques used on the ground.[53] Other areas of interest include the effect of the low gravity environment on combustion, through the study of the efficiency of burning and control of emissions and pollutants. These findings may improve current knowledge about energy production, and lead to economic and environmental benefits. Future plans are for the researchers aboard the ISS to examine aerosols, ozone, water vapour, and oxides in Earth's atmosphere, as well as cosmic rays, cosmic dust, antimatter, and dark matter in the universe.[12]

Exploration

A 3D plan of the Russia-based MARS-500 complex, used for ground-based experiments which complement ISS-based preparations for a human mission to Mars

The ISS provides a location in the relative safety of Low Earth Orbit to test spacecraft systems that will be required for long-duration missions to the Moon and Mars. This provides experience in operations, maintenance as well as repair and replacement activities on-orbit, which will be essential skills in operating spacecraft farther from Earth, mission risks can be reduced and the capabilities of interplanetary spacecraft advanced.[14] Referring to the MARS-500 experiment, ESA states that "Whereas the ISS is essential for answering questions concerning the possible impact of weightlessness, radiation and other space-specific factors, aspects such as the effect of long-term isolation and confinement can be more appropriately addressed via ground-based simulations".[54] Sergey Krasnov, the head of human space flight programmes for Russia's space agency, Roscosmos, in 2011 suggested a "shorter version" of MARS-500 may be carried out on the ISS.[55]

In 2009, noting the value of the partnership framework itself, Sergey Krasnov wrote, "When compared with partners acting separately, partners developing complementary abilities and resources could give us much more assurance of the success and safety of space exploration. The ISS is helping further advance near-Earth space exploration and realisation of prospective programmes of research and exploration of the Solar system, including the Moon and Mars."[56] A manned mission to Mars may be a multinational effort involving space agencies and countries outside the current ISS partnership. In 2010, ESA Director-General Jean-Jacques Dordain stated his agency was ready to propose to the other four partners that China, India and South Korea be invited to join the ISS partnership.[57] NASA chief Charlie Bolden stated in February 2011, "Any mission to Mars is likely to be a global effort".[58] Currently, American legislation prevents NASA co-operation with China on space projects.[59]

Education and cultural outreach

Japan's Kounotori 4 berthing

The ISS crew provides opportunities for students on Earth by running student-developed experiments, making educational demonstrations, allowing for student participation in classroom versions of ISS experiments, and directly engaging students using radio, videolink and email.[16][60] ESA offers a wide range of free teaching materials that can be downloaded for use in classrooms.[61] In one lesson, students can navigate a 3-D model of the interior and exterior of the ISS, and face spontaneous challenges to solve in real time.[62]

JAXA aims both to "Stimulate the curiosity of children, cultivating their spirits, and encouraging their passion to pursue craftsmanship", and to "Heighten the child's awareness of the importance of life and their responsibilities in society."[63] Through a series of education guides, a deeper understanding of the past and near-term future of manned space flight, as well as that of Earth and life, will be learned.[64][65] In the JAXA Seeds in Space experiments, the mutation effects of spaceflight on plant seeds aboard the ISS is explored. Students grow sunflower seeds which flew on the ISS for about nine months as a start to 'touch the Universe'. In the first phase of Kibō utilisation from 2008 to mid-2010, researchers from more than a dozen Japanese universities conducted experiments in diverse fields.[66]

Original Jules Verne manuscripts displayed by crew inside Jules Verne ATV

Cultural activities are another major objective. Tetsuo Tanaka, director of JAXA's Space Environment and Utilization Center, says "There is something about space that touches even people who are not interested in science."[67]

Amateur Radio on the ISS (ARISS) is a volunteer programme which encourages students worldwide to pursue careers in science, technology, engineering and mathematics through amateur radio communications opportunities with the ISS crew. ARISS is an international working group, consisting of delegations from nine countries including several countries in Europe as well as Japan, Russia, Canada, and the United States. In areas where radio equipment cannot be used, speakerphones connect students to ground stations which then connect the calls to the station.[68]

First Orbit is a feature-length documentary film about Vostok 1, the first manned space flight around the Earth. By matching the orbit of the International Space Station to that of Vostok 1 as closely as possible, in terms of ground path and time of day, documentary filmmaker Christopher Riley and ESA astronaut Paolo Nespoli were able to film the view that Yuri Gagarin saw on his pioneering orbital space flight. This new footage was cut together with the original Vostok 1 mission audio recordings sourced from the Russian State Archive. Nespoli, during Expedition 26/27, filmed the majority of the footage for this documentary film, and as a result is credited as its director of photography.[69] The film was streamed through the website firstorbit.org in a global YouTube premiere in 2011, under a free license.[70]

In May 2013, commander Chris Hadfield shot a music video of David Bowie's "Space Oddity" on board the station; the film was released on YouTube.[71] It was the first music video ever to be filmed in space.[72]

ESA Astronaut Paolo Nespoli's spoken voice, recorded about the ISS in November 2017, for Wikipedia

In November 2017, while participating in Expedition 52/53 on the ISS, Paolo Nespoli made two recordings (one in English the other in his native Italian) of his spoken voice, for use on Wikipedia articles. These were the first content made specifically for Wikipedia, in space.[73][74]

Assembly

ISS in 2000, with Z1 truss added
ISS in 2000, with P6 truss added
ISS in 2002, with S0 truss added
ISS in 2002, with S1 truss added
ISS in 2002, with P1 Truss added
ISS in 2006, with P3/P4 truss added
ISS in 2006, with P5 truss added
ISS in 2007, with S3/S4 truss added
ISS in 2007, with S5 truss added
ISS in 2007, with P6 truss relocated
ISS in 2009, with S6 truss added

The assembly of the International Space Station, a major endeavour in space architecture, began in November 1998.[5] Russian modules launched and docked robotically, with the exception of Rassvet. All other modules were delivered by the Space Shuttle, which required installation by ISS and shuttle crewmembers using the Canadarm2 (SSRMS) and extra-vehicular activities (EVAs); as of 5 June 2011, they had added 159 components during more than 1,000 hours of EVA (see List of ISS spacewalks). 127 of these spacewalks originated from the station, and the remaining 32 were launched from the airlocks of docked Space Shuttles.[4] The beta angle of the station had to be considered at all times during construction, as it directly affects how long during its orbit the station (and any docked or docking spacecraft) is exposed to the sun; the Space Shuttle would not perform optimally above a limit called the "beta cutoff".[75] Many of the modules that launched on the Space Shuttle were integrated and tested on the ground at the Space Station Processing Facility to find and correct issues prior to launch.

The first module of the ISS, Zarya, was launched on 20 November 1998 on an autonomous Russian Proton rocket. It provided propulsion, attitude control, communications, electrical power, but lacked long-term life support functions. Two weeks later, a passive NASA module Unity was launched aboard Space Shuttle flight STS-88 and attached to Zarya by astronauts during EVAs. This module has two Pressurized Mating Adapters (PMAs), one connects permanently to Zarya, the other allows the Space Shuttle to dock to the space station. At that time, the Russian station Mir was still inhabited. The ISS remained unmanned for two years, while Mir was de-orbited. On 12 July 2000, Zvezda was launched into orbit. Preprogrammed commands on board deployed its solar arrays and communications antenna. It then became the passive target for a rendezvous with Zarya and Unity: it maintained a station-keeping orbit while the Zarya-Unity vehicle performed the rendezvous and docking via ground control and the Russian automated rendezvous and docking system. Zarya's computer transferred control of the station to Zvezda's computer soon after docking. Zvezda added sleeping quarters, a toilet, kitchen, CO2 scrubbers, dehumidifier, oxygen generators, exercise equipment, plus data, voice and television communications with mission control. This enabled permanent habitation of the station.[76][77]

The first resident crew, Expedition 1, arrived in November 2000 on Soyuz TM-31. At the end of the first day on the station, astronaut Bill Shepherd requested the use of the radio call sign "Alpha", which he and cosmonaut Krikalev preferred to the more cumbersome "International Space Station".[78] The name "Alpha" had previously been used for the station in the early 1990s,[79] and following the request, its use was authorised for the whole of Expedition 1.[80] Shepherd had been advocating the use of a new name to project managers for some time. Referencing a naval tradition in a pre-launch news conference he had said: "For thousands of years, humans have been going to sea in ships. People have designed and built these vessels, launched them with a good feeling that a name will bring good fortune to the crew and success to their voyage."[81] Yuri Semenov, the President of Russian Space Corporation Energia at the time, disapproved of the name "Alpha"; he felt that Mir was the first space station, and so he would have preferred the names "Beta" or "Mir 2" for the ISS.[80][82][83]

Expedition 1 arrived midway between the flights of STS-92 and STS-97. These two Space Shuttle flights each added segments of the station's Integrated Truss Structure, which provided the station with Ku-band communication for US television, additional attitude support needed for the additional mass of the USOS, and substantial solar arrays supplementing the station's existing 4 solar arrays.[84]

Over the next two years, the station continued to expand. A Soyuz-U rocket delivered the Pirs docking compartment. The Space Shuttles Discovery, Atlantis, and Endeavour delivered the Destiny laboratory and Quest airlock, in addition to the station's main robot arm, the Canadarm2, and several more segments of the Integrated Truss Structure.

The expansion schedule was interrupted by the Space Shuttle Columbia disaster in 2003 and a resulting two-year hiatus in the Space Shuttle programme. The space shuttle was grounded until 2005 with STS-114 flown by Discovery.[85]

Assembly resumed in 2006 with the arrival of STS-115 with Atlantis, which delivered the station's second set of solar arrays. Several more truss segments and a third set of arrays were delivered on STS-116, STS-117, and STS-118. As a result of the major expansion of the station's power-generating capabilities, more pressurised modules could be accommodated, and the Harmony node and Columbus European laboratory were added. These were soon followed by the first two components of Kibō. In March 2009, STS-119 completed the Integrated Truss Structure with the installation of the fourth and final set of solar arrays. The final section of Kibō was delivered in July 2009 on STS-127, followed by the Russian Poisk module. The third node, Tranquility, was delivered in February 2010 during STS-130 by the Space Shuttle Endeavour, alongside the Cupola, followed in May 2010 by the penultimate Russian module, Rassvet. Rassvet was delivered by Space Shuttle Atlantis on STS-132 in exchange for the Russian Proton delivery of the Zarya module in 1998 which had been funded by the United States.[86] The last pressurised module of the USOS, Leonardo, was brought to the station by Discovery on her final flight, STS-133, in February 2011.[87] The Alpha Magnetic Spectrometer was delivered by Endeavour on STS-134 the same year.[88]

As of June 2011, the station consisted of 15 pressurised modules and the Integrated Truss Structure. Five modules are still to be launched, including the Nauka with the European Robotic Arm, the Uzlovoy Module, and two power modules called NEM-1 and NEM-2.[89] As of August 2017, Russia's future primary research module Nauka is set to launch in the first quarter of 2018, along with the European Robotic Arm which will be able to relocate itself to different parts of the Russian modules of the station. After the Nauka module is attached, the Uzlovoy Module will be attached to one of its docking ports. When completed, the station will have a mass of more than 400 tonnes (440 short tons).[5]

The gross mass of the station changes over time. The total launch mass of the modules on orbit is about 417,289 kg (919,965 lb) (as of 3 September 2011).[90] The mass of experiments, spare parts, personal effects, crew, foodstuff, clothing, propellants, water supplies, gas supplies, docked spacecraft, and other items add to the total mass of the station. Hydrogen gas is constantly vented overboard by the oxygen generators.

Station structure

Russian Orbital Segment Windows
USOS International Space Station window locations
3-D model of the International Space Station (click to rotate)

The ISS is a third generation[91] modular space station.[92] Modular stations can allow the mission to be changed over time and new modules can be added or removed from the existing structure, allowing greater flexibility.

Below is a diagram of major station components. The blue areas are pressurised sections accessible by the crew without using spacesuits. The station's unpressurised superstructure is indicated in red. Other unpressurised components are yellow. Note that the Unity node joins directly to the Destiny laboratory. For clarity, they are shown apart.

Russian
docking port
Solar array Zvezda DOS-8
(service module)
Solar array
Russian
docking port
Poisk (MRM-2)
airlock
Pirs
airlock
Russian
docking port
Nauka lab
to replace Pirs
European
robotic arm
Solar array Zarya FGB
(first module)
Solar array
Rassvet
(MRM-1)
Russian
docking port
PMA 1
Cargo spacecraft
berthing port
Leonardo
cargo bay
BEAM
habitat
Quest
airlock
Unity
Node 1
Tranquility
Node 3
ESP-2 Cupola
Solar array Solar array Heat radiator Heat radiator Solar array Solar array
ELC 2, AMS Z1 truss ELC 3
S5/6 Truss S3/S4 Truss S1 Truss S0 Truss P1 Truss P3/P4 Truss P5/6 Truss
ELC 4, ESP 3 ELC 1
Dextre
robotic arm
Canadarm2
robotic arm
Solar array Solar array Solar array Solar array
ESP-1 Destiny
laboratory
Kibō logistics
cargo bay
Cargo spacecraft
berthing port
PMA 3
docking port
Kibō
robotic arm
External payloads Columbus
laboratory
Harmony
Node 2
Kibō
laboratory
Kibō
external platform
PMA 2
docking port
IDA 2
docking adapter

Comparison

The ISS follows Salyut and Almaz series, Skylab, and Mir as the 11th space station launched, as the Genesis prototypes were never intended to be manned. Other examples of modular station projects include the Soviet/Russian Mir and the planned Russian OPSEK and Chinese space station. First generation space stations, such as early Salyuts and NASA's Skylab were not designed for re-supply.[93] Generally, each crew had to depart the station to free the only docking port for the next crew to arrive, Skylab had more than one docking port but was not designed for resupply. Salyut 6 and 7 had more than one docking port and were designed to be resupplied routinely during crewed operation.[94]

Pressurised modules

Zarya

Zarya as seen by Space Shuttle Endeavour during STS-88

Zarya (Russian: Заря́; lit. dawn), also known as the Functional Cargo Block or FGB (from the Russian "Функционально-грузовой блок", Funktsionalno-gruzovoy blok or ФГБ), was the first module of the International Space Station to be launched. The FGB provided electrical power, storage, propulsion, and guidance to the ISS during the initial stage of assembly. With the launch and assembly in orbit of other modules with more specialised functionality, Zarya is now primarily used for storage, both inside the pressurised section and in the externally mounted fuel tanks. Zarya is a descendant of the TKS spacecraft designed for the Soviet Salyut programme. The name Zarya was given to the FGB because it signified the dawn of a new era of international co-operation in space. Although it was built by a Russian company, it is owned by the United States. Zarya weighs 19,300 kg (42,500 lb), is 12.55 m (41.2 ft) long and 4.1 m (13 ft) wide, discounting solar arrays.

