قمر

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به ناوبری پرش به جستجو
فارسیEnglish
برخی از قمرهای منظومهٔ شمسی. ۱۹ قمر با جرم کافی برای کروی شدن؛ تعادل هیدرواستاتیکی، داشته‌اند. از این میان تیتان که قمرزحل است جو دارد.

قمر در ستاره‌شناسی به جسمی آسمانی گفته می‌شود که گرد جسم آسمانی بزرگ‌تری (سیاره) بگردد. با اینکه کلمه قمر عربی است ولی بهتر است برای ابهام‌زدایی از آن استفاده شود زیرا «ماه» اختصاصاً برای اطلاق به قمر زمین استفاده می‌شود؛ و در ضمن کلمه «ماه» معنای دیگری هم در بخش‌بندی سال دارد. در بسیاری از زبان‌های اروپا، از عبارتی مترادف با "ماهواره طبیعی" برای اشاره به قمر استفاده می‌شود.

دیگر سیارات منظومه شمسی هم قمرهایی دارند. این قمرها فقط مختص منظومه شمسی نبوده و احتمال می‌رود برای سیاره‌های فراخورشیدی نیز یافت شود. بیشترین تعداد قمرها در منظومه شمسی متعلق به سیارات گازی است. بهرام دو قمر به نام‌های فوبوس و دیموس دارد. گانیمد از اقمار مشتری و بزرگ‌ترین قمر منظومه شمسی است.

مهم‌ترین قمرهای منظومه شمسی عبارتند از: ماه (قمر زمین)، قمرهای گالیله‌ای (قمرهای مشتری)، تیتان (قمر زحل)، تریتون (قمر نپتون).

تعداد قمرهای شناخته شده[ویرایش]

تا کنون ۱۷۰ قمر در منظومه شمسی شناخته شده‌است. البته تعداد قمرها به این بستگی دارد که قمر را چگونه تعریف کنیم، اگر شما قمر را جسمی که به دور یک سیاره می‌گردد تعریف کنید از جمله تکه یخ‌هایی که در حلقه‌های زحل وجود دارند، تعداد اقمار منظومه شمسی بر چندین میلیون میلیارد بالغ خواهد شد!

تقسیم‌بندی قمرها[ویرایش]

قمرها را می‌توان به دو دسته طبیعی و مصنوعی تقسیم‌بندی کرد:

قمرهای طبیعی ماه‌ها هستند که به‌طور منظم به دور سیارات می‌گردند.

قمرهای مصنوعی قمرهایی هستند که انسان‌ها برای تحقیق، رصد و ارتباطات، تولید و به مدار زمین یا یک سیاره یا یک قمر طبیعی پرتاب می‌شود.

قمر زمین[ویرایش]

ماه

ماه تنها قمر طبیعی سیاره ی زمین با فاصلهٔ متوسط ۳۸۴٬۴۰۲ کیلومتر[۱] از آن است که با بازتاب نور خورشید برخی از شب‌های زمین را کمی روشن می‌کند. قطر ماه حدود ۳۵۰۰ کیلومتر (در بزرگی پنجمین در منظومه شمسی)، و دارای بزرگ‌ترین نسبت بزرگی با سیارهٔ خود در این منظومه است. ماه جو ندارد و سطح آن از برخورد سنگ‌های آبله گون است. ماه تنها کره خارج از زمین است که انسان‌ها تاکنون بر روی آن گام نهاده‌اند؛ در سال ۱۹۶۹ سازمان ناسا دو تن از فضا نوردان خود را به نام‌های نیل آرمسترانگ و باز آلدرین به ماه فرستاد. این دو اولین کسانی بودند که بر روی کرهٔ ماه قدم نهادند.

قمرهای مریخ[ویرایش]

دیموس
فوبوس

سیاره بهرام یا مریخ دو قمر طبیعی بسیار کوچک دارد که نام آن‌ها فوبوس و دیموس است که استدلال می‌شود که سیارک‌های اسیر شده هستند. هر دو قمر در سال ۱۸۷۷ میلادی توسط آساف هال کشف شده بودند.

