برنهارت ریمان

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو
برنهارت ریمان
Georg Friedrich Bernhard Riemann.jpeg
برنهارد ریمان، ۱۸۶۳
متولد ۱۷ سپتامبر ۱۸۲۶(۱۸۲۶-09-۱۷)
پادشاهی هانوور
مرگ ۲۰ ژوئیه ۱۸۶۶ میلادی (۳۹ سال)
پادشاهی ایتالیا
شهروند آلمان
ملیت آلمان آلمانی
رشته فعالیت ریاضیدان
استاد راهنما کارل فریدریش گاوس
دلیل شهرت نظریه ریمان
انتگرال ریمان
هندسه بیضوی
دین مسیحی
امضا
امضای برنهارت ریمان

گئورگ فردریش برنهارد ریمان (به آلمانی: Georg Friedrich Bernhard Riemann) ‏ (۱۷ سپتامبر ۱۸۲۶ - ۲۰ ژوئیه ۱۸۶۶) ریاضی‌دان آلمانی بود که کارهایش در زمینهٔ آنالیز و هندسه دیفرانسیل پایهٔ ریاضی نظریه نسبیت عام شد. ریمان یکی از تأثیرگذارترین ریاضیدانان قرن نوزدهم میلادی بود و علی‌رغم این‌که آثار نسبتاً کمی منتشر کرد، اما اثری شگرف بر ریاضیات قرن بیستم گذاشت و نام او در جای‌جای نظریات و اصطلاحات ریاضی دیده می‌شود.

این ریاضیدان آلمانی در خانواده‌ای مذهبی و تهی‌دست به دنیا آمد. در سال ۱۸۴۶ وارد دانشگاه گوتینگن شد و با اقبالی بلند به‌شاگردی فردریک گائوس، برجسته‌ترین ریاضیدان معاصرش مفتخر گردید و با ارائهٔ مقالات و طرح مباحث هوشمندانه و خلاقانه توجه وی را به‌خود معطوف ساخت. زمانی که گاوس از او خواست برای رسالهٔ دکترایش، مقاله‌ای دربارهٔ هندسه بنویسد. ریمان به‌مدت دو ماه سایر مطالعاتش را معوق گذاشت و چنان مقالهٔ درخشانی نوشت که گاوس نیز با خواندن آن شگفت‌زده شد و زبان به‌تحسین شاگردش گشود.

یکی از شاهکارهای ریمان مقالهٔ مهم او راجع به نظریهٔ اعداد است. گفته‌اند که بصیرت ریاضی ریمان عمیقاً هندسی بوده، ولی این مسئله در مورد این اثر مصداق ندارد. ریمان در این مقاله به‌بررسی خواص اعداد اول و ویژگی‌های تابعی می‌پردازد که به تابع زتای ریمان معروف شده است. در این مقاله حدس ریمان را مطرح می‌کند که امروزه به‌عنوان مهمترین مسئله باز در سرتاسر ریاضی مطرح است.

وی با وجود ابتلا به بیماری سل و تحمل سال‌ها رنج و کسالت، لحظه‌ای از تلاش و علم‌آموزی غافل نبود. ریمان در سن ۳۹ سالگی و در اوج بلوغ فکری درگذشت.

گیورک فریدریش بر نهارد ریمان (1826-1866 میلادی) مقارن ولد هندسه نااقلیدسی قدم به عرصه وجود گذاشت. پس از تحصیلات مقدماتی و متوسطه به عزم علوم الهی به دانشگاه گوتینگن روی آورد اما زود دریافت که که آنچه با مذاق وی سازگاری داشت ریاضیات بود نه الهیات ریمان یی از برجسته ترین شاگردان گوس شمرده می شود بعدا به برلن رفت و در محضر استادان دیگری تلمذ کرد و در سال 1840 به گوتینگن بازگشت و در رشته فیزیک درجه علمی رفت. 

زریمان در سال 1854 رساله ای تنظیم کرد و در آن خاطرنشان ساخت که هر چند جهان نامحدود است، بی پایان فتن آن ضرور نیست. 

آن رساله مقدمه هندسه نااقلیدسی جدیدی بود. وی ریاضیات را از قیدآنها آزاد ساخت و بنیاد هندسه را نیز بر بی نهایت کوچکها گذاشت و هندسه دیفرانسیلرا طرح کرد ، آزاد ساخت وبنیاد هندسه را نیز بر بی نهات کوچکها گذاشت و هندسه دیفرانسیل را طرح کرد.

پژوهشهای ریمان را هلم هتز و لیوبل ترامی ، بلیایی ولباچفسکی هر قدر در کار خود پیش رفتند با ناسازگاری دستگاه رو به رو نشدند آنها به طور مجزا هم سازگار آن را ثابت نکردند. هندسه ریمانی با هندسه بلیایی و لباچفسکی فرق بارز دارد، مثلا آنان به رسم بیشتر از یک خط به موازات خط معین از نقطه معین قائل بودند، اما ریمان وازی را انکار کرد. با این که آنها مجموع زاویه های مثلث را کوچکتر از دو قائمه گرفتند و ریمان بزرگتر از آن. 

هندسه نااقلیدسی لیایی و لباچفسکی را هندسه هذلولوی(یپربولیک) و هندسه ریمان را هندسه بیضی (الیپتیک) نامیده اند. 

منابع[ویرایش]

جستارهای وابسته[ویرایش]

پیوند به بیرون[ویرایش]