Zarya was built from December 1994 to January 1998 at the Khrunichev State Research and Production Space Center (KhSC) in Moscow. The control system was developed by the Ukrainian Khartron corporation in Kharkiv.

Zarya was launched on 20 November 1998, on a Russian Proton rocket from Baikonur Cosmodrome Site 81 in Kazakhstan to a 400 km (250 mi) high orbit with a designed lifetime of at least 15 years. After Zarya reached orbit, STS-88 launched on 4 December 1998, to attach the Unity module.

Although only designed to fly autonomously for six to eight months, Zarya did so for almost two years because of delays with the Russian Service Module, Zvezda, which finally launched on 12 July 2000, and docked with Zarya on 26 July using the Russian Kurs docking system.

Unity

Unity as pictured by Space Shuttle Endeavour

Unity, or Node 1, is one of three nodes, or passive connecting modules, in the US Orbital Segment of the station. It was the first US-built component of the Station to be launched. The module is made of aluminium and cylindrical in shape, with six berthing locations facilitating connections to other modules. Essential space station resources such as fluids, environmental control and life support systems, electrical and data systems are routed through Unity to supply work and living areas of the station. More than 50,000 mechanical items, 216 lines to carry fluids and gases, and 121 internal and external electrical cables using six miles of wire were installed in the Unity node. Prior to its launch, conical Pressurized Mating Adapters (PMAs) were attached to the aft and forward berthing mechanisms of Unity. Unity and the two mating adapters together weighed about 11,600 kg (25,600 lb). The adapters allow the docking systems used by the Space Shuttle and by Russian modules to attach to the node's hatches and berthing mechanisms.

Unity was carried into orbit by Space Shuttle Endeavour in 1998 as the primary cargo of STS-88, the first Space Shuttle mission dedicated to assembly of the station. On 6 December 1998, the STS-88 crew mated the aft berthing port of Unity with the forward hatch of the already orbiting Zarya module.

Zvezda

Zvezda (Russian: Звезда́, meaning "star"), also known as DOS-8, Service Module or SM (Russian: СМ). Early in the station's life, Zvezda provided all of its critical systems.[95][96] It made the station permanently habitable for the first time, adding life support for up to six crew and living quarters for two.[10] Zvezda's DMS-R computer handles guidance, navigation and control for the entire space station.[97] A second computer which performs the same functions will be installed in the Nauka module, FGB-2.

The hull of Zvezda was completed in February 1985, with major internal equipment installed by October 1986.[96] The module was launched by a Proton-K rocket from Site 81/23 at Baikonur, on 12 July 2000. Zvezda is at the rear of the station according to its normal direction of travel and orientation, and its engines may be used to boost the station's orbit. Alternatively Russian and European spacecraft can dock to Zvezda's aft port and use their engines to boost the station.[98][99]

Destiny

Destiny interior in February 2001

Destiny, also known as the U.S. Lab, is the primary research facility for United States payloads aboard the ISS. In 2011, NASA chose the not-for-profit group Center for the Advancement of Science in Space (CASIS) to be the sole manager of all American science on the station which does not relate to manned exploration. The module houses 24 International Standard Payload Racks, some of which are used for environmental systems and crew daily living equipment. Destiny also serves as the mounting point for the station's Truss Structure.[100]

Quest

Quest is the only USOS airlock, and hosts spacewalks with both United States EMU and Russian Orlan spacesuits. It consists of two segments: the equipment lock, which stores spacesuits and equipment, and the crew lock, from which astronauts can exit into space. This module has a separately controlled atmosphere. Crew sleep in this module, breathing a low nitrogen mixture the night before scheduled EVAs, to avoid decompression sickness (known as "the bends") in the low-pressure suits.[101]

Pirs and Poisk

Pirs (Russian: Пирс, meaning "pier"), (Russian: Стыковочный отсек), "docking module", SO-1 or DC-1 (docking compartment), and Poisk (Russian: По́иск; lit. Search), also known as the Mini-Research Module 2 (MRM 2), Малый исследовательский модуль 2, or МИМ 2. Pirs and Poisk are Russian airlock modules, each having 2 identical hatches. An outward-opening hatch on the Mir space station failed after it swung open too fast after unlatching, because of a small amount of air pressure remaining in the airlock.[102] A different entry was used, and the hatch was repaired. All EVA hatches on the ISS open inwards and are pressure-sealing. Pirs was used to store, service, and refurbish Russian Orlan suits and provided contingency entry for crew using the slightly bulkier American suits. The outermost docking ports on both airlocks allow docking of Soyuz and Progress spacecraft, and the automatic transfer of propellants to and from storage on the ROS.[103]

Harmony

Harmony node in 2011
Tranquility node in 2011

Harmony, also known as Node 2, is the second of the station's node modules and the utility hub of the USOS. The module contains four racks that provide electrical power, bus electronic data, and acts as a central connecting point for several other components via its six Common Berthing Mechanisms (CBMs). The European Columbus and Japanese Kibō laboratories are permanently berthed to the starboard and port radial ports respectively. The nadir and zenith ports can be used for docking visiting spacecraft including HTV, Dragon, and Cygnus, with the nadir port serving as the primary docking port. American Shuttle Orbiters docked with the ISS via PMA-2, attached to the forward port.

Tranquility

Tranquility, also known as Node 3, is the third and last of the station's US nodes, it contains an additional life support system to recycle waste water for crew use and supplements oxygen generation. Like the other US nodes, it has six berthing mechanisms, five of which are currently in use. The first one connects to the station's core via the Unity module, others host the Cupola, the PMA docking port #3, the Leonardo PMM and the Bigelow Expandable Activity Module. The final zenith port remains free.

Columbus

Columbus module in 2008

Columbus, the primary research facility for European payloads aboard the ISS, provides a generic laboratory as well as facilities specifically designed for biology, biomedical research and fluid physics. Several mounting locations are affixed to the exterior of the module, which provide power and data to external experiments such as the European Technology Exposure Facility (EuTEF), Solar Monitoring Observatory, Materials International Space Station Experiment, and Atomic Clock Ensemble in Space. A number of expansions are planned for the module to study quantum physics and cosmology.[104][105] ESA's development of technologies on all the main areas of life support has been ongoing for more than 20 years and are/have been used in modules such as Columbus and the ATV. The German Aerospace Center DLR manages ground control operations for Columbus and the ATV is controlled from the French CNES Toulouse Space Center.

Kibō

Not large enough for crew using spacesuits, the airlock on Kibō has a sliding drawer for external experiments.

Kibō (Japanese: きぼう, "hope") is a laboratory and the largest ISS module. It is used for research in space medicine, biology, Earth observations, materials production, biotechnology and communications, and has facilities for growing plants and fish. During August 2011, the MAXI observatory mounted on Kibō, which uses the ISS's orbital motion to image the whole sky in the X-ray spectrum, detected for the first time the moment when a star was swallowed by a black hole.[106][107] The laboratory contains 23 racks, including 10 experiment racks, and has a dedicated airlock for experiments. In a 'shirt sleeves' environment, crew attach an experiment to the sliding drawer within the airlock, close the inner, and then open the outer hatch. By extending the drawer and removing the experiment using the dedicated robotic arm, payloads are placed on the external platform. The process can be reversed and repeated quickly, allowing access to maintain external experiments without the delays caused by EVAs.

A smaller pressurised module is attached to the top of Kibō, serving as a cargo bay. The dedicated Interorbital Communications System (ICS) allows large amounts of data to be beamed from Kibō's ICS, first to the Japanese KODAMA satellite in geostationary orbit, then to Japanese ground stations. When a direct communication link is used, contact time between the ISS and a ground station is limited to approximately 10 minutes per visible pass. When KODAMA relays data between a LEO spacecraft and a ground station, real-time communications are possible in 60% of the flight path of the spacecraft. Japanese ground controllers use telepresence robotics to remotely conduct onboard research and experiments, thus reducing the workload of station astronauts. Ground controllers also use a free-floating autonomous ball camera to photodocument astronaut and space station activities, further freeing up astronaut time.

Cupola

The Cupola's design has been compared to the Millennium Falcon from Star Wars.
Dmitri Kondratyev and Paolo Nespoli in the Cupola. Background left to right, Progress M-09M, Soyuz TMA-20, the Leonardo module and HTV-2.

Cupola is a seven-window observatory, used to view Earth and docking spacecraft. Its name derives from the Italian word cupola, which means "dome". The Cupola project was started by NASA and Boeing, but cancelled due to budget cuts. A barter agreement between NASA and ESA led to ESA resuming development of Cupola in 1998. It was built by Thales Alenia Space in Turin, Italy. The module comes equipped with robotic workstations for operating the station's main robotic arm and shutters to protect its windows from damage caused by micrometeorites. It features 7 windows, with an 80-centimetre (31 in) round window, the largest window on the station (and the largest flown in space to date). The distinctive design has been compared to the 'turret' of the fictitious Millennium Falcon from the motion picture Star Wars;[108][109] the original prop lightsaber used by actor Mark Hamill as Luke Skywalker in the 1977 film was flown to the station in 2007.[110]

Rassvet

Rassvet (Russian: Рассве́т; lit. "dawn"), also known as the Mini-Research Module 1 (MRM-1) (Russian: Ма́лый иссле́довательский модуль, МИМ 1) and formerly known as the Docking Cargo Module (DCM), is similar in design to the Mir Docking Module launched on STS-74 in 1995. Rassvet is primarily used for cargo storage and for docking by visiting spacecraft. It was flown to the ISS aboard NASA's Space Shuttle Atlantis on the STS-132 mission and connected in May 2010,[111][112] Rassvet is the only Russian-owned module launched by NASA, to repay for the launch of Zarya, which is Russian designed and built, but partially paid for by NASA.[113] Rassvet was launched with the Russian Nauka laboratory's experiments airlock temporarily attached to it, and spare parts for the European Robotic Arm.

Leonardo

Leonardo installed

Leonardo Permanent Multipurpose Module (PMM) is a storage module attached to the Tranquility node.[114][115] The three NASA Space Shuttle MPLM cargo containers—Leonardo, Raffaello and Donatello—were built for NASA in Turin, Italy by Alcatel Alenia Space, now Thales Alenia Space.[116] The MPLMs were provided to NASA's ISS programme by Italy (independent of their role as a member state of ESA) and are considered to be US elements. In a bartered exchange for providing these containers, the US gave Italy research time aboard the ISS out of the US allotment in addition to that which Italy receives as a member of ESA.[117] The Permanent Multipurpose Module was created by converting Leonardo into a module that could be permanently attached to the station.[118][119][120]

Bigelow Expandable Activity Module

Bigelow Expandable Activity Module (BEAM) is a prototype inflatable space habitat serving as a two-year technology demonstration.[121] It was built by Bigelow Aerospace under a contract established by NASA on 16 January 2013. BEAM was delivered to the ISS aboard SpaceX CRS-8 on 10 April 2016, was berthed to the aft port of the Tranquility node on 16 April,[122][123] and was fully expanded on 28 May.[124]

During its two-year test run, instruments are measuring its structural integrity and leak rate, along with temperature and radiation levels. The hatch leading into the module remains closed except for periodic visits by space station crew members for inspections and data collection. The module was originally planned to be jettisoned from the station following the test,[125] but following positive data after a year in orbit, NASA has suggested that it could remain on the station as a storage area.[126]

International Docking Adapter-2

The International Docking Adapter (IDA) is a spacecraft docking system adapter being developed to convert APAS-95 to the NASA Docking System (NDS) / International Docking System Standard (IDSS). IDA-2 was launched on SpaceX CRS-9 on 18 July 2016. It was attached and connected to PMA-2 during a spacewalk on 19 August 2016.

Elements pending Russia launch

Nauka

Nauka (Russian: Нау́ка; lit. "science"), also known as the Multipurpose Laboratory Module (MLM) or FGB-2 (Russian: Многофункциональный лабораторный модуль, МЛМ), is the major Russian laboratory module. It was scheduled to arrive at the station in 2014, docking to the port that was occupied by the Pirs module.[127] Due to deterioration during many years spent in storage, it proved necessary to build a new propulsion module,[128] and the launch date was postponed to 2018.[129] Before the Nauka module arrives, a Progress spacecraft will remove Pirs from the station and deorbit it to reenter over the Pacific Ocean. Nauka contains an additional set of life support systems and attitude control. Originally it would have routed power from the single Science-and-Power Platform, but that single module design changed over the first ten years of the ISS mission, and the two science modules, which attach to Nauka via the Uzlovoy Module, or Russian node, each incorporate their own large solar arrays to power Russian science experiments in the ROS.

Nauka's mission has changed over time. During the mid-1990s, it was intended as a backup for the FGB, and later as a universal docking module (UDM); its docking ports will be able to support automatic docking of both spacecraft, additional modules and fuel transfer. Nauka has its own engines. Like Zvezda and Zarya, Nauka will be launched by a Proton rocket, while smaller Russian modules such as Pirs and Poisk were delivered by modified Progress spacecraft. Russia plans to separate Nauka, along with the rest of the Russian Orbital Segment, to form the OPSEK space station before the ISS is deorbited.