قمرهای مشتری[ویرایش]

سیاره مشتری ۷۹ قمر شناخته‌شده دارد که ۴ قمر آن: قمرهای گالیله‌ای آیو، گانیمید، اروپا و کالیستو ، معروفیت بیشتری دارند.

قمر آیو[ویرایش]

آیو

آیو نام یکی از سیاره مشتری و یکی از اقمار گالیله‌ای است. آیو نزدیک‌ترین قمر از اقمار گالیله‌ای مشتری به آن است، این قمر از نظر اندازه کمی بزرگ‌تر از ماه است و با ۴۰۰ آتشفشان فعال، فعال‌ترین جرم از نظر زمین شناختی در منظومه شمسی است. پژوهشگران دریافته‌اند که سطح این قمر به شدت بوی نامطبوعی مانند تخم مرغ گندیده می‌دهد که ناشی از انتشار سولفور آهن و ترکیبات گوگردی از آتشفشان‌های سطح این قمر است.

گانیمید[ویرایش]

گانیمید

گانیمید یا گانیمد یکی از اقمار مشتری و بزرگ‌ترین قمر منظومه شمسی با قطری برابر ۵۲۷۰ کیلومتر است. از لحاظ قطر بزرگ‌تر از سیاره عطارد و کم‌تر از نصف آن حجم دارد و حجمی سه برابر ماه دارد. این قمر، تنها قمر منظومه شمسی است که یک میدان مغناطیسی قدرتمند دارد که احتمالاً نشان دهنده وجود یک هستهٔ رسانا از فلز مایع است.

اروپا[ویرایش]

قمر اروپا

اروپا نام یکی از شصت و دو قمر سیاره مشتری است این قمر در سال ۱۶۱۰ میلادی توسط گالیله کشف شد.

کالیستو[ویرایش]

کالیستو

کالیستو یک قمر طبیعی سیاره مشتری است و در سال ۱۶۱۰ توسط گالیله کشف شد و سومین قمر بزرگ در سامانه خورشیدی است و دومین قمر بزرگ بعد از گانیمد است.

قمرهای زحل[ویرایش]

ستاره شناسان معتقدند حلقه‌های زحل جز قمرهای آن محسوب می‌شوند چون بر دور این سیاره در حال گردشند. علاوه بر حلقه‌ها، زحل دارای ۲۵ قمر به قطر تقریبی ۱۰ کیلومتر و چندین قمر کوچکتر نیز می‌باشد. بزرگترین قمر این سیاره تیتان نام دارد. قطر این قمر ۵۱۵۰ کیلومتر است. تیتان یکی از معدود اقمار موجود در منظومه شمسی است که دارای جو می‌باشد. اتمسفر این قمر حاوی حجم زیادی نیتروژن است. بیشتر اقمار زحل دارای چاله‌های بزرگی هستند. برای مثال قمر میماس (Mimas) چاله‌ای دارد که یک سوم قطر این قمر را پوشانده است. قمر دیگر، لاپتوس (Iapetus)، دارای یک نیمه روشن و یک نیمه تاریک است. نیمه روشن این قمر ۱۰ برابر بیش از نیمه تاریک آن نور را باز می‌تاباند. قمر هایپریون (Hyperion) بیشتر شبیه به یک استوانه چاق است تا یک کره.[۲]

قمرهای اورانوس[ویرایش]

اورانوس بیست و هفت ماه شناخته شده دارد و دو ماه نخست اورانوس که تیتانیا و ابرونت نام دارند را ویلیام هرشل در سال 1781 میلادی کشف کرد. دیگر ماه‌های اورانوس یعنی آریل و اومبریل در ۱۸۵۱ توسط ویلیام راسل کشف شدند و در سال ۱۹۴۸ میراندا توسط جرارد کوپر کشف شد بقیه ماه‌ها هم توسط ویجر۲ و تلسکوپ‌های بسیار قوی زمینی کشف شد.

