طیف‌سنجی رامان

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو

طیف سنجی رامان

طیف سنجی (بيناب نمايی) رامان مطالعه نوعی از برهمکنش بین نور و ماده است که در آن نور دچار پراکندگی غیرالاستیک می‌شود. در آزمایشهای طیف سنجی رامان، فوتونهای تک طول موج (در ناحیه‌ی مرئی، نور تکفام گفته می‌شود) روی نمونه متمرکز می‌شود و عموماً لیزر به عنوان چشمه تکفام شدت بالا بکار می‌رود. فوتونها با مولکول‌ها برهمکنش می‌کنند و بازتابیده، جذب یا پراکنده می‌شوند. طیف سنجی رامان فوتونهای پراکنده شده را مطالعه می‌کند. غالباً فوتونهایی که با مولکولها برهمکنش می‌کنند، به طور الاستیک پراکنده می‌شوند.به این نوع پراکندگی، پراکندگی ریلی گفته می‌شود و فوتونهای پراکنده شده همان طول موج نور فرودی را دارند. اما تقریباً از هر یک میلیون فوتون، یک فوتون به طور غیرالاستیک پراکنده می‌شود. در پراکندگی رامان، فوتون فرودی با ماده برهمکنش می‌کند و طول موج آن به سمت طول موج‌های بیشتر یا کمتر شیفت می‌یابد. شیفت به طول موجهای بیشتر غالب است و این پراکندگی را رامان استوکس می‌گویند. اتفاقی که در اینجا می‌افتد آن است که فوتون با ابر الکترونی پیوندهای گروههای عاملی برهمکنش می‌کند و الکترون را به یک حالت مجازی برانگیخته می‌کند. سپس الکترون از حالت مجازی به یک حالت ارتعاشی یا چرخشی برانگیخته واهلش می‌یابد. این باعث می شود که فوتون مقداری از انرژی خود را از دست بدهد و به صورت پراکندگی رامان استوکس آشکارسازی شود. انرژی از دست داده شده ارتباط مستقیمی با گروه عاملی، ساختار مولکولی متصل به آن، نوع اتمهای مولکول و محیط آن دارد. طیفهای رامان هر مولکول، منحصربه‌فرد است. از این رو می‌توان از آن مانند "اثر انگشت" در تشخیص ترکیبات مولکولی روی یک سطح، درون یک مایع یا در هوا استفاده کرد.[۱][۲]

تئوری طیف سنجی رامان[ویرایش]

یکی از روش‌های متداول بیناب نگاری، طیف سنجی رامان است که مدهای چرخشی، ارتعاشی، و دیگر مدهای فرکانسی کوتاه در یک سیستم را مطالعه می‌کند. در جریان این طیف سنجی نور تکفام دچار پراکندگی غیرالاستیک یا همان پراکندگی رامان می‌شود و غالباً از لیزرهای مرئی، فروسرخ و فرابنفش برای تحریک استفاده می‌شود. نور لیزر با جنبش‌های مولکولی، فونون‌ها و دیگر تحریک پذیرها برهمکنش کرده و در اثر این برهمکنش فوتون‌های بازتابیده دارای تغییر فرکانس به طول موج‌های بالاتر و پایین‌تر هستند. البته باید توجه داشت کسر قابل توجهی از فوتون‌ها بدون تغییر طول موج از سطح نمونه بازتابیده می‌شوند. تغییر فرکانس در این پدیده حاوی اطلاعات بسیار مهمی از جنبش‌های مولکولی در سیستم است. می‌توان عنوان نمود که در طیف سنجی رامان، شدت و طول موج نور پراکنده شده نور لیزری که با یک نمونه در وضعيت گاز، مايع، جامد و يا پلاسما تعامل می‌نمايد را اندازه گيری می‌نمايد. به بيانی ديگر سيگنال رامان از تعامل نور (فوتون‌ها) با نوسانات فونون‌ها در يک نمونه مورد مطالعه، سرچشمه می‌گيرند. بررسی و تجزيه و تحليل اطلاعات بدست آمده در طیف سنجی رامان منجر به تعيين ساختار، اندازه گيری کيفی و در مواردی کمی و همچنين مطالعه اثرات بسياری از پارامترهای مختلف فيزيکی از قبيل دما، فشار، تنش، کرنش و ... بر نوسانات بين اتمی و بين مولکولی (فونون‌ها) می‌گردد. برای مثال طيف‌های رامان بلورها شامل نوارهای طيفی می‌باشد که مرتبط به ارتعاشات داخل ياخته واحد (مدهای داخلی) و ارتعاشات شبکه (مدهای شبکه) می‌باشد. ممکن است تعداد معينی اتم زمانيکه کنار يکديگر قرار می‌گيرند منجر به يک ساختار خاص گردند که دارای تقارن معينی می‌باشند. همان مجموعه اتمی می‌توانند در شرايط مختلف فيزيکی دارای تقارن متفاوتی باشند. در دو وضعيت فوق بلور منجر به طيف‌های رامان متفاوت می‌گردد. لذا هر گونه تغييری در فاصله بين اتمی و يا بين مولکولی و همچنين محيط بين آنها از قبيل تغيير و جايگزينی اتمها منجر به جابجایی در فرکانس‌های رامان می‌گردد. غالباً نور لیزر به نمونه برخورد می‌کند و نور بازتابیده از سطح نمونه بوسیله یک لنز جمع شده و بوسیله فیبری به آشکارساز مربوطه منتقل می‌شود. طول موج‌های نزدیک به طول موج لیزر که ناشی از برهمکنش الاستیک (پراکندگی ریلی) از سطح نمونه هستند بوسیله یک فیلتر جذب می‌شوند و پرتوهای بازتابیده شده‌ای که دارای تغییر فرکانسی هستند، عبور می‌کنند و به آشکارساز می‌رسند. طول موج‌هایی که دارای تغییر فرکانسی (طول موجی) هستند برای ما حائز اهمیتند که همان سیگنال‌های رامان محسوب می‌شوند. سطح مقطع پراکندگی رامان بسیار کوچک است و سخت ترین مرحله در این روش جدا کردن پرتوهای الاستیک ریلی از پرتوهای تغییر یافته فرکانسی رامان است. در گذشته از توری‌های هولوگرافیک برای جدا کردن این دو سیگنال استفاده می‌شد اما امروزه فوتومولتی پلایرها بعد از نسل توری‌ها مورد استفاده قرار می‌گیرند. همچنین CCD ها و اسپکترومترهای زرنی ترنر نیز به همراه یک فیلتر متناسب ترکیب مناسبی برای چیدمان رامان هستند.[۳]

