اصل موضوع گسترش

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به ناوبری پرش به جستجو

اصل موضوع تساوی یا به عبارات ضعبقتر و دورتر اصل موضوع گسترش یا اصل موضوع هم‌مصداقی (Axiom of extensionality) یکی از اصول موضوع زرملو - فرنکل است، که به نظریهٔ اصل موضوعی مجموعه‌ها تعلق داشته، و در شاخه‌هایی از منطق، ریاضیات، و علوم کامپیوتر مورد استفاده قرار می‌گیرد.

مقدمه[ویرایش]

اصطلاح اصل موضوع تساوی یک اصل از نظریه مجموعه است که توسط ریچارد دادکیند در سال 1888 فرموله شده است، و تنها بیان می کند که دو کلاس یا مجموعه یکسان هستند اگر و فقط اگر شامل اعضای یکسان باشند. از آنجایی که ارنست زرملو اصل موضوع تساوی را از ریچارد دادکیند گرفته است و به عنوان اولین اصل موضوع مجموعه موضوعی زرملو قرارداده است که سایر اصل موضوعات مجموعه زرملو / فرانکل از آن نشات می گیرند احتمال خلط ترجمه گسترش وجود دارد. در حالی که هیج موضوعیت گسترش چیزی از آن بر نمی آید.

در منطق سنتی و کلاسیک مفهوم Extension یا Extensionality به موضوعی اشاره مشود که شامل بعد مفهومی برای کلیت یک جیز است یا اصطلاحات اغلب به عنوان پیش فرض های کلی برای پوشش تمام موضوع به کار می رود.

یکی از مفاهیم اصلی در نظریهٔ مجموعه‌ها که در بررسی‌های کاملاً اصل موضوعی از جمله عمده‌ترین مفایم اولیه و تعریف نشده محسوب می‌شود مفهوم تعلق یا عضویت است. اگر A یک مجموعه باشد و x متعلق A باشد (x عنصر A است یا A شامل x است) می‌نویسیم x ∈ A. نماد  نماد عضویت است و برگرفته از حرف یونانی ε (اپسیلون) است و توسط پئانو مورد استفاده قرار گرفته شده است.

یکی از روابط مهم میان مجموعه‌ها که تا حدی مقدماتی تر از تعلق است، تساوی دو مجموعه است. اگر دو مجموعه A و B باشند می‌نویسیم A = B و در غیر این صورت می‌نویسیم A ≠ B.

  • حال این سؤال پیش می‌آید که چه هنگام دو مجموعه را مساوی می‌گوییم؟

برای پاسخ به این سؤال اصل موضوعی بنا می‌کنیم که به درستی رابطه بین تساوی و تعلق را در مجموعه‌ها نشان می‌دهد.

اصل موضوع گسترش[ویرایش]

مطابق اصل موضوع گسترش

به عبارت دیگر این اصل بیان می‌کند، دو مجموعه با هم برابرند اگر و فقط اگر دارای عناصر یکسان باشند.

این اصل نشان می‌دهد هر مجموعه با مصداقیت خود (اعضای خود) دقیقاً مشخص می‌شود. همچنین با توجه به مفهوم زیرمجموعه می‌توان اصل موضوع گسترش را به گونه‌ای دیگر فرمول بندی نمود.

می‌دانیم که اگر مجموعه A زیرمجموعه، مجموعه B باشد می‌نویسیم A ⊆ B و این بدان معنی است که هر عضو A، متعلق به B نیز می‌باشد. حال اگر برای هر دو مجموعه دلخواه A و B داشته باشیم A ⊆ B و B ⊆ A آنگاه بدیهی است که طبق تعریف هر عضو A در B و هر عضو B در A موجود است و لذا اعضای A و B یکسان هستند. پس:

دو مجموعه باهم مساویند اگر و فقط اگر هر یک زیر مجموعه دیگری باشد. به عبارت دیگر اگر A و B دو مجموعه باشند A = B اگر و فقط اگر A ⊆ B و B ⊆ A

پس اصل موضوع گسترش به ما کمک می‌کند که بدانیم چه موقع دو مجموعه با هم برابرند. با توجه به این اصل همواره اثبات تساوی دو مجموعه به دو بخش تقسیم می‌شود که باید در هر قسمت نشان دهیم هر یک از مجموعه‌ها زیرمجموعه دیگری است.

جستارهای وابسته[ویرایش]

منابع[ویرایش]

پیوند به بیرون[ویرایش]