Uzlovoy Module

The Uzlovoy Module (UM), or Node Module is a 4-metric-ton[130] ball-shaped module that will allow docking of two scientific and power modules during the final stage of the station assembly, and provide the Russian segment additional docking ports to receive Soyuz MS and Progress MS spacecraft. UM is due to be launched in late 2018. It will be integrated with a special version of the Progress cargo ship and launched by a standard Soyuz rocket. Progress would use its own propulsion and flight control system to deliver and dock the Node Module to the nadir (Earth-facing) docking port of the Nauka MLM/FGB-2 module. One port is equipped with an active hybrid docking port, which enables docking with the MLM module. The remaining five ports are passive hybrids, enabling docking of Soyuz and Progress vehicles, as well as heavier modules and future spacecraft with modified docking systems. The node module was conceived to serve as the only permanent element of the future Russian successor to the ISS, OPSEK. Equipped with six docking ports, the Node Module would serve as a single permanent core of the future station with all other modules coming and going as their life span and mission required.[131][132] This would be a progression beyond the ISS and Russia's modular Mir space station, which are in turn more advanced than early monolithic first generation stations such as Skylab, and early Salyut and Almaz stations.

Science Power Modules 1 & 2

(NEM-1, NEM-2) (Russian: Нау́чно-Энергетический Модуль-1 и -2)

Elements pending US launch

International Docking Adapter-3

The International Docking Adapter (IDA) is a spacecraft docking system adapter being developed to convert APAS-95 to the NASA Docking System (NDS)/ International Docking System Standard (IDSS). IDA-3 is scheduled to be launched on the SpaceX CRS-16 mission during summer 2018. IDA-3 is being built mostly from spare parts to speed construction.

NanoRacks Airlock Module

The NanoRacks Airlock Module is a commercially-funded airlock module intended to be launched in 2019. The module is being built by NanoRacks and Boeing,[133] and will be used to deploy CubeSats, small satellites, and other external payloads for NASA, CASIS, and other commercial and governmental customers. It is intended to be manifested with a Commercial Resupply Services mission.[134]

The cancelled Habitation module under construction in 1997

Cancelled components

Several modules planned for the station were cancelled over the course of the ISS programme. Reasons include budgetary constraints, the modules becoming unnecessary, and station redesigns after the 2003 Columbia disaster. The US Centrifuge Accommodations Module would have hosted science experiments in varying levels of artificial gravity.[135] The US Habitation Module would have served as the station's living quarters. Instead, the sleep stations are now spread throughout the station.[136] The US Interim Control Module and ISS Propulsion Module would have replaced the functions of Zvezda in case of a launch failure.[137] Two Russian Research Modules were planned for scientific research.[138] They would have docked to a Russian Universal Docking Module.[139] The Russian Science Power Platform would have supplied power to the Russian Orbital Segment independent of the ITS solar arrays.

Unpressurised elements

ISS Truss Components breakdown showing Trusses and all ORUs in situ

The ISS has a large number of external components that do not require pressurisation. The largest of these is the Integrated Truss Structure (ITS), to which the station's main solar arrays and thermal radiators are mounted.[140] The ITS consists of ten separate segments forming a structure 108.5 m (356 ft) long.[5]

The station in its complete form has several smaller external components, such as the six robotic arms, the three External Stowage Platforms (ESPs) and four ExPRESS Logistics Carriers (ELCs).[141][142] While these platforms allow experiments (including MISSE, the STP-H3 and the Robotic Refueling Mission) to be deployed and conducted in the vacuum of space by providing electricity and processing experimental data locally, their primary function is to store spare Orbital Replacement Units (ORUs). ORUs are parts that can be replaced when they fail or pass their design life. Examples of ORUs include pumps, storage tanks, antennas and battery units. Such units are replaced either by astronauts during EVA or by robotic arms. Spare parts were routinely transported to and from the station via Space Shuttle resupply missions, with a heavy emphasis on ORU transport once the NASA Shuttle approached retirement.[143] Several shuttle missions were dedicated to the delivery of ORUs, including STS-129,[144] STS-133[145] and STS-134.[146] As of January 2011, only one other mode of transportation of ORUs had been utilised – the Japanese cargo vessel HTV-2 – which delivered an FHRC and CTC-2 via its Exposed Pallet (EP).[147][needs update]

Construction of the Integrated Truss Structure over New Zealand.

There are also smaller exposure facilities mounted directly to laboratory modules; the Kibō Exposed Facility serves as an external 'porch' for the Kibō complex,[148] and a facility on the European Columbus laboratory provides power and data connections for experiments such as the European Technology Exposure Facility[149][150] and the Atomic Clock Ensemble in Space.[151] A remote sensing instrument, SAGE III-ISS, was delivered to the station in 2014 aboard a Dragon capsule, and the NICER experiment is scheduled to be delivered in 2016.[152][153] The largest such scientific payload externally mounted to the ISS is the Alpha Magnetic Spectrometer (AMS), a particle physics experiment launched on STS-134 in May 2011, and mounted externally on the ITS. The AMS measures cosmic rays to look for evidence of dark matter and antimatter.[154]

The commercial Bartolomeo External Payload Hosting Platform, manufactured by Airbus, is due to launch in May 2019 aboard a commercial ISS resupply vehicle and be attached to the European Columbus module. It will provide a further 12 external payload slots, supplementing the eight on the ExPRESS Logistics Carriers, ten on Kibō, and four on Columbus. The system is designed to be robotically serviced and will require no astronaut intervention. It is named after Christopher Columbus's younger brother.[155][156][157]

Robotic arms and cargo cranes

Commander Volkov stands on Pirs with his back to the Soyuz whilst operating the manual Strela crane holding photographer Kononenko. Zarya is seen to the left and Zvezda across the bottom of the image.
Dextre, like many of the station's experiments and robotic arms, can be operated from Earth and perform tasks while the crew sleeps.

The Integrated Truss Structure serves as a base for the station's primary remote manipulator system, called the Mobile Servicing System (MSS), which is composed of three main components. Canadarm2, the largest robotic arm on the ISS, has a mass of 1,800 kilograms (4,000 lb) and is used to dock and manipulate spacecraft and modules on the USOS, hold crew members and equipment in place during EVAs and move Dextre around to perform tasks.[158] Dextre is a 1,560 kg (3,440 lb) robotic manipulator with two arms, a rotating torso and has power tools, lights and video for replacing orbital replacement units (ORUs) and performing other tasks requiring fine control.[159] The Mobile Base System (MBS) is a platform which rides on rails along the length of the station's main truss. It serves as a mobile base for Canadarm2 and Dextre, allowing the robotic arms to reach all parts of the USOS.[160] To gain access to the Russian Segment a grapple fixture was added to Zarya on STS-134, so that Canadarm2 can inchworm itself onto the ROS.[161] Also installed during STS-134 was the 15 m (50 ft) Orbiter Boom Sensor System (OBSS), which had been used to inspect heat shield tiles on Space Shuttle missions and can be used on station to increase the reach of the MSS.[161] Staff on Earth or the station can operate the MSS components via remote control, performing work outside the station without space walks.

Japan's Remote Manipulator System, which services the Kibō Exposed Facility,[162] was launched on STS-124 and is attached to the Kibō Pressurised Module.[163] The arm is similar to the Space Shuttle arm as it is permanently attached at one end and has a latching end effector for standard grapple fixtures at the other.

The European Robotic Arm, which will service the Russian Orbital Segment, will be launched alongside the Multipurpose Laboratory Module in 2017.[164] The ROS does not require spacecraft or modules to be manipulated, as all spacecraft and modules dock automatically and may be discarded the same way. Crew use the two Strela (Russian: Стрела́; lit. Arrow) cargo cranes during EVAs for moving crew and equipment around the ROS. Each Strela crane has a mass of 45 kg (99 lb).

Station systems

Life support

The critical systems are the atmosphere control system, the water supply system, the food supply facilities, the sanitation and hygiene equipment, and fire detection and suppression equipment. The Russian Orbital Segment's life support systems are contained in the Zvezda service module. Some of these systems are supplemented by equipment in the USOS. The MLM Nauka laboratory has a complete set of life support systems.

Atmospheric control systems

A flowchart diagram showing the components of the ISS life support system.
The interactions between the components of the ISS Environmental Control and Life Support System (ECLSS)

The atmosphere on board the ISS is similar to the Earth's.[165] Normal air pressure on the ISS is 101.3 kPa (14.7 psi);[166] the same as at sea level on Earth. An Earth-like atmosphere offers benefits for crew comfort, and is much safer than the alternative, a pure oxygen atmosphere, because of the increased risk of a fire such as that responsible for the deaths of the Apollo 1 crew.[167] Earth-like atmospheric conditions have been maintained on all Russian and Soviet spacecraft.[168]

The Elektron system aboard Zvezda and a similar system in Destiny generate oxygen aboard the station.[169] The crew has a backup option in the form of bottled oxygen and Solid Fuel Oxygen Generation (SFOG) canisters, a chemical oxygen generator system.[170] Carbon dioxide is removed from the air by the Vozdukh system in Zvezda. Other by-products of human metabolism, such as methane from the intestines and ammonia from sweat, are removed by activated charcoal filters.[170]

Part of the ROS atmosphere control system is the oxygen supply. Triple-redundancy is provided by the Elektron unit, solid fuel generators, and stored oxygen. The primary supply of oxygen is the Elektron unit which produces O
2
and H
2
by electrolysis of water and vents H2 overboard. The 1 kW system uses approximately one litre of water per crew member per day. This water is either brought from Earth or recycled from other systems. Mir was the first spacecraft to use recycled water for oxygen production. The secondary oxygen supply is provided by burning O
2
-producing Vika cartridges (see also ISS ECLSS). Each 'candle' takes 5–20 minutes to decompose at 450–500 °C, producing 600 litres of O
2
. This unit is manually operated.[171]

The US Orbital Segment has redundant supplies of oxygen, from a pressurised storage tank on the Quest airlock module delivered in 2001, supplemented ten years later by ESA-built Advanced Closed-Loop System (ACLS) in the Tranquility module (Node 3), which produces O
2
by electrolysis.[172] Hydrogen produced is combined with carbon dioxide from the cabin atmosphere and converted to water and methane.

Power and thermal control

Russian solar arrays, backlit by sunset
One of the eight truss mounted pairs of USOS solar arrays

Double-sided solar, or Photovoltaic, arrays provide electrical power for the ISS. These bifacial cells are more efficient and operate at a lower temperature than single-sided cells commonly used on Earth, by collecting sunlight on one side and light reflected off the Earth on the other.[173]

The Russian segment of the station, like the Space Shuttle and most spacecraft, uses 28 volt DC from four rotating solar arrays mounted on Zarya and Zvezda. The USOS uses 130–180 V DC from the USOS PV array, power is stabilised and distributed at 160 V DC and converted to the user-required 124 V DC. The higher distribution voltage allows smaller, lighter conductors, at the expense of crew safety. The ROS uses low voltage; the two station segments share power with converters.

The USOS solar arrays are arranged as four wing pairs, for a total production of 75 to 90 kilowatts.[174] These arrays normally track the sun to maximise power generation. Each array is about 375 m2 (4,036 sq ft) in area and 58 m (190 ft) long. In the complete configuration, the solar arrays track the sun by rotating the alpha gimbal once per orbit; the beta gimbal follows slower changes in the angle of the sun to the orbital plane. The Night Glider mode aligns the solar arrays parallel to the ground at night to reduce the significant aerodynamic drag at the station's relatively low orbital altitude.[175]

The station uses rechargeable nickel–hydrogen batteries (NiH
2
) for continuous power during the 35 minutes of every 90-minute orbit that it is eclipsed by the Earth. The batteries are recharged on the day side of the Earth. They have a 6.5-year lifetime (over 37,000 charge/discharge cycles) and will be regularly replaced over the anticipated 20-year life of the station.[176] As of 2017, the nickel–hydrogen batteries are being replaced by lithium-ion batteries, which are expected to last until the end of the ISS program.[177]

The station's large solar panels generate a high potential voltage difference between the station and the ionosphere. This could cause arcing through insulating surfaces and sputtering of conductive surfaces as ions are accelerated by the spacecraft plasma sheath. To mitigate this, plasma contactor units (PCU)s create current paths between the station and the ambient plasma field.[178]

ISS External Active Thermal Control System (EATCS) diagram

The station's systems and experiments consume a large amount of electrical power, almost all of which converts to heat. Little of this heat dissipates through the walls of the station. To keep the internal ambient temperature within comfortable, workable limits, ammonia is continuously pumped through pipes throughout the station to collect heat, then into external radiators to emit infrared radiation, then back into the station.[179] Thus this passive thermal control system (PTCS) is made of external surface materials, insulation such as MLI, and heat pipes.

If the PTCS cannot keep up with the heat load, an External Active Thermal Control System (EATCS) maintains the temperature. The EATCS consists of an internal, non-toxic, water coolant loop used to cool and dehumidify the atmosphere, which transfers collected heat into an external liquid ammonia loop that can withstand the much lower temperature of space, and is circulated through radiators to remove the heat. The EATCS provides cooling for all the US pressurised modules, including Kibō and Columbus, as well as the main power distribution electronics of the S0, S1 and P1 trusses. It can reject up to 70 kW. This is much more than the 14 kW of the Early External Active Thermal Control System (EEATCS) via the Early Ammonia Servicer (EAS), which was launched on STS-105 and installed onto the P6 Truss.[180]

Communications and computers

Diagram showing communications links between the ISS and other elements.
The communications systems used by the ISS
* Luch satellite and the Space Shuttle are not currently in use

Radio communications provide telemetry and scientific data links between the station and Mission Control Centres. Radio links are also used during rendezvous and docking procedures and for audio and video communication between crew members, flight controllers and family members. As a result, the ISS is equipped with internal and external communication systems used for different purposes.[181]

The Russian Orbital Segment communicates directly with the ground via the Lira antenna mounted to Zvezda.[16][182] The Lira antenna also has the capability to use the Luch data relay satellite system.[16] This system, used for communications with Mir, fell into disrepair during the 1990s, and so is no longer in use,[16][183][184] although two new Luch satellites—Luch-5A and Luch-5B—were launched in 2011 and 2012 respectively to restore the operational capability of the system.[185] Another Russian communications system is the Voskhod-M, which enables internal telephone communications between Zvezda, Zarya, Pirs, Poisk and the USOS, and also provides a VHF radio link to ground control centres via antennas on Zvezda's exterior.[186]

The US Orbital Segment (USOS) makes use of two separate radio links mounted in the Z1 truss structure: the S band (used for audio) and Ku band (used for audio, video and data) systems. These transmissions are routed via the United States Tracking and Data Relay Satellite System (TDRSS) in geostationary orbit, which allows for almost continuous real-time communications with NASA's Mission Control Center (MCC-H) in Houston.[10][16][181] Data channels for the Canadarm2, European Columbus laboratory and Japanese Kibō modules are routed via the S band and Ku band systems, although the European Data Relay System and a similar Japanese system will eventually complement the TDRSS in this role.[10][187] Communications between modules are carried on an internal digital wireless network.[188]

Laptop computers surround the Canadarm2 console.