تاریخچه[ویرایش]

پراکندگی ناکشسان نور توسط آدولف اسمکال در سال 1921 پیش بینی شده بود ولی این پدیده در سال 1928 مشاهده شد. یکی از کاشفان این پدیده را اثر رامان به نام دانشمند هندی سر رامان که این اثر را با استفاده از نور خورشید مشاهده کرده بود به نام او نامیدند که در سال 1930 برای این کشف وی توانست نوبل فیزیک را دریافت کند. جمع بندی و چارچوب بندی این اثر فیزیکی توسط فیزیکدان جورج پلاکزیک چکوسلوواک بیسن سال های 1930 تا 1934 توسعه و کامل نمود. در حال حاضر به عنوان منبع از لیزر استفاده می‌شود. رنگ آبی آسمان سیاره ما ناشی از پراکندگی نور خورشید از مولکول‌های گازی موجود در جو می‌باشد. در این موقعیت پرسیدن این سوال که چه کسی برای اولین بار این پراکندگی را مشاهده کرد، امری بیهوده است. افرادی مانند لئوناردو داوینچی در قرن 15 میلادی و نیوتن در قرن 17 میلادی و کلوزیوس در قرن 19 میلادی سعی کردند که چرایی آبی بودن رنگ آسمان را توجیه کنند، گرچه غالب تئوری‌های آنان اشتباه بود. برای اولین بار در آزمایشگاه تیندال تاسیس 1986، توسط آقای ریلی در سال 1899 میلادی تئوری بیان شد که توانست پراکندگی نور را توجیه کند. این تئوری پراکندگی پاسخی بود به چرایی آبی بودن رنگ آسمان سیاره ما. پدیده رنگین کمان نیز گواه بزرگتری برای رنگی بودن نورهای بازتابیده و پراکنده شده در آسمان بود که پیدا کردن راه حل منطقی این سوال که چرا رنگ آسمان آبی است را پیچیده‌تر و دشوارتر می‌کرد. بسیاری از دانشمندان تلاش‌های زیادی برای پاسخگویی این سوال کردند تا اینکه مولوکوفسکی توانست در سال 1908 میلادی بهترین توجیه را به جامعه علمی ارائه دهد. این دانشمند مبنای توجه خود را بر افزایش قابل ملاحظه چگالی شدت در هنگام پراکندگی نور و تغییر فاز نور در هنگام شکست آن قرار داد. در سال بعد انیشتین ، در سال 1980 میلادی نشان داد که چگونه می‌توان این تغییرات را در متغیرهای ترمودینامیکی و همچنین شدت نور در زمان شکست را می‌توان دقیقاً اندازه گیری کرد. آقایان زرنیک و ارنشتاین برای پراکندگی نور رابطه‌ی بدست آمده توسط انیشتین را در نقطه شکست تایید کردند و به بیان دیگری تئوری پراکندگی نور حاصل از تغییرات شدت در نقطه شکست در اوایل قرن 20 میلادی به خوبی منسجم شد. بسیاری از اطلاعات خام تئوری مشاهده شده در آن زمان به کار گرفته شد تا با موفقیت این پدیده فیزیکی را توجیه کنند، همچنین دراین میان، این اطلاعات توانست مقدار عدد آواگادرو را در نور پراکنده شده در گازها بادقت مشخص کند. مطالعات پراکندگی نور در کشورهایی مانند روسیه، فرانسه، هند و ایالات متحده آمریکا و آلمان به طور جدی دنبال می‌شد. در اوایل قرن 20 میلادی افرادی مانند رامان و کریشنان در هند و آقایان لندزبرگ و مندل در روسیه و کابانز و دائور در فرانسه پیشرو این زمینه بودند. این سه گروه در حال بررسی تغییر فرکانس نور پراکنده شده در شرایط مختلف فیزیکی بودند که دو گروه هندی و روسی مطالبی را مشاهده کردند که برنامه یا هدفی برای مشاهده آن نداشتند این یافته‌ها توسط این دو گروه مبنای تئوری مورد نظر ما می‌باشد. آقایان لندربرگ و مندل اشتام پراکندگی نور را در کوارتز و چند کریستال دیگر مورد بررسی قرار دادند تا نورهای بازتابیده که دچار تغییر فرکانس شده‌اند را بیابند. در همان زمان آقای رامان و کریشنان در کلکته هند هزاران کیلومتر دورتر از دانشمندان روسی در حال بررسی تغییرات نور در اثر کامپتون بودند. آنها با چاپ سه مقاله در سال 1928 میلادی در این زمینه این اثر را به نام خود ثبت و شامل دریافت جایزه نوبل بخاطر کشفشان شدند این در حالی بود که گزارش آقایان رامان و کریشنان اندکی زودتر از گزارش دانشمندان روسی بود.[۴] امروزه مطالعات بر روی پراکندگی نور در زمینه تجربی و تئوری به هزاران شاخه منتهی می‌شود و چند هزار دانشمند و محقق به طور جدی بر روی این مساله در حال تحقیق و کاوش هستند. نمودارهایی موجودند که بیان کننده حجم بالای مطالعات و تعداد کثیر مقالات چاپ شده در مورد این کشف درباره نور می‌باشند.[۵][۶]