قمرهای نپتون[ویرایش]

نپتون ۱۴ قمر شناخته شده دارد. تریتون (Triton) بزرگترین قمر این سیاره ۲۷۰۵ کیلومتر قطر دارد و در فاصله ۳۵۴٫۷۶۰ کیلومتری سیاره قرار گرفته‌است. این جرم تنها قمر در منظومه شمسی است که برخلاف جهت حرکت سیاره مادرش در چرخش است. تریتون مداری دایره شکل دارد و در مدت ۶ روز زمینی یک بار دور نپتون می‌چرخد. احتمالاً تریتون زمانی دنباله‌دار بزرگی به دور خورشید بوده و در مقطعی این دنباله‌دار گرفتار گرانش نپتون شده‌است.[۳]

آیا یک قمر می‌تواند برای خود قمری داشته باشد؟[ویرایش]

چنین چیزی در منظومه شمسی وجود ندارد، اما امکان اینکه یک قمر به دور قمر دیگری گردش کند، وجود دارد. با این حال، نیروهای گرانشی نوسانی که از جانب سیاره و قمر مادر اعمال می‌شود، در درازمدت باعث ناپایداری مدار خواهد شد. در مقیاس‌های به اندازه کافی بزرگ، قمر یک قمر می‌تواند میلیون‌ها سال دوام آورد. برخی از خرده‌سیارک‌های منظومه شمسی قمر دارند. نمونه معروف این خرده‌سیارک‌ها آیدا و قمر آن داکتایل است. همچنین در طول پنجاه سال گذشته، ماه زمین نیز به دفعات صاحب اقمار کوتاه عمری شده‌است که اغلب آن‌ها ترکیبات آهنی داشتند.

جستارهای وابسته[ویرایش]

منابع[ویرایش]

پیوند به بیرون[ویرایش]

Most of the 194 known natural satellites of the planets are irregular moons. Ganymede, followed by Titan, Callisto, Io and Earth's Moon are the largest natural satellites in the Solar System (see List of natural satellites § List). Venus has 0 moons Neptune has 14

A natural satellite, or moon, is, in the most common usage, an astronomical body that orbits a planet or minor planet (or sometimes another small Solar System body).

In the Solar System there are six planetary satellite systems containing 205 known natural satellites. Four IAU-listed dwarf planets are also known to have natural satellites: Pluto, Haumea, Makemake, and Eris.[1] As of September 2018, there are 334 other minor planets known to have moons.[2]

The Earth–Moon system is unique in that the ratio of the mass of the Moon to the mass of Earth is much greater than that of any other natural-satellite–planet ratio in the Solar System. At 3,474 km (2,158 miles) across, the Moon is 0.273 times the diameter of Earth.[3] This is five times greater than the next largest moon-to-planet diameter ratio (with Neptune's largest moon at 0.055, Saturn's at 0.044, Jupiter's at 0.038 and Uranus' as 0.031). For the category of planetoids, among the five that are known in the Solar System, Charon has the largest ratio, being half (0.51) the diameter of Pluto.

Terminology

The first known natural satellite was the Moon, but it was considered a "planet" until Copernicus' introduction of De revolutionibus orbium coelestium in 1543. Until the discovery of the Galilean satellites in 1610 there was no opportunity for referring to such objects as a class. Galileo chose to refer to his discoveries as Planetæ ("planets"), but later discoverers chose other terms to distinguish them from the objects they orbited.[citation needed]

The first to use the term satellite to describe orbiting bodies was the German astronomer Johannes Kepler in his pamphlet Narratio de Observatis a se quatuor Iouis satellitibus erronibus ("Narration About Four Satellites of Jupiter Observed") in 1610. He derived the term from the Latin word satelles, meaning "guard", "attendant", or "companion", because the satellites accompanied their primary planet in their journey through the heavens.[4]