UHF radio is used by astronauts and cosmonauts conducting EVAs. UHF is used by other spacecraft that dock to or undock from the station, such as Soyuz, Progress, HTV, ATV and the Space Shuttle (except the shuttle also makes use of the S band and Ku band systems via TDRSS), to receive commands from Mission Control and ISS crewmembers.[16] Automated spacecraft are fitted with their own communications equipment; the ATV uses a laser attached to the spacecraft and equipment attached to Zvezda, known as the Proximity Communications Equipment, to accurately dock to the station.[189][190]

The ISS is equipped with approximately 100 IBM and Lenovo ThinkPad model A31 and T61P laptop computers. Each computer is a commercial off-the-shelf purchase which is then modified for safety and operation including updates to connectors, cooling and power to accommodate the station's 28V DC power system and weightless environment. Heat generated by the laptops does not rise but stagnates around the laptop, so additional forced ventilation is required. Laptops aboard the ISS are connected to the station's wireless LAN via Wi-Fi and to the ground via Ku band. This provides speeds of 10 Mbit/s to and 3 Mbit/s from the station, comparable to home DSL connection speeds.[191][192]

The operating system used for key station functions is the Debian Linux distribution.[193] The migration from Microsoft Windows was made in May 2013 for reasons of reliability, stability and flexibility.[194]

Station operations

Expeditions and private flights

See also the list of International Space Station expeditions (professional crew), space tourism (private travellers), and the list of human spaceflights to the ISS (both).

Zarya and Unity were entered for the first time on 10 December 1998.
Soyuz TM-31 being prepared to bring the first resident crew to the station in October 2000
ISS was slowly assembled over a decade of spaceflights and crews

Each permanent crew is given an expedition number. Expeditions run up to six months, from launch until undocking, an 'increment' covers the same time period, but includes cargo ships and all activities. Expeditions 1 to 6 consisted of 3 person crews, Expeditions 7 to 12 were reduced to the safe minimum of two following the destruction of the NASA Shuttle Columbia. From Expedition 13 the crew gradually increased to 6 around 2010.[195][196] With the arrival of the American Commercial Crew vehicles in the middle of the 2010s, expedition size may be increased to seven crew members, the number ISS is designed for.[197][198]

Gennady Padalka, member of Expeditions 9, 19/20, 31/32, and 43/44, and Commander of Expedition 11, has spent more time in space than anyone else, a total of 878 days, 11 hours, and 29 minutes.[199] Peggy Whitson has spent the most time in space of any American, totaling 665 days, 22 hours, and 22 minutes during her time on Expeditions 5, 16, and 50/51/52.[200]

Travellers who pay for their own passage into space are termed spaceflight participants by Roscosmos and NASA, and are sometimes referred to as space tourists, a term they generally dislike.[note 1] All seven were transported to the ISS on Russian Soyuz spacecraft. When professional crews change over in numbers not divisible by the three seats in a Soyuz, and a short-stay crewmember is not sent, the spare seat is sold by MirCorp through Space Adventures. When the space shuttle retired in 2011, and the station's crew size was reduced to 6, space tourism was halted, as the partners relied on Russian transport seats for access to the station. Soyuz flight schedules increase after 2013, allowing 5 Soyuz flights (15 seats) with only two expeditions (12 seats) required.[206] The remaining seats are sold for around US$40 million to members of the public who can pass a medical exam. ESA and NASA criticised private spaceflight at the beginning of the ISS, and NASA initially resisted training Dennis Tito, the first man to pay for his own passage to the ISS.[note 2]

Anousheh Ansari became the first Iranian in space and the first self-funded woman to fly to the station. Officials reported that her education and experience make her much more than a tourist, and her performance in training had been "excellent."[207] Ansari herself dismisses the idea that she is a tourist. She did Russian and European studies involving medicine and microbiology during her 10-day stay. The documentary Space Tourists follows her journey to the station, where she fulfilled "an age-old dream of man: to leave our planet as a "normal person" and travel into outer space."[208]

In 2008, spaceflight participant Richard Garriott placed a geocache aboard the ISS during his flight.[209] This is currently the only non-terrestrial geocache in existence.[210] At the same time, the Immortality Drive, an electronic record of eight digitised human DNA sequences, was placed aboard the ISS.[211]

Orbit

Graph showing the changing altitude of the ISS from November 1998 until January 2009
Animation of ISS orbit from a North American geostationary point of view (sped up 1800 times)
Orbits of the ISS, shown in April 2013

The ISS is maintained in a nearly circular orbit with a minimum mean altitude of 330 km (205 mi) and a maximum of 410 km (255 mi), in the centre of the thermosphere, at an inclination of 51.6 degrees to Earth's equator, necessary to ensure that Russian Soyuz and Progress spacecraft launched from the Baikonur Cosmodrome may be safely launched to reach the station. Spent rocket stages must be dropped into uninhabited areas and this limits the directions rockets can be launched from the spaceport.[212][213] It travels at an average speed of 27,724 kilometres per hour (17,227 mph), and completes 15.54 orbits per day (93 minutes per orbit).[3][15] The station's altitude was allowed to fall around the time of each NASA shuttle mission. Orbital boost burns would generally be delayed until after the shuttle's departure. This allowed shuttle payloads to be lifted with the station's engines during the routine firings, rather than have the shuttle lift itself and the payload together to a higher orbit. This trade-off allowed heavier loads to be transferred to the station. After the retirement of the NASA shuttle, the nominal orbit of the space station was raised in altitude.[214][215] Other, more frequent supply ships do not require this adjustment as they are substantially lighter vehicles.[32][216]

Orbital boosting can be performed by the station's two main engines on the Zvezda service module, or Russian or European spacecraft docked to Zvezda's aft port. The ATV has been designed with the possibility of adding a second docking port to its other end, allowing it to remain at the ISS and still allow other craft to dock and boost the station. It takes approximately two orbits (three hours) for the boost to a higher altitude to be completed.[216] Maintaining ISS altitude uses about 7.5 tonnes of chemical fuel per annum[217] at an annual cost of about $210 million.[218]

In December 2008 NASA signed an agreement with the Ad Astra Rocket Company which may result in the testing on the ISS of a VASIMR plasma propulsion engine.[219] This technology could allow station-keeping to be done more economically than at present.[220][221]

The Russian Orbital Segment contains the Data Management System, which handles Guidance, Navigation and Control (ROS GNC) for the entire station.[97] Initially, Zarya, the first module of the station, controlled the station until a short time after the Russian service module Zvezda docked and was transferred control. Zvezda contains the ESA built DMS-R Data Management System.[222] Using two fault-tolerant computers (FTC), Zvezda computes the station's position and orbital trajectory using redundant Earth horizon sensors, Solar horizon sensors as well as Sun and star trackers. The FTCs each contain three identical processing units working in parallel and provide advanced fault-masking by majority voting.

Orientation

Zvezda uses gyroscopes (reaction wheels) and thrusters to turn itself around. Gyroscopes do not require propellant, rather they use electricity to 'store' momentum in flywheels by turning in the opposite direction to the station's movement. The USOS has its own computer controlled gyroscopes to handle the extra mass of that section. When gyroscopes 'saturate', thrusters are used to cancel out the stored momentum. During Expedition 10, an incorrect command was sent to the station's computer, using about 14 kilograms of propellant before the fault was noticed and fixed. When attitude control computers in the ROS and USOS fail to communicate properly, it can result in a rare 'force fight' where the ROS GNC computer must ignore the USOS counterpart, which has no thrusters.[223][224][225] When an ATV, NASA Shuttle, or Soyuz is docked to the station, it can also be used to maintain station attitude such as for troubleshooting. Shuttle control was used exclusively during installation of the S3/S4 truss, which provides electrical power and data interfaces for the station's electronics.[226]

Mission controls

The components of the ISS are operated and monitored by their respective space agencies at mission control centres across the globe, including:

A world map highlighting the locations of space centres. See adjacent text for details.
Space centres involved with the ISS programme

Repairs

Spare parts are called ORUs; some are externally stored on pallets called ELCs and ESPs.

Orbital Replacement Units (ORUs) are spare parts that can be readily replaced when a unit either passes its design life or fails. Examples of ORUs are pumps, storage tanks, controller boxes, antennas, and battery units. Some units can be replaced using robotic arms. Many are stored outside the station, either on small pallets called ExPRESS Logistics Carriers (ELCs) or share larger platforms called External Stowage Platforms which also hold science experiments. Both kinds of pallets have electricity as many parts which could be damaged by the cold of space require heating. The larger logistics carriers also have computer local area network connections (LAN) and telemetry to connect experiments. A heavy emphasis on stocking the USOS with ORU's occurred around 2011, before the end of the NASA shuttle programme, as its commercial replacements, Cygnus and Dragon, carry one tenth to one quarter the payload.

Two black and orange solar arrays, shown uneven and with a large tear visible. A crew member in a spacesuit, attached to the end of a robotic arm, holds a latticework between two solar sails.
While anchored on the end of the OBSS during STS-120, astronaut Scott Parazynski performs makeshift repairs to a US solar array which damaged itself when unfolding.
Mike Hopkins on his Christmas Eve spacewalk

Unexpected problems and failures have impacted the station's assembly time-line and work schedules leading to periods of reduced capabilities and, in some cases, could have forced abandonment of the station for safety reasons, had these problems not been resolved. During STS-120 in 2007, following the relocation of the P6 truss and solar arrays, it was noted during the redeployment of the array that it had become torn and was not deploying properly.[227] An EVA was carried out by Scott Parazynski, assisted by Douglas Wheelock. The men took extra precautions to reduce the risk of electric shock, as the repairs were carried out with the solar array exposed to sunlight.[228] The issues with the array were followed in the same year by problems with the starboard Solar Alpha Rotary Joint (SARJ), which rotates the arrays on the starboard side of the station. Excessive vibration and high-current spikes in the array drive motor were noted, resulting in a decision to substantially curtail motion of the starboard SARJ until the cause was understood. Inspections during EVAs on STS-120 and STS-123 showed extensive contamination from metallic shavings and debris in the large drive gear and confirmed damage to the large metallic race ring at the heart of the joint, and so the joint was locked to prevent further damage.[229] Repairs to the joint were carried out during STS-126 with lubrication of both joints and the replacement of 11 out of 12 trundle bearings on the joint.[230][231]

2009 saw damage to the S1 radiator, one of the components of the station's cooling system. The problem was first noticed in Soyuz imagery in September 2008, but was not thought to be serious.[232] The imagery showed that the surface of one sub-panel has peeled back from the underlying central structure, possibly because of micro-meteoroid or debris impact. It is also known that a Service Module thruster cover, jettisoned during an EVA in 2008, had struck the S1 radiator, but its effect, if any, has not been determined. On 15 May 2009 the damaged radiator panel's ammonia tubing was mechanically shut off from the rest of the cooling system by the computer-controlled closure of a valve. The same valve was used immediately afterwards to vent the ammonia from the damaged panel, eliminating the possibility of an ammonia leak from the cooling system via the damaged panel.[232]

Early on 1 August 2010, a failure in cooling Loop A (starboard side), one of two external cooling loops, left the station with only half of its normal cooling capacity and zero redundancy in some systems.[233][234][235] The problem appeared to be in the ammonia pump module that circulates the ammonia cooling fluid. Several subsystems, including two of the four CMGs, were shut down.

Planned operations on the ISS were interrupted through a series of EVAs to address the cooling system issue. A first EVA on 7 August 2010, to replace the failed pump module, was not fully completed because of an ammonia leak in one of four quick-disconnects. A second EVA on 11 August successfully removed the failed pump module.[236][237] A third EVA was required to restore Loop A to normal functionality.[238][239]

The USOS's cooling system is largely built by the American company Boeing,[240] which is also the manufacturer of the failed pump.[241]

An air leak from the USOS in 2004,[242] the venting of fumes from an Elektron oxygen generator in 2006,[243] and the failure of the computers in the ROS in 2007 during STS-117 left the station without thruster, Elektron, Vozdukh and other environmental control system operations, the root cause of which was found to be condensation inside the electrical connectors leading to a short-circuit.[citation needed]

The four Main Bus Switching Units (MBSUs, located in the S0 truss), control the routing of power from the four solar array wings to the rest of the ISS. In late 2011 MBSU-1, while still routing power correctly, ceased responding to commands or sending data confirming its health, and was scheduled to be swapped out at the next available EVA. In each MBSU, two power channels feed 160V DC from the arrays to two DC-to-DC power converters (DDCUs) that supply the 124V power used in the station. A spare MBSU was already on board, but 30 August 2012 EVA failed to be completed when a bolt being tightened to finish installation of the spare unit jammed before electrical connection was secured.[244] The loss of MBSU-1 limits the station to 75% of its normal power capacity, requiring minor limitations in normal operations until the problem can be addressed.

On 5 September 2012, in a second, 6 hr, EVA to replace MBSU-1, astronauts Sunita Williams and Akihiko Hoshide successfully restored the ISS to 100% power.[245]

On 24 December 2013, astronauts made a rare Christmas Eve space walk, installing a new ammonia pump for the station's cooling system. The faulty cooling system had failed earlier in the month, halting many of the station's science experiments. Astronauts had to brave a "mini blizzard" of ammonia while installing the new pump. It was only the second Christmas Eve spacewalk in NASA history.[246]

Fleet operations

ISS orbit with calendar of expeditions and modules through 2014
Dragon and Cygnus cargo vessels were docked at the ISS together for the first time in April 2016.