کاربردها[ویرایش]

تکنیک رامان در حوزه‌های متنوعی کاربرد دارد و استفاده از آن در پزشکی، داروسازی، علوم تغذیه، علوم دفاعی و صنعت رشدی چشمگیر پیدا کرده است. با توجه به رویدادهای جهانی اخیر به ایجاد تکنیکهای آشکارسازی سریع خطرات بیولوژیکی برای ارتش و امنیت ملی توجه عمده‌ای می‌شود و در این میان طیف سنجی رامان به دلیل اینکه اطلاعات دقیق و سریعی از ترکیب مولکولی مواد زیستی را به روشی غیر مخرب فراهم می‌کند، مورد توجه است. در حال حاضر تکنیک رامان جهت تشخیص مواد منفجره، عوامل جنگهای شیمیایی و باکتریایی و مواد شیمیایی خطرناک به کار می‌رود. تکنیک رامان همچنین می‌تواند نمونه‌ها را به روش غیرتماسی و غیر مخرب از میان مواد بسته بندی شفاف یا نیمه شفاف بررسی کند. بنابراین موادی مانند داروها و مواد مخدر را می‌توان از میان کیسه پلاستیکی حاوی آن تحلیل کرد و به این ترتیب امکان آسیب مدارک و شواهد جنایی یا آلوده شدن آنها اجتناب می‌شود. می‌توان پروب طیف سنجی رامان مجهز به فیبر نوری را به گونه‌ای طراحی کرد که نیترات، نیتریت و هیدروکسید در مخازن حاوی پسماندهای رادیواکتیو را اندازه گیری کرد. این سه ماده شیمیایی برای نمایش و کنترل خوردگی مخزن بکار می‌روند. به این ترتیب نیازی به برداشت فیزیکی نمونه مواد درون مخزن و خطرات حمل آن به یک آزمایشگاه ثابت جهت تحلیل مواد نمی‌باشد. دقت آشکارسازی رامان به عوامل مختلفی از جمله طول موج لیزری به کار رفته و ماده خاص بستگی دارد. دقت آشکارسازی این تکنیک از چند ppm تا ppb می‌تواند باشد. یک بحث کلیدی در حوزه با تحول سریع میکروالکترونیک، کنترل کیفیت در زمان فرایندهای آماده سازی است. مشکل اساسی که باید برطرف کرد، گسیختگی در اثر کرنش است که به دلیل عدم تطابق شبکه مواد مختلف، اختلاف در ضرایب انبساط گرمایی و ... به وجود می‌آید. قابلیت رامان در نمایش تنش و پارامترهای دیگر مانند دمای سطح/قطعه آن را به عنوان ابزاری موثر در ساخت قطعات نیمرسانا مطرح می‌کند. همچنین توانایی این تکنیک در فراهم آوردن تصاویری دقیق از سلولها، امکان تحلیل و مقایسه بین بافتهای سالم و بیمار را ممکن می‌سازد که به ویژه در مطالعه سرطان مهم است.[۷]