The term satellite thus became the normal one for referring to an object orbiting a planet, as it avoided the ambiguity of "moon". In 1957, however, the launching of the artificial object Sputnik created a need for new terminology.[4] The terms man-made satellite and artificial moon were very quickly abandoned in favor of the simpler satellite, and as a consequence, the term has become linked primarily with artificial objects flown in space – including, sometimes, even those not in orbit around a planet.[citation needed]

Because of this shift in meaning, the term moon, which had continued to be used in a generic sense in works of popular science and in fiction, has regained respectability and is now used interchangeably with natural satellite, even in scientific articles. When it is necessary to avoid both the ambiguity of confusion with Earth's natural satellite the Moon and the natural satellites of the other planets on the one hand, and artificial satellites on the other, the term natural satellite (using "natural" in a sense opposed to "artificial") is used. To further avoid ambiguity, the convention is to capitalize the word Moon when referring to Earth's natural satellite, but not when referring to other natural satellites.

Many authors define "satellite" or "natural satellite" as orbiting some planet or minor planet, synonymous with "moon" – by such a definition all natural satellites are moons, but Earth and other planets are not satellites.[5][6][7] A few recent authors define "moon" as "a satellite of a planet or minor planet", and "planet" as "a satellite of a star" – such authors consider Earth as a "natural satellite of the Sun".[8][9][10]

Definition of a moon

Size comparison of Earth and the Moon

There is no established lower limit on what is considered a "moon". Every natural celestial body with an identified orbit around a planet of the Solar System, some as small as a kilometer across, has been considered a moon, though objects a tenth that size within Saturn's rings, which have not been directly observed, have been called moonlets. Small asteroid moons (natural satellites of asteroids), such as Dactyl, have also been called moonlets.[11]

The upper limit is also vague. Two orbiting bodies are sometimes described as a double planet rather than primary and satellite. Asteroids such as 90 Antiope are considered double asteroids, but they have not forced a clear definition of what constitutes a moon. Some authors consider the Pluto–Charon system to be a double (dwarf) planet. The most common[citation needed] dividing line on what is considered a moon rests upon whether the barycentre is below the surface of the larger body, though this is somewhat arbitrary, because it depends on distance as well as relative mass.

Origin and orbital characteristics

Two moons: Saturn's natural satellite Dione occults Enceladus

The natural satellites orbiting relatively close to the planet on prograde, uninclined circular orbits (regular satellites) are generally thought to have been formed out of the same collapsing region of the protoplanetary disk that created its primary.[12][13] In contrast, irregular satellites (generally orbiting on distant, inclined, eccentric and/or retrograde orbits) are thought to be captured asteroids possibly further fragmented by collisions. Most of the major natural satellites of the Solar System have regular orbits, while most of the small natural satellites have irregular orbits.[14] The Moon[15] and possibly Charon[16] are exceptions among large bodies in that they are thought to have originated by the collision of two large proto-planetary objects (see the giant impact hypothesis). The material that would have been placed in orbit around the central body is predicted to have reaccreted to form one or more orbiting natural satellites. As opposed to planetary-sized bodies, asteroid moons are thought to commonly form by this process. Triton is another exception; although large and in a close, circular orbit, its motion is retrograde and it is thought to be a captured dwarf planet.

Temporary satellites

The capture of an asteroid from a heliocentric orbit is not always permanent. According to simulations, temporary satellites should be a common phenomenon.[17][18] The only observed example is 2006 RH120, which was a temporary satellite of Earth for nine months in 2006 and 2007.[19][20]

Tidal locking

Most regular moons (natural satellites following relatively close and prograde orbits with small orbital inclination and eccentricity) in the Solar System are tidally locked to their respective primaries, meaning that the same side of the natural satellite always faces its planet. The only known exception is Saturn's natural satellite Hyperion, which rotates chaotically because of the gravitational influence of Titan.