A wide variety of manned and unmanned spacecraft have supported the station's activities. More than 60 Progress spacecraft, including M-MIM2 and M-SO1 which installed modules, and more than 40 Soyuz spacecraft have flown to the ISS. 37 flights of the retired NASA Space Shuttle were made to the station.[4] There have been five European ATV, six Japanese HTV 'Kounotori', fourteen SpaceX Dragon and seven Orbital ATK Cygnus flights.

Currently docked/berthed

See also the list of professional crew, private travellers, both or just unmanned spaceflights.

Key
  Uncrewed cargoships are in light blue
  Crewed spacecraft are in light green
Spacecraft and mission[247] Location Arrival (UTC) Departure (planned)[247]
Russia Soyuz MS-07 Expedition 54/55 Rassvet nadir 19 December 2017 3 June 2018
Russia Progress MS-08 Progress 69 cargo Zvezda aft 15 February 2018[248] 26 August 2018
Russia Soyuz MS-08 Expedition 55/56 Poisk zenith 23 March 2018[249] 27 August 2018
United States CRS-14 Dragon CRS-14 cargo Harmony nadir 4 April 2018 2 May 2018[250]

Scheduled missions

  • All dates are UTC. Dates are the earliest possible dates and may change.
  • Forward ports are at the front of the station according to its normal direction of travel and orientation (attitude). Aft is at the rear of the station, used by spacecraft boosting the station's orbit. Nadir is closest the Earth, Zenith is on top.
  • Spacecraft operated by government agencies are indicated with 'Gov' and under commercial arrangements are indicated with 'Com'.
Key
  Uncrewed cargo ships are in light blue colour
  Crewed spacecraft are in light green colour
  Modules are in wheat colour
Launch date (NET) Launch vehicle Launch site Launch service provider Payload Spacecraft Mission Docking / berthing port Ref.
4 April 2018 Falcon 9 FT United States LC-39A or SLC-40 United States SpaceX CRS-14 Dragon Dragon 14 cargo Harmony nadir [251]
1 May 2018 Antares 230 United States MARS Pad 0A United States Orbital ATK CRS OA-9E Cygnus Cygnus 9 cargo Unity nadir [252]
6 June 2018 Soyuz-FG Kazakhstan Baikonur Pad 1/5 Russia Roscosmos Soyuz MS-09 (55S) Soyuz Expedition 56/57 Rassvet nadir [252]
9 June 2018 Falcon 9 United States LC-39A or SLC-40 United States SpaceX CRS-15 Dragon Dragon 15 cargo Harmony nadir [252]
10 July 2018 Soyuz 2.1a Kazakhstan Baikonur Site 31/6 Russia Roscosmos Progress MS-09 Progress Progress 70 cargo Pirs nadir [252]
16 August 2018 H-IIB Japan Tanegashima Pad Y2 Japan JAXA Kounotori 7 HTV HTV 7 cargo Harmony nadir [247]
August 2018 Falcon 9 B5 United States Kennedy LC-39A United States SpaceX SpX-DM1 Dragon 2 Uncrewed test flight Harmony [247]
August 2018 Atlas V N22 United States Canaveral SLC-41 United States Boeing Boe-OFT Starliner Uncrewed test flight Harmony [247]
14 September 2018 Soyuz-FG Kazakhstan Baikonur Pad 1/5 Russia Roscosmos Soyuz MS-10 (56S) Soyuz Expedition 57/58 Poisk zenith [247]
11 October 2018 Soyuz 2.1a Kazakhstan Baikonur Site 31/6 Russia Roscosmos Progress MS-10 Progress Progress 71 cargo Zvezda aft [247]
10 November 2018 Antares 230 United States MARS Pad 0A United States Orbital ATK CRS OA-10E Cygnus Cygnus 10 cargo Unity nadir [252]
15 November 2018 Soyuz-FG Kazakhstan Baikonur Pad 1/5 Russia Roscosmos Soyuz MS-11 (57S) Soyuz Expedition 58/59 Rassvet nadir [247]
16 November 2018 Falcon 9 United States LC-39A or SLC-40 United States SpaceX CRS-16 Dragon Dragon 16 cargo Harmony nadir [247]
20 December 2018 Proton M Kazakhstan Baikonur Russia Roscosmos Nauka N/A Module assembly Zvezda nadir [253][254]
December 2018 Falcon 9 B5 United States Kennedy LC-39A United States SpaceX SpX-DM2 Dragon 2 Crewed test flight Harmony [247]
December 2018 Atlas V N22 United States Canaveral SLC-41 United States Boeing Boe-CFT Starliner Crewed test flight Harmony [247]
1 February 2019 Falcon 9 United States LC-39A or SLC-40 United States SpaceX CRS-17 Dragon Dragon 17 cargo Harmony nadir [247]
6 February 2019 Soyuz 2.1a Kazakhstan Baikonur Site 31/6 Russia Roscosmos Progress MS-11 Progress Progress 72 cargo Nauka nadir [247]
7 March 2019 Soyuz-FG Kazakhstan Baikonur Pad 1/5 Russia Roscosmos Soyuz MS-12 (58S) Soyuz Expedition 59/60 Poisk zenith [247]
April 2019 Antares 230 United States MARS Pad 0A United States Orbital ATK CRS OA-11 Cygnus Cygnus 11 cargo Unity nadir [247]
May 2019 Falcon 9 United States LC-39A or SLC-40 United States SpaceX CRS-18 Dragon Dragon 18 cargo Harmony nadir [247]
May 2019 Soyuz 2.1a Kazakhstan Baikonur Site 31/6 Russia Roscosmos Progress MS-12 Progress Progress 73 cargo Nauka nadir [253]
July 2019 H-IIB Japan Tanegashima Pad Y2 Japan JAXA Kounotori 8 HTV HTV 8 cargo Harmony nadir [247]
September 2019 Soyuz-FG Kazakhstan Baikonur Pad 1/5 Russia Roscosmos Soyuz MS-13 (59S) Soyuz Expedition 60/61 Rassvet nadir [247]
October 2019 Falcon 9 United States LC-39A or SLC-40 United States SpaceX CRS-19 Dragon Dragon 19 cargo Harmony nadir [247]
14 November 2019 Soyuz 2.1b Kazakhstan Baikonur Russia Roscosmos Uzlovoy Module Progress M-UM Module assembly Nauka [247]
Q4, 2019 Soyuz 2.1a Kazakhstan Baikonur Site 31/6 Russia Roscosmos Progress MS-13 Progress Progress 74 cargo Zvezda aft [253]

Docking

The Progress M-14M resupply vehicle as it approaches the ISS in 2012. Over 50 unpiloted Progress spacecraft have been sent with supplies during the lifetime of the station.

All Russian spacecraft and self-propelled modules are able to rendezvous and dock to the space station without human intervention using the Kurs docking system. Radar allows these vehicles to detect and intercept ISS from over 200 kilometres away. The European ATV uses star sensors and GPS to determine its intercept course. When it catches up it uses laser equipment to optically recognise Zvezda, along with the Kurs system for redundancy. Crew supervise these craft, but do not intervene except to send abort commands in emergencies. The Japanese H-II Transfer Vehicle parks itself in progressively closer orbits to the station, and then awaits 'approach' commands from the crew, until it is close enough for a robotic arm to grapple and berth the vehicle to the USOS. The American Space Shuttle was manually docked, and on missions with a cargo container, the container would be berthed to the Station with the use of manual robotic arms. Berthed craft can transfer International Standard Payload Racks. Japanese spacecraft berth for one to two months. Russian and European Supply craft can remain at the ISS for six months,[255][256] allowing great flexibility in crew time for loading and unloading of supplies and trash. NASA Shuttles could remain docked for 11–12 days.[257]

A side-on view of the ISS showing a Space Shuttle docked to the forward end, an ATV to the aft end and Soyuz & Progress spacecraft projecting from the Russian segment.
Space Shuttle Endeavour, ATV-2, Soyuz TMA-21 and Progress M-10M docked to the ISS, as seen from the departing Soyuz TMA-20

The American manual approach to docking allows greater initial flexibility and less complexity. The downside to this mode of operation is that each mission becomes unique and requires specialised training and planning, making the process more labour-intensive and expensive. The Russians pursued an automated methodology that used the crew in override or monitoring roles. Although the initial development costs were high, the system has become very reliable with standardisations that provide significant cost benefits in repetitive routine operations.[258] An automated approach could allow assembly of modules orbiting other worlds prior to crew arrival.

Soyuz spacecraft used for crew rotation also serve as lifeboats for emergency evacuation; they are replaced every six months and have been used once to remove excess crew after the Columbia disaster.[259] Expeditions require, on average, 2,722 kg of supplies, and as of 9 March 2011, crews had consumed a total of around 22,000 meals.[4] Soyuz crew rotation flights and Progress resupply flights visit the station on average two and three times respectively each year,[260] with the ATV and HTV planned to visit annually from 2010 onwards.[citation needed] Cygnus and Dragon were contracted to fly cargo to the station after retirement of the NASA Shuttle.[261][262]

From 26 February 2011 to 7 March 2011 four of the governmental partners (United States, ESA, Japan and Russia) had their spacecraft (NASA Shuttle, ATV, HTV, Progress and Soyuz) docked at the ISS, the only time this has happened to date.[263] On 25 May 2012, SpaceX became the world's first privately held company to send cargo, via the Dragon spacecraft, to the International Space Station.[264]

Launch and docking windows

Prior to a ship's docking to the ISS, navigation and attitude control (GNC) is handed over to the ground control of the ships' country of origin. GNC is set to allow the station to drift in space, rather than fire its thrusters or turn using gyroscopes. The solar panels of the station are turned edge-on to the incoming ships, so residue from its thrusters does not damage the cells. When a NASA Space Shuttle docked to the station, other ships were grounded, as the Shuttle's reinforced carbon-carbon wing leading edges, cameras, windows, and instruments were too much at risk from damage or contamination by thruster residue from other ships' movements.

Approximately 30% of NASA shuttle launch delays were caused by poor weather. Occasional priority was given to the Soyuz arrivals at the station where the Soyuz carried crew with time-critical cargoes such as biological experiment materials, also causing shuttle delays. Departure of the NASA shuttle was often delayed or prioritised according to weather over its two landing sites.[265] Whilst the Soyuz is capable of landing anywhere, anytime, its planned landing time and place is chosen to give consideration to helicopter pilots and ground recovery crew, to give acceptable flying weather and lighting conditions. Soyuz launches occur in adverse weather conditions, but the cosmodrome has been shut down on occasions when buried by snow drifts up to 6 metres in depth, hampering ground operations.

Life aboard

Crew activities

Crewmember peers out of a window

A typical day for the crew begins with a wake-up at 06:00, followed by post-sleep activities and a morning inspection of the station. The crew then eats breakfast and takes part in a daily planning conference with Mission Control before starting work at around 08:10. The first scheduled exercise of the day follows, after which the crew continues work until 13:05. Following a one-hour lunch break, the afternoon consists of more exercise and work before the crew carries out its pre-sleep activities beginning at 19:30, including dinner and a crew conference. The scheduled sleep period begins at 21:30. In general, the crew works ten hours per day on a weekday, and five hours on Saturdays, with the rest of the time their own for relaxation or work catch-up.[266]

The time zone used aboard the ISS is Coordinated Universal Time (UTC). The windows are covered at night hours to give the impression of darkness because the station experiences 16 sunrises and sunsets per day. During visiting space shuttle missions, the ISS crew mostly follows the shuttle's Mission Elapsed Time (MET), which is a flexible time zone based on the launch time of the shuttle mission.[267][268][269]

The station provides crew quarters for each member of the expedition's crew, with two 'sleep stations' in the Zvezda and four more installed in Harmony.[270][271] The American quarters are private, approximately person-sized soundproof booths. The Russian crew quarters include a small window, but provide less ventilation and sound proofing. A crew member can sleep in a crew quarter in a tethered sleeping bag, listen to music, use a laptop, and store personal items in a large drawer or in nets attached to the module's walls. The module also provides a reading lamp, a shelf and a desktop.[272][273][274] Visiting crews have no allocated sleep module, and attach a sleeping bag to an available space on a wall. It is possible to sleep floating freely through the station, but this is generally avoided because of the possibility of bumping into sensitive equipment.[275] It is important that crew accommodations be well ventilated; otherwise, astronauts can wake up oxygen-deprived and gasping for air, because a bubble of their own exhaled carbon dioxide has formed around their heads.[272]

Food

Nine astronauts seated around a table covered in open cans of food strapped down to the table. In the background a selection of equipment is visible, as well as the salmon-coloured walls of the Unity node.
The crews of STS-127 and Expedition 20 enjoy a meal inside Unity.

Most of the food aboard is vacuum sealed in plastic bags. Cans are rare because they are heavy and expensive to transport. Preserved food is not highly regarded by the crew, and taste is reduced in microgravity.[272] Therefore, effort is made to make the food more palatable, such as using more spices than in regular cooking. The crew looks forward to the arrival of any ships from Earth, as they bring fresh fruit and vegetables. Care is taken that foods do not create crumbs. Sauces are often used to avoid contaminating station equipment. Each crew member has individual food packages and cooks them using the on-board galley. The galley features two food warmers, a refrigerator added in November 2008, and a water dispenser that provides both heated and unheated water.[273] Drinks are provided as dehydrated powder that is mixed with water before consumption.[273][274] Drinks and soups are sipped from plastic bags with straws. Solid food is eaten with a knife and fork attached to a tray with magnets to prevent them from floating away. Any food that floats away, including crumbs, must be collected to prevent it from clogging the station's air filters and other equipment.[274]

Hygiene

Space toilet in the Zvezda service module

Showers on space stations were introduced in the early 1970s on Skylab and Salyut 3.[276]:139 By Salyut 6, in the early 1980s, the crew complained of the complexity of showering in space, which was a monthly activity.[277] The ISS does not feature a shower; instead, crewmembers wash using a water jet and wet wipes, with soap dispensed from a toothpaste tube-like container. Crews are also provided with rinseless shampoo and edible toothpaste to save water.[275][278]

There are two space toilets on the ISS, both of Russian design, located in Zvezda and Tranquility.[273] These Waste and Hygiene Compartments use a fan-driven suction system similar to the Space Shuttle Waste Collection System. Astronauts first fasten themselves to the toilet seat, which is equipped with spring-loaded restraining bars to ensure a good seal.[272] A lever operates a powerful fan and a suction hole slides open: the air stream carries the waste away. Solid waste is collected in individual bags which are stored in an aluminium container. Full containers are transferred to Progress spacecraft for disposal.[273][279] Liquid waste is evacuated by a hose connected to the front of the toilet, with anatomically correct "urine funnel adapters" attached to the tube so that men and women can use the same toilet. The diverted urine is collected and transferred to the Water Recovery System, where it is recycled into drinking water.[274]

Crew health and safety

Radiation

The ISS is partially protected from the space environment by Earth's magnetic field. From an average distance of about 70,000 km (43,000 mi), depending on Solar activity, the magnetosphere begins to deflect solar wind around Earth and ISS. Solar flares are still a hazard to the crew, who may receive only a few minutes warning. In 2005, during the initial 'proton storm' of an X-3 class solar flare, the crew of Expedition 10 took shelter in a more heavily shielded part of the ROS designed for this purpose.[280][281]

Video of the Aurora Australis taken by the crew of Expedition 28 on an ascending pass from south of Madagascar to just north of Australia over the Indian Ocean.