کاربرد رامان در آشکارسازی DNA با اسپکتروسکوپی رامان[ویرایش]

محققان دانشگاه Strathclyd انگلیس توانستند با اسپکتروسکوپی رامان رشته‌های DNA جفت شده و جدا شده را با اتصال آنها به نانوذرات نقره مشاهده کنند.SERRS (تفرق رزونانسی سطحی تقویت شدة رامان) با اندازه‌گیری اختلاف انرژی نور متفرق شده از نور تابیده شده، نوعی طیف لرزشی از یک ملکول به‌دست می‌دهد. شدت تفرق با جذب ملکول‌های هدف به درون سطح فلزی ناهموار -مانند نانوذرات نقره و یا طلا- افزایش می‌یابد. اگر نانوذرات متراکم شده و مولکول جذب شده دارای یک کروموفور با گذار الکترونیکی منطبق با طول موج برانگیختگی باشد، نتایج بهتری بدست خواهد آمد.

تامسون عضو این تیم تحقیقاتی می‌گوید: «ما می‌خواستیم بدانیم آیا DNA نشان‌دار شدة رنگی می‌تواند برای جمع کردن انتخابی نانوذرات نقره به‌کار رود و آیا عکس‌العملی در برابر SERRS می‌دهد؟».

تیم تحقیقاتی فوق، دو گروه نانوذرات نقره را با یک نوع رنگ پوشش دادند و سپس یک رشته کوتاه DNA را به هر گروه متصل کردند. رشته‌های DNA در هر دو گروه نانوذرات نقره با یکدیگر مکمل نشدند. سپس رشته‌ای از DNA نشاندار را که مکمل یکی از رشته‌های DNA موجود در دو گروه نانوذرات بود وارد کردند DNA نشاندار به رشته DNA در هر دو گروه از نانوذرات چسبید. آنالیز SERRS، افزایشی چشمگیر را در تراکم و شدت طیف رنگی نشان داد.

گرم کردن محلول موجب جدا شدن رشته‌های DNA از خوشه‌های نانوذرات می‌شود و سیگنال‌های SERRS را محو می‌کند. این نتایج نشان می‌دهد که SERRS می‌تواند برای مطالعه برهم‌کنش مولکولی استفاده شود. دکتر گراهام رهبر این تیم تحقیقاتی می‌گوید: «گرچه ما فقط از هیبریدسازی DNA استفاده کردیم ولی این روش کاربردهای دیگری در سایر مولکول‌های زیستی مانند برهم‌کنش‌های پروتئین-پروتئین نیز دارد». البته گودایسر از دانشگاه منچستر انگلیس که از تکنیک‌های اسپکتروسکوپی برای آنالیز ملکول‌های زیستی استفاده می‌کند، در این زمینه احتیاط بیشتری دارد و می‌گوید اساساً SERRS برای تصویربرداری از سلول‌ها به‌تازگی به واقعیت پیوسته است. او معتقد است در میکرواسپکتروسکوپی رامان اخیر، زمان مورد نیاز برای بدست آوردن هر طیف، محدودیت ایجاد می‌کند. هرچند توانایی افزایش سیگنال موجب می‌شود تا تصاویر، سریعتر دریافت شود. البته آنچه که لازم است، تولید ابزاری قوی و تجدیدپذیر، برای پوشش دادن سلول‌ها و بافت‌ها با نانوذرات نقره و یا طلاست.[۸]

منابع[ویرایش]

  1. Raman C V, Krishnan K S, Nature 122 ,1928, 12
  2. Raman C V, Krishnan K S, Nature 121 , 1928, 711
  3. Raman Spectroscopy Wikipedia article,theory
  4. Raman C V ``A new radiation Ind. J. Phys. 2 ,1928, 387</re28, 501
  5. Kohlrausch K W F Ramanspektren: Akad. Verlag. Becker & Erler kom.-ges.,4 ,1952
  6. حمید سلیمانی نژاد،پایا نامه کارشناسی ارشد،(Raman Spectroscopy of mineral samples (Iran ragion calcite) دانشگاه شهید بهشتی-تهران
  7. Raman Spectroscopy, Wikipedia article, Application of Raman Spectroscopy
  8. Raman reveals DNA in action