Subatomic charged particles, primarily protons from cosmic rays and solar wind, are normally absorbed by Earth's atmosphere. When they interact in sufficient quantity, their effect is visible to the naked eye in a phenomenon called an aurora. Outside Earth's atmosphere, crews are exposed to about 1 millisievert each day, which is about a year of natural exposure on Earth. This results in a higher risk of cancer for astronauts. Radiation can penetrate living tissue and damage the DNA and chromosomes of lymphocytes. These cells are central to the immune system, and so any damage to them could contribute to the lower immunity experienced by astronauts. Radiation has also been linked to a higher incidence of cataracts in astronauts. Protective shielding and drugs may lower risks to an acceptable level.[47]

Radiation levels on the ISS are about five times greater than those experienced by airline passengers and crew. Earth's electromagnetic field provides almost the same level of protection against solar and other radiation in low Earth orbit as in the stratosphere. For example, on a 12-hour flight an airline passenger would experience 0.1 millisieverts of radiation, or a rate of 0.2 millisieverts per day; only 1/5 the rate experienced by an astronaut in LEO. Additionally, airline passengers experience this level of radiation for a few hours of flight, while ISS crew are exposed for their whole stay.[282]

Stress

Cosmonaut Nikolai Budarin at work inside Zvezda service module crew quarters

There is considerable evidence that psychosocial stressors are among the most important impediments to optimal crew morale and performance.[283] Cosmonaut Valery Ryumin wrote in his journal during a particularly difficult period on board the Salyut 6 space station: "All the conditions necessary for murder are met if you shut two men in a cabin measuring 18 feet by 20 and leave them together for two months."

NASA's interest in psychological stress caused by space travel, initially studied when their manned missions began, was rekindled when astronauts joined cosmonauts on the Russian space station Mir. Common sources of stress in early American missions included maintaining high performance under public scrutiny and isolation from peers and family. The latter is still often a cause of stress on the ISS, such as when the mother of NASA Astronaut Daniel Tani died in a car accident, and when Michael Fincke was forced to miss the birth of his second child.

A study of the longest spaceflight concluded that the first three weeks are a critical period where attention is adversely affected because of the demand to adjust to the extreme change of environment.[284] Skylab's three crews remained one, two, and three months respectively, long term crews on Salyut 6, Salyut 7, and the ISS last about five to six months and Mir's expeditions often lasted longer. The ISS working environment includes further stress caused by living and working in cramped conditions with people from very different cultures who speak a different language. First-generation space stations had crews who spoke a single language; second and third-generation stations have crew from many cultures who speak many languages. The ISS is unique because visitors are not classed automatically into 'host' or 'guest' categories as with previous stations and spacecraft, and may not suffer from feelings of isolation in the same way. Crew members with a military pilot background and those with an academic science background or teachers and politicians may have problems understanding each other's jargon and worldview.

Medical

Astronaut Frank De Winne is attached to the TVIS treadmill with bungee cords aboard the International Space Station
Astronaut Frank De Winne is attached to the TVIS treadmill with bungee cords aboard the International Space Station

Medical effects of long-term weightlessness include muscle atrophy, deterioration of the skeleton (osteopenia), fluid redistribution, a slowing of the cardiovascular system, decreased production of red blood cells, balance disorders, and a weakening of the immune system. Lesser symptoms include loss of body mass, and puffiness of the face.[47]

Sleep is disturbed on the ISS regularly because of mission demands, such as incoming or departing ships. Sound levels in the station are unavoidably high; because the atmosphere is unable to thermosiphon, fans are required at all times to allow processing of the atmosphere which would stagnate in the freefall (zero-g) environment.

To prevent some of these adverse physiological effects, the station is equipped with two treadmills (including the COLBERT), and the aRED (advanced Resistive Exercise Device) which enables various weightlifting exercises which add muscle but do not compensate for or raise astronauts' reduced bone density,[285] and a stationary bicycle; each astronaut spends at least two hours per day exercising on the equipment.[272][273] Astronauts use bungee cords to strap themselves to the treadmill.[286][287]

Microbiological environmental hazards

Hazardous moulds which can foul air and water filters may develop aboard space stations. They can produce acids which degrade metal, glass, and rubber. They can also be harmful for the crew's health. Microbiological hazards have led to a development of the LOCAD-PTS that can identify common bacteria and moulds faster than standard methods of culturing, which may require a sample to be sent back to Earth.[288] As of 2012, 76 types of unregulated micro-organisms have been detected on the ISS.[289]

Reduced humidity, paint with mould-killing chemicals, and antiseptic solutions can be used to prevent contamination in space stations. All materials used in the ISS are tested for resistance against fungi.[290]

Threat of orbital debris

A 7 g object (shown in centre) shot at 7 km/s (23,000 ft/s), the orbital velocity of the ISS, made this 15 cm (5.9 in) crater in a solid block of aluminium.
Radar-trackable objects, including debris, with distinct ring of geostationary satellites

At the low altitudes at which the ISS orbits, there is a variety of space debris,[291] consisting of different objects including entire spent rocket stages, defunct satellites, explosion fragments—including materials from anti-satellite weapon tests, paint flakes, slag from solid rocket motors, and coolant released by US-A nuclear-powered satellites. These objects, in addition to natural micrometeoroids,[292] are a significant threat. Large objects could destroy the station, but are less of a threat because their orbits can be predicted.[293][294] Objects too small to be detected by optical and radar instruments, from approximately 1 cm down to microscopic size, number in the trillions. Despite their small size, some of these objects are a threat because of their kinetic energy and direction in relation to the station. Spacesuits of spacewalking crew could puncture, causing exposure to vacuum.[295]

Ballistic panels, also called micrometeorite shielding, are incorporated into the station to protect pressurised sections and critical systems. The type and thickness of these panels depend on their predicted exposure to damage. The station's shields and structure have different designs on the ROS and the USOS. On the USOS, a thin aluminium sheet is held apart from the hull and causes objects to shatter into a cloud before hitting the hull, thereby spreading the energy of impact. On the ROS, a carbon plastic honeycomb screen is spaced from the hull, an aluminium honeycomb screen is spaced from that, with a screen-vacuum thermal insulation covering, and glass cloth over the top. It is about 50% less likely to be punctured, and crew move to the ROS when the station is under threat. Punctures on the ROS would be contained within the panels which are 70 cm square.

Example of risk management: A NASA model showing areas at high risk from impact for the International Space Station.

Space debris is tracked remotely from the ground, and the station crew can be notified.[296] This allows for a Debris Avoidance Manoeuvre (DAM) to be conducted, which uses thrusters on the Russian Orbital Segment to alter the station's orbital altitude, avoiding the debris. DAMs are not uncommon, taking place if computational models show the debris will approach within a certain threat distance. Eight DAMs had been performed prior to March 2009,[297] the first seven between October 1999 and May 2003.[298] Usually, the orbit is raised by one or two kilometres by means of an increase in orbital velocity of the order of 1 m/s. Unusually, there was a lowering of 1.7 km on 27 August 2008, the first such lowering for 8 years.[298][299] There were two DAMs in 2009, on 22 March and 17 July.[300] If a threat from orbital debris is identified too late for a DAM to be safely conducted, the station crew close all the hatches aboard the station and retreat into their Soyuz spacecraft, so that they would be able to evacuate in the event the station was seriously damaged by the debris. This partial station evacuation has occurred on 13 March 2009, 28 June 2011, 24 March 2012 and 16 June 2015.[301][302]

End of mission

Many ISS resupply spacecraft have already undergone atmospheric re-entry, such as Jules Verne ATV

According to a 2009 report, Space Corporation Energia is considering methods to remove from the station some modules of the Russian Orbital Segment when the end of mission is reached and use them as a basis for a new station, called the Orbital Piloted Assembly and Experiment Complex (OPSEK). The modules under consideration for removal from the current ISS include the Multipurpose Laboratory Module (Nauka), currently scheduled to be launched in mid-2018, and other Russian modules which are planned to be attached to Nauka afterwards. Those modules would be within their useful lives in 2016 or 2020. The report presents a statement from an unnamed Russian engineer that, based on the experience from Mir, a 30-year life should be possible, except for micrometeorite damage, because the Russian modules have been built with on-orbit refurbishment in mind.[303]

According to the Outer Space Treaty, the United States and Russia are legally responsible for all modules they have launched.[304] In ISS planning, NASA examined options including returning the station to Earth via shuttle missions (deemed too expensive, as the USOS is not designed for disassembly and this would require at least 27 shuttle missions[305]), natural orbital decay with random reentry similar to Skylab, boosting the station to a higher altitude (which would delay reentry) and a controlled targeted de-orbit to a remote ocean area.[306]

A controlled deorbit into a remote ocean was found to be technically feasible only with Russia's assistance.[306] The Russian Space Agency has experience from de-orbiting the Salyut 4, 5, 6, 7 and Mir space stations; NASA's first intentional controlled de-orbit of a satellite (the Compton Gamma Ray Observatory) occurred in 2000.[307] As of late 2010, the preferred plan is to use a slightly modified Progress spacecraft to de-orbit the ISS.[308] This plan was seen as the simplest, cheapest and with the highest margin.[308] Skylab, the only space station built and launched entirely by the US, decayed from orbit slowly over 5 years, and no attempt was made to de-orbit it using a deorbital burn. Remains of Skylab hit populated areas of Esperance, Western Australia[309] without injuries or loss of life.

The Exploration Gateway Platform, a discussion by NASA and Boeing at the end of 2011, suggested using leftover USOS hardware and 'Zvezda 2' [sic] as a refuelling depot and service station located at one of the Earth-Moon Lagrange points, L1 or L2. The entire USOS cannot be reused and will be discarded, but some Russian modules are planned to be reused. Nauka, the Uzlovoy Module, two science power platforms and Rassvet, launched between 2010 and 2015 and joined to the ROS, may be separated to form OPSEK.[310] Nauka will be used in the station, whose main goal is supporting manned deep space exploration. OPSEK will orbit at a higher inclination of 71 degrees, allowing observation to and from all of the Russian Federation.

In February 2015, Roscosmos announced that it would remain a part of the ISS programme until 2024.[22] Nine months earlier—in response to US sanctions against Russia over the conflict in the Crimea—Russian Deputy Prime Minister Dmitry Rogozin had stated that Russia would reject a US request to prolong the orbiting station's use beyond 2020, and would only supply rocket engines to the US for non-military satellite launches.[311]

A proposed modification that would reuse some of the ISS American and European segments is to attach a VASIMR drive module to the vacated Node with its own onboard power source. This would allow long-term reliability testing of the concept for less cost than building a dedicated space station from scratch.[312]

On 28 March 2015, Russian sources announced that Roscosmos and NASA had agreed to collaborate on the development of a replacement for the current ISS.[25][26] Igor Komarov, the head of Russia's Roscosmos, made the announcement with NASA administrator Charles Bolden at his side. Komarov said "Roscosmos together with NASA will work on the programme of a future orbital station", "We agreed that the group of countries taking part in the ISS project will work on the future project of a new orbital station", "The first step is that the ISS will operate until 2024", and that Roscosmos and NASA "do not rule out that the station's flight could be extended".[313] In a statement provided to SpaceNews on 28 March, NASA spokesman David Weaver said the agency appreciated the Russian commitment to extending the ISS, but did not confirm any plans for a future space station.[28]

On 30 September 2015, Boeing's contract with NASA as prime contractor for the ISS was extended to 30 September 2020. Part of Boeing's services under the contract will relate to extending the station's primary structural hardware past 2020 to the end of 2028.[314]

Regarding extending the ISS, on 15 November 2016 General Director Vladimir Solntsev of RSC Energia stated "Maybe the ISS will receive continued resources. Today we discussed the possibility of using the station until 2028," and "Much will depend on the political moments in relations with the Americans, with the new administration. It will be discussed."[315][316]

Cost

The ISS has been described as the most expensive single item ever constructed.[317] In 2010 the cost was expected to be $150 billion. This includes NASA's budget of $58.7 billion (inflation-unadjusted) for the station from 1985 to 2015 ($72.4 billion in 2010 dollars), Russia's $12 billion, Europe's $5 billion, Japan's $5 billion, Canada's $2 billion, and the cost of 36 shuttle flights to build the station; estimated at $1.4 billion each, or $50.4 billion in total. Assuming 20,000 person-days of use from 2000 to 2015 by two- to six-person crews, each person-day would cost $7.5 million, less than half the inflation-adjusted $19.6 million ($5.5 million before inflation) per person-day of Skylab.[318]

International co-operation

Dated 29 January 1998
Participating countries
Former member

Sightings from Earth

The ISS and HTV photographed by Ralf Vandebergh
A time exposure of a station pass

Naked eye

The ISS is visible to the naked eye as a slow-moving, bright white dot because of reflected sunlight, and can be seen in the hours after sunset and before sunrise, when the station remains sunlit but the ground and sky are dark.[319] The ISS takes about 10 minutes to pass from one horizon to another, and will only be visible part of that time because of moving into or out of the Earth's shadow. Because of the size of its reflective surface area, the ISS is the brightest artificial object in the sky, excluding flares, with an approximate maximum magnitude of −4 when overhead (similar to Venus). The ISS, like many satellites including the Iridium constellation, can also produce flares of up to 8 or 16 times the brightness of Venus as sunlight glints off reflective surfaces.[320][321] The ISS is also visible in broad daylight, albeit with a great deal more difficulty.

Tools are provided by a number of websites such as Heavens-Above (see Live viewing below) as well as smartphone applications that use orbital data and the observer's longitude and latitude to indicate when the ISS will be visible (weather permitting), where the station will appear to rise, the altitude above the horizon it will reach and the duration of the pass before the station disappears either by setting below the horizon or entering into Earth's shadow.[322][323][324][325]

In November 2012 NASA launched its "Spot the Station" service, which sends people text and email alerts when the station is due to fly above their town.[326] The station is visible from 95% of the inhabited land on Earth, but is not visible from extreme northern or southern latitudes.[212]

Astrophotography

The ISS as it transits the sun during an eclipse (4 frame composite image)

Using a telescope-mounted camera to photograph the station is a popular hobby for astronomers,[327] whilst using a mounted camera to photograph the Earth and stars is a popular hobby for crew.[328] The use of a telescope or binoculars allows viewing of the ISS during daylight hours.[329]

Some amateur astronomers also use telescopic lenses to photograph the ISS while it transits the sun, sometimes doing so during an eclipse (and so the Sun, Moon, and ISS are all positioned approximately in a single line). One example is during the 21 August solar eclipse, where at one location in Wyoming, images of the ISS were captured during the eclipse.[330] Similar images were captured by NASA from a location in Washington.

Parisian engineer and astrophotographer Thierry Legault, known for his photos of spaceships transiting the Sun, travelled to Oman in 2011 to photograph the Sun, Moon and space station all lined up.[331] Legault, who received the Marius Jacquemetton award from the Société astronomique de France in 1999, and other hobbyists, use websites that predict when the ISS will transit the Sun or Moon and from what location those passes will be visible.

See also

Notes

  1. ^ Privately funded travellers who have objected to the term include Dennis Tito, the first such traveller (Associated Press, 8 May 2001), Mark Shuttleworth, founder of Ubuntu (Associated Press, The Spokesman Review, 6 January 2002, p. A4), Gregory Olsen and Richard Garriott.[201][202] Canadian astronaut Bob Thirsk said the term does not seem appropriate, referring to his crewmate, Guy Laliberté, founder of Cirque du Soleil.[203] Anousheh Ansari denied being a tourist[204] and took offence at the term.[205]
  2. ^ ESA director Jörg Feustel-Büechl said in 2001 that Russia had no right to send 'amateurs' to the ISS. A 'stand-off' occurred at the Johnson Space Centre between Commander Talgat Musabayev and NASA manager Robert Cabana. Cabana refused to train Dennis Tito, a member of Musabayev's crew along with Yuri Baturin. The commander argued that Tito had trained 700 hours in the last year and was as qualified as any NASA astronaut, and refused to allow his crew to be trained on the American portions of the station without Tito. Cabana stated training could not begin, and the commander returned with his crew to their hotel.

References

  1. ^ a b Garcia, Mark (1 October 2015). "About the Space Station: Facts and Figures". NASA. Retrieved 2 October 2015. 
  2. ^ "Space to Ground: Friending the ISS: 06/03/2016". YouTube.com. NASA. 3 June 2016. 
  3. ^ a b c d e f g h i j Peat, Chris (11 April 2018). "ISS – Orbit". Heavens-above.com. Retrieved 11 April 2018. 
  4. ^ a b c d "The ISS to Date". NASA. 9 March 2011. Retrieved 21 March 2011. 
  5. ^ a b c d NASA (18 February 2010). "On-Orbit Elements" (PDF). NASA. Archived from the original (PDF) on 29 October 2009. Retrieved 19 June 2010. 
  6. ^ "STS-132 Press Kit" (PDF). NASA. 7 May 2010. Retrieved 19 June 2010. 
  7. ^ "STS-133 FD 04 Execute Package" (PDF). NASA. 27 February 2011. Retrieved 27 February 2011. 
  8. ^ "Central Research Institute for Machine Building (FGUP TSNIIMASH) Control of manned and unmanned space vehicles from Mission Control Centre Moscow" (PDF). Russian Federal Space Agency. Retrieved 26 September 2011. [permanent dead link]
  9. ^ "NASA Sightings Help Page". Spaceflight.nasa.gov. 30 November 2011. Retrieved 1 May 2012. 
  10. ^ a b c d Catchpole, John E. (17 June 2008). The International Space Station: Building for the Future. Springer-Praxis. ISBN 978-0-387-78144-0. 
  11. ^ a b c "International Space Station Overview". ShuttlePressKit.com. 3 June 1999. Retrieved 17 February 2009. 
  12. ^ a b c d e "Fields of Research". NASA. 26 June 2007. Archived from the original on 23 January 2008. 
  13. ^ a b "Getting on Board". NASA. 26 June 2007. Archived from the original on 8 December 2007. 
  14. ^ a b "ISS Research Program". NASA. Archived from the original on 13 February 2009. Retrieved 27 February 2009. 
  15. ^ a b "Current ISS Tracking data". NASA. 15 December 2008. Retrieved 28 January 2009. 
  16. ^ a b c d e f g h i j k l m n o Gary Kitmacher (2006). Reference Guide to the International Space Station. Canada: Apogee Books. pp. 71–80. ISBN 978-1-894959-34-6. ISSN 1496-6921. 
  17. ^ "Human Spaceflight and Exploration—European Participating States". European Space Agency (ESA). 2009. Retrieved 17 January 2009. 
  18. ^ "International Space Station legal framework". European Space Agency (ESA). 19 November 2013. Retrieved 21 February 2015. 
  19. ^ Achenbach, Joel (8 January 2014). "NASA: International space station operation extended by Obama until at least 2024". The Washington Post. Retrieved 8 January 2014. 
  20. ^ Clark, Stephen (11 March 2010). "Space station partners set 2028 as certification goal". Spaceflight Now. Retrieved 1 June 2011. 
  21. ^ "Canada's space station commitment renewed". CBC News. 29 February 2012. 
  22. ^ a b de Selding, Peter B. (25 February 2015). "Russia — and Its Modules — To Part Ways with ISS in 2024". Space News. Retrieved 26 February 2015. 
  23. ^ Bodner, Matthew (17 November 2014). "Russia May Be Planning National Space Station to Replace ISS". The Moscow Times. Retrieved 3 March 2015. 
  24. ^ a b "Nations Around the World Mark 10th Anniversary of International Space Station". NASA. 17 November 2008. Retrieved 6 March 2009. 
  25. ^ a b Boren, Zachary Davies (28 March 2015). "Russia and the US will build a new space station together". The Independent. 
  26. ^ a b "Russia & US agree to build new space station after ISS, work on joint Mars project". RT.com. 28 March 2015. Retrieved 28 March 2015. 
  27. ^ Moon, Mariella (28 March 2015). "NASA is working with Russia on a new space station (update: not quite)". Engadget. Retrieved 29 March 2015. 
  28. ^ a b Foust, Jeff (28 March 2015). "NASA Says No Plans for ISS Replacement with Russia". SpaceNews. 
  29. ^ "Memorandum of Understanding Between the National Aeronautics and Space Administration of the United States of America and the Russian Space Agency Concerning Cooperation on the Civil International Space Station". NASA. 29 January 1998. Retrieved 19 April 2009. 
  30. ^ Payette, Julie (10 December 2012). "Research and Diplomacy 350 Kilometers above the Earth: Lessons from the International Space Station". Science & Diplomacy. 1 (4). 
  31. ^ "National Space Policy of the United States of America" (PDF). White House; USA Federal government. Retrieved 20 July 2011. 
  32. ^ a b c Oberg, James (2005). "International Space Station". World Book Online Reference Center. Retrieved 3 April 2016. 
  33. ^ "Monitor of All-sky X-ray Image (MAXI)". JAXA. 2008. Retrieved 12 March 2011. 
  34. ^ ESA via SPACEREF "SOLAR: three years observing and ready for solar maximum", 14 March 2011
  35. ^ "The International Space Station: life in space". Science in School. 10 December 2008. Retrieved 17 February 2009. 
  36. ^ NASA – AMS to Focus on Invisible Universe. Nasa.gov (18 March 2011). Retrieved 8 October 2011.
  37. ^ In Search of Antimatter Galaxies – NASA Science. Science.nasa.gov (16 May 2011). Retrieved 8 October 2011.
  38. ^ Aguilar, M. et al. (AMS Collaboration) (3 April 2013). "First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–350 GeV". Physical Review Letters. 110 (14): 141102. Bibcode:2013PhRvL.110n1102A. doi:10.1103/PhysRevLett.110.141102. PMID 25166975. Archived from the original on 14 April 2013. Retrieved 3 April 2013. 
  39. ^ Staff (3 April 2013). "First Result from the Alpha Magnetic Spectrometer Experiment". AMS Collaboration. Retrieved 3 April 2013. 
  40. ^ Heilprin, John; Borenstein, Seth (3 April 2013). "Scientists find hint of dark matter from cosmos". Associated Press. Retrieved 3 April 2013. 
  41. ^ Amos, Jonathan (3 April 2013). "Alpha Magnetic Spectrometer zeroes in on dark matter". BBC News. Retrieved 3 April 2013. 
  42. ^ Perrotto, Trent J.; Byerly, Josh (2 April 2013). "NASA TV Briefing Discusses Alpha Magnetic Spectrometer Results". NASA. Retrieved 3 April 2013. 
  43. ^ Overbye, Dennis (3 April 2013). "New Clues to the Mystery of Dark Matter". The New York Times. Retrieved 3 April 2013. 
  44. ^ G Horneck, DM Klaus & RL Mancinelli (March 2010). "Space Microbiology, section Space Environment (p. 122)" (PDF). Microbiology and Molecular Biology Reviews. Archived from the original (PDF) on 30 August 2011. Retrieved 4 June 2011. 
  45. ^ Jonathan Amos (23 August 2010). "Beer microbes live 553 days outside ISS". BBC News. Retrieved 4 June 2011. 
  46. ^ "Spacesuits optional for 'water bears'". Nature. 8 September 2008. Retrieved 4 June 2011. 
  47. ^ a b c Jay Buckey (23 February 2006). Space Physiology. Oxford University Press USA. ISBN 978-0-19-513725-5. 
  48. ^ List Grossman (24 July 2009). "Ion engine could one day power 39-day trips to Mars". New Scientist. Retrieved 8 January 2010. 
  49. ^ Brooke Boen (1 May 2009). "Advanced Diagnostic Ultrasound in Microgravity (ADUM)". NASA. Archived from the original on 29 October 2009. Retrieved 1 October 2009. 
  50. ^ Sishir Rao; et al. (2008). "A Pilot Study of Comprehensive Ultrasound Education at the Wayne State University School of Medicine". Journal of Ultrasound in Medicine. 27 (5): 745–749. PMID 18424650. 
  51. ^ Michael Fincke; et al. (2004). "Evaluation of Shoulder Integrity in Space: First Report of Musculoskeletal US on the International Space Station". Radiology. 234 (2): 319–322. doi:10.1148/radiol.2342041680. PMID 15533948. 
  52. ^ "European Users Guide to Low Gravity Platforms". European Space Agency. 6 December 2005. Archived from the original on 2 April 2013. Retrieved 22 March 2013. 
  53. ^ "Materials Science 101". Science@NASA. 15 September 1999. Archived from the original on 14 June 2009. Retrieved 18 June 2009. 
  54. ^ "Mars500 study overview". ESA. 4 June 2011. 
  55. ^ "Space station may be site for next mock Mars mission". New Scientist. 4 November 2011. 
  56. ^ "The Sustainable Utilisation of the ISS Beyond 2015" (PDF). International Astronautical Congress. Archived from the original (PDF) on 26 April 2012. Retrieved 15 December 2011. 
  57. ^ de Selding, Peter B. (3 February 2010). "ESA Chief Lauds Renewed U.S. Commitment to Space Station, Earth Science". Space News. 
  58. ^ "Charlie Bolden". space.com. 4 June 2011. 
  59. ^ Seitz, Virginia (11 September 2011), "Memorandum Opinion for the General Counsel, Office of Science and Technology Policy" (PDF), Office of Legal Counsel, 35, archived from the original (PDF) on 13 July 2012, retrieved 23 May 2012 
  60. ^ Gro Mjeldheim Sandal; Dietrich Manzey (December 2009). "Cross-cultural issues in space operations: A survey study among ground personnel of the European Space Agency". Acta Astronautica. 65 (11–12): 1520–1529. Bibcode:2009AcAau..65.1520S. doi:10.1016/j.actaastro.2009.03.074. 
  61. ^ "Online Materials". European Space Agency. Retrieved 3 April 2016. 
  62. ^ "ISS 3-D Teaching Tool: Spaceflight Challenge I". European Space Agency. 24 May 2011. Retrieved 8 October 2011. 
  63. ^ Building Peace in Young Minds through Space Education (PDF). Committee on the Peaceful Uses of Outer Space, 53rd Session. June 2010. Vienna, Austria. JAXA. June 2010. 
  64. ^ "JAXA Spaceflight Seeds Kids I : Spaceflight Sunflower seeds – Let's make them flower! and learn freshly the Earth environment just by contrast with the Space one". JAXA. 2006. Archived from the original on 18 March 2012. 
  65. ^ "JAXA Seeds in Space I : Let's Cultivate Spaceflight Asagao (Japanese morning glory), Miyako-gusa (Japanese bird's foot trefoil) Seeds and Identify the Mutants!". JAXA. 2006. Archived from the original on 18 March 2012. 
  66. ^ Keiji Murakami (14 October 2009). "JEM Utilization Overview" (PDF). JAXA. Steering Committee for the Decadal Survey on Biological and Physical Sciences in Space. 
  67. ^ Tetsuo Tanaka. "Kibo: Japan's First Human Space Facility". JAXA. Retrieved 8 October 2011. 
  68. ^ "Amateur Radio on the International Space Station". 6 June 2011. Archived from the original on 27 May 2011. Retrieved 10 June 2011. 
  69. ^ Riley, Christopher (11 April 2011). "What Yuri Gagarin saw: First Orbit film to reveal the view from Vostok 1". The Guardian. London. 
  70. ^ "Yuri Gagarin's First Orbit – FAQs". Firstorbit.org. Retrieved 1 May 2012. 
  71. ^ Warr, Philippa (13 May 2013). "Commander Hadfield bids farewell to ISS with Reddit-inspired Bowie cover". Wired.co.uk. Archived from the original on 12 October 2013. Retrieved 22 October 2013. 
  72. ^ Davis, Lauren. "Chris Hadfield sings 'Space Oddity' in the first music video in space". io9. 
  73. ^ Mabbett, Andy. "Close encounters of the Wikipedia kind: Astronaut is first to specifically contribute to Wikipedia from space – Wikimedia Blog". [Wikimedia foundation. Retrieved 4 December 2017. 
  74. ^ Petris, Antonella (1 December 2017). "Primo contributo 'extraterrestre' su Wikipedia: è di Nespoli". Meteo Web (in Italian). Retrieved 4 December 2017. 
  75. ^ Derek Hassman, NASA Flight Director (1 December 2002). "MCC Answers". NASA. Retrieved 14 June 2009. 
  76. ^ NASA Facts. The Service Module: A Cornerstone of Russian International Space Station Modules. NASA. January 1999
  77. ^ "STS-88". Science.ksc.nasa.gov. Retrieved 19 April 2011. 
  78. ^ Brad Liston (2 November 2000). "Upward Bound: Tales of Space Station Alpha". Time. Retrieved 5 August 2010. 
  79. ^ "Space Station – Impact on the expanded Russian role of funding and research" (PDF). United State General Accounting Office. 21 June 1994. Retrieved 9 August 2010. 
  80. ^ a b Alan Ladwig (3 November 2000). "Call Bill Shepherd the Alpha Male of the International Space Station". Space.com. Archived from the original on 23 May 2009. Retrieved 9 August 2010. 
  81. ^ Todd Halvorson (2 November 2000). "Expedition One Crew Wins Bid To Name Space Station Alpha". Space.com. Archived from the original on 23 May 2009. Retrieved 9 August 2010. 
  82. ^ "Interview with RSC Energia's Yuri Semenov". Space.com. 3 September 2001. Retrieved 22 August 2010. 
  83. ^ "Interview with Yuri Semenov, general designer of Space Rocket corporation Energy". Voice of Russia. 21 March 2001. Retrieved 5 October 2010. 
  84. ^ "STS-92". Science.ksc.nasa.gov. Retrieved 19 April 2011. 
  85. ^ Chris Bergin (26 July 2005). "Discovery launches—The Shuttle is back". NASASpaceflight.com. Retrieved 6 March 2009. 
  86. ^ "Mini-Research Module 1 (MIM1) Rassvet (MRM-1)". Russianspaceweb.com. Archived from the original on 25 August 2011. Retrieved 12 July 2011. 
  87. ^ "STS-133". NASA. Retrieved 1 September 2014. 
  88. ^ "STS-134". NASA. Retrieved 1 September 2014. 
  89. ^ "Russia works on a new-generation space module". Russianspaceweb.com. Archived from the original on 8 April 2016. Retrieved 29 November 2015. 
  90. ^ "NASA – The ISS to Date (03/09/2011)". Nasa.gov. Retrieved 12 July 2011. 
  91. ^ "DLR – International Space Station ISS – From Cold War to international cooperation – the story of the ISS". Dlr.de. Retrieved 1 May 2012. 
  92. ^ "Third Generation Soviet Space Systems". Astronautix.com. Archived from the original on 18 June 2012. Retrieved 1 May 2012. 
  93. ^ "A History of U.S. Space Stations" (PDF). Spaceflight.nasa.gov. Retrieved 10 August 2017. 
  94. ^ "Space Station | Russian Space History". Pbs.org. Retrieved 1 May 2012. 
  95. ^ Cáceres, Marco (14 July 2014). "When Keeping the Space Station Open Suddenly Became a Cause Célèbre". The Huffington Post. Retrieved 11 September 2016. 
  96. ^ a b Lewis, Cathleen (19 August 2015). "Zvezda Service Module Celebrates 15 Years in Orbit". Smithsonian National Air and Space Museum. Retrieved 11 September 2016. 
  97. ^ a b c "DMS-R: ESA's Data Management System for the Russian Segment of the ISS". 
  98. ^ Oberg, James (1 May 2007). "Space station lights its 'big engines'". NBC News. Retrieved 11 September 2016. 
  99. ^ Pappalardo, Joe (1 March 2007). "How does the International Space Station dodge space junk?". Air & Space/Smithsonian. Retrieved 11 September 2016. 
  100. ^ "NASA—US Destiny Laboratory". NASA. 26 March 2007. Retrieved 26 June 2007. 
  101. ^ "Space Station Extravehicular Activity". NASA. 4 April 2004. Retrieved 11 March 2009. 
  102. ^ "Mir close calls". Russianspaceweb.com. Retrieved 1 May 2012. 
  103. ^ "Pirs Docking Compartment". NASA. 10 May 2006. Retrieved 28 March 2009. 
  104. ^ Chris Bergin (10 January 2008). "PRCB plan STS-122 for NET Feb 7—three launches in 10–11 weeks". NASASpaceflight.com. Retrieved 12 January 2008. 
  105. ^ "Columbus laboratory". European Space Agency (ESA). 10 January 2009. Retrieved 6 March 2009. 
  106. ^ JAXA (30 March 2007). "Monitor of All-sky X-ray Image (MAXI): Experiment – Kibo Japanese Experimental Module – JAXA". Kibo.jaxa.jp. Archived from the original on 28 April 2012. Retrieved 1 May 2012. 
  107. ^ "JAXA | Scientific paper in Nature using the Monitor of All-sky X-ray Image (MAXI) on Kibo and the Swift satellite (USA) observations – First observation of a massive black hole swallowing a star". Jaxa.jp. Retrieved 1 May 2012. 
  108. ^ "Astronauts Bask in Spectacular Views From New Space Windows". Space.com. Retrieved 1 May 2012. 
  109. ^ "First Photos: Space Station's Observation Deck Unveiled". National Geographic. Retrieved 1 May 2012. 
  110. ^ "NASA Shuttle to Launch Luke Skywalker's Lightsaber". Space.com. 28 August 2007. Retrieved 1 May 2012. 
  111. ^ Chris Gebhardt (9 April 2009). "STS-132: PRCB baselines Atlantis' mission to deliver Russia's MRM-1". NASAspaceflight.com. Retrieved 12 November 2009. 
  112. ^ NASA (18 May 2010). "STS-132 MCC Status Report #09". Retrieved 7 July 2010. 
  113. ^ MIM1 Archived 25 August 2011 at the Wayback Machine.. russianspaceweb.com
  114. ^ "Leonardo Attached to Space Station". ESA.int. 1 March 2011. Retrieved 11 June 2013. 
  115. ^ Garcia, Mark (27 May 2015). "Module Relocated Prepping Station for Commercial Crew". NASA. Retrieved 27 May 2015. 
  116. ^ Thales Alenia Space and ISS modules – Thales Alenia Space and ISS modules. Thalesaleniaspace-issmodules.com. Retrieved 8 October 2011.
  117. ^ Space Station User's Guide. SpaceRef (3 April 2001). Retrieved 8 October 2011.
  118. ^ Chris Gebhardt (5 August 2009). "STS-133 refined to a five crew, one EVA mission—will leave MPLM on ISS". NASASpaceflight.com. 
  119. ^ Amos, Jonathan (29 August 2009). "Europe looks to buy Soyuz craft". BBC News. 
  120. ^ "Shuttle Q&A Part 5". NASASpaceflight.com. 27 September 2009. Retrieved 12 October 2009. 
  121. ^ "NASA to Test Bigelow Expandable Module on Space Station". NASA. 16 January 2013. Retrieved 17 January 2013. 
  122. ^ Pearlman, Robert (10 April 2016). "SpaceX Dragon Arrives at Space Station, Delivers Inflatable Room Prototype". Space.com. Retrieved 19 April 2016. 
  123. ^ Clark, Stephen (16 April 2016). "Expandable room installed on space station". Spaceflight Now. Retrieved 19 April 2016. 
  124. ^ Garcia, Mark (28 May 2016). "BEAM Expanded To Full Size". NASA. 
  125. ^ Harwood, William (16 January 2013). "Bigelow inflatable module bound for space station". Spaceflight Now. Retrieved 17 January 2013. 
  126. ^ Palca, Joe (26 July 2017). "After A Year In Space, The Air Hasn't Gone Out Of NASA's Inflated Module". NPR. Retrieved 6 August 2017. 
  127. ^ Morring, Frank (23 May 2012). "Russia Sees Moon Base As Logical Next Step". Aviation Week. Archived from the original on 12 November 2012. Retrieved 29 May 2012. 
  128. ^ Anatoly Zak (29 April 2014). "MLM (FGB-2)". Russian Space Web. Retrieved 14 May 2014. 
  129. ^ Donimirska, Monika (25 March 2017). "Last Russian module of ISS still delayed". military-technologies.net. [permanent dead link]
  130. ^ Zak, Anatoly. "Node Module". RussianSpaceWeb.com. Archived from the original on 3 March 2016. Retrieved 7 January 2015. 
  131. ^ S.P. Korolev RSC Energia – News. Energia.ru (13 January 2011). Retrieved 8 October 2011.
  132. ^ Node Module Archived 3 March 2016 at the Wayback Machine.. Russianspaceweb.com. Retrieved 8 October 2011.
  133. ^ "NanoRacks, Boeing to Build First Commercial Airlock Module on International Space Station". NanoRacks. 6 February 2017. 
  134. ^ Garcia, Mark (3 February 2017). "Progress Underway for First Commercial Airlock on Space Station". NASA. 
  135. ^ "CAM – location?". NASA Spaceflight Forums. Retrieved 12 October 2009. 
  136. ^ Tariq Malik (14 February 2006). "NASA Recycles Former ISS Module for Life Support Research". Space.com. Retrieved 11 March 2009. 
  137. ^ "ICM Interim Control Module". U.S. Naval Center for Space Technology. Archived from the original on 8 February 2007. 
  138. ^ "Russian Research Modules". Boeing. Retrieved 21 June 2009. 
  139. ^ Anatoly Zak. "Russian segment of the ISS". russianspaceweb.com. Retrieved 3 October 2009. 
  140. ^ "Spread Your Wings, It's Time to Fly". NASA. 26 July 2006. Retrieved 21 September 2006. 
  141. ^ NASA (2008). "Consolidated Launch Manifest". NASA. Retrieved 8 July 2008. 
  142. ^ "EXPRESS Racks 1 and 2 fact sheet". NASA. 12 April 2008. Retrieved 4 October 2009. 
  143. ^ "Soyuz TMA-03M docks to ISS, returns station to six crewmembers for future ops". NASASpaceFlight.com. 23 December 2011. Retrieved 1 May 2012. 
  144. ^ L. D. Welsch (30 October 2009). "EVA Checklist: STS-129 Flight Supplement" (PDF). NASA. 
  145. ^ "Space Shuttle Mission: STS-131" (PDF). NASA. February 2011. 
  146. ^ "Space Shuttle Mission: STS-134" (PDF). NASA. April 2011. 
  147. ^ "HTV2: Mission Press Kit" (PDF). Japan Aerospace Exploration Agency. 20 January 2011. 
  148. ^ "Exposed Facility:About Kibo". JAXA. 29 August 2008. Archived from the original on 3 August 2009. Retrieved 9 October 2009. 
  149. ^ "NASA—European Technology Exposure Facility (EuTEF)". NASA. 6 October 2008. Archived from the original on 19 October 2008. Retrieved 28 February 2009. 
  150. ^ "ESA—Columbus—European Technology Exposure Facility (EuTEF)". ESA. 13 January 2009. Retrieved 28 February 2009. 
  151. ^ "Atomic Clock Ensemble in Space (ACES)". ESA. Archived from the original on 9 June 2009. Retrieved 9 October 2009. 
  152. ^ NICER Team. "The Neutron star Interior Composition ExploreR (NICER): an Explorer mission of opportunity for soft x-ray timing spectroscopy" (PDF). Goddard Space Flight Center. Retrieved 8 April 2013. 
  153. ^ Michael Finneran (1 March 2011). "Time to Fly: SAGE III — ISS Prepped for Space Station". NASA. Retrieved 12 March 2011. 
  154. ^ "The Alpha Magnetic Spectrometer Experiment". CERN. 21 January 2009. Retrieved 6 March 2009. 
  155. ^ "ESA and Airbus sign partnership agreement for new ISS commercial payload platform Bartolomeo". SpaceDaily. 9 February 2018. Retrieved 10 February 2018. 
  156. ^ "Airbus and ESA to partner on Bartolomeo platform". Aerospace Technology. 8 February 2018. Retrieved 10 February 2018. 
  157. ^ "ISS: Bartolomeo". eoPortal. European Space Agency. Retrieved 10 February 2018. 
  158. ^ "Canadarm2 and the Mobile Servicing System". NASA. 8 January 2013. Retrieved 22 June 2015. 
  159. ^ "Dextre, the International Space Station's Robotic Handyman". Canadian Space Agency. Retrieved 22 June 2015. 
  160. ^ "Mobile Base System". Canadian Space Agency. Retrieved 22 June 2015. 
  161. ^ a b "Space Shuttle Mission STS-134: Final Flight of Endeavour – Press Kit" (PDF). NASA. April 2011. pp. 51–53. Retrieved 22 June 2015. 
  162. ^ "Remote Manipulator System: About Kibo". JAXA. 29 August 2008. Archived from the original on 20 March 2008. Retrieved 4 October 2009. 
  163. ^ "International Space Station Status Report #02-03". NASA. 14 January 2002. Retrieved 4 October 2009. 
  164. ^ "MLM (FGB-2) module of the ISS". RussianSpaceWeb. Retrieved 16 June 2014. 
  165. ^ Freudenrich, Craig (20 November 2000). "How Space Stations Work". Howstuffworks. Retrieved 23 November