In contrast, the outer natural satellites of the giant planets (irregular satellites) are too far away to have become locked. For example, Jupiter's Himalia, Saturn's Phoebe, and Neptune's Nereid have rotation periods in the range of ten hours, whereas their orbital periods are hundreds of days.

Satellites of satellites

Artist impression of Rhea's proposed rings

No "moons of moons" or subsatellites (natural satellites that orbit a natural satellite of a planet) are currently known as of 2019. In most cases, the tidal effects of the planet would make such a system unstable.

However, calculations performed after the recent detection[21] of a possible ring system around Saturn's moon Rhea indicate that satellites orbiting Rhea could have stable orbits. Furthermore, the suspected rings are thought to be narrow,[22] a phenomenon normally associated with shepherd moons. However, targeted images taken by the Cassini spacecraft failed to detect rings around Rhea.[23]

It has also been proposed that Saturn's moon Iapetus had a satellite in the past; this is one of several hypotheses that have been put forward to account for its equatorial ridge.[24]

Trojan satellites

Two natural satellites are known to have small companions at both their L4 and L5 Lagrangian points, sixty degrees ahead and behind the body in its orbit. These companions are called trojan moons, as their orbits are analogous to the trojan asteroids of Jupiter. The trojan moons are Telesto and Calypso, which are the leading and following companions, respectively, of the Saturnian moon Tethys; and Helene and Polydeuces, the leading and following companions of the Saturnian moon Dione.

Asteroid satellites

The discovery of 243 Ida's natural satellite Dactyl in the early 1990s confirmed that some asteroids have natural satellites; indeed, 87 Sylvia has two. Some, such as 90 Antiope, are double asteroids with two comparably sized components.

Shape

The relative masses of the natural satellites of the Solar System. Mimas, Enceladus, and Miranda are too small to be visible at this scale. All the irregularly shaped natural satellites, even added together, would also be too small to be visible.

Neptune's moon Proteus is the largest irregularly shaped natural satellite. All other known natural satellites that are at least the size of Uranus's Miranda have lapsed into rounded ellipsoids under hydrostatic equilibrium, i.e. are "round/rounded satellites". The larger natural satellites, being tidally locked, tend toward ovoid (egg-like) shapes: squat at their poles and with longer equatorial axes in the direction of their primaries (their planets) than in the direction of their motion. Saturn's moon Mimas, for example, has a major axis 9% greater than its polar axis and 5% greater than its other equatorial axis. Methone, another of Saturn's moons, is only around 3 km in diameter and visibly egg-shaped. The effect is smaller on the largest natural satellites, where their own gravity is greater relative to the effects of tidal distortion, especially those that orbit less massive planets or, as in the case of the Moon, at greater distances.

Name Satellite of Difference in axes
km
% of mean
diameter
Mimas Saturn 33.4 (20.4 / 13.0) 8.4 (5.1 / 3.3)
Enceladus Saturn 16.6 3.3
Miranda Uranus 14.2 3.0
Tethys Saturn 25.8 2.4
Io Jupiter 29.4 0.8
The Moon Earth 4.3 0.1

Geological activity

Of the nineteen known natural satellites in the Solar System that are large enough to have lapsed into hydrostatic equilibrium, several remain geologically active today. Io is the most volcanically active body in the Solar System, while Europa, Enceladus, Titan and Triton display evidence of ongoing tectonic activity and cryovolcanism. In the first three cases, the geological activity is powered by the tidal heating resulting from having eccentric orbits close to their giant-planet primaries. (This mechanism would have also operated on Triton in the past, before its orbit was circularized.) Many other natural satellites, such as Earth's Moon, Ganymede, Tethys and Miranda, show evidence of past geological activity, resulting from energy sources such as the decay of their primordial radioisotopes, greater past orbital eccentricities (due in some cases to past orbital resonances), or the differentiation or freezing of their interiors. Enceladus and Triton both have active features resembling geysers, although in the case of Triton solar heating appears to provide the energy. Titan and Triton have significant atmospheres; Titan also has hydrocarbon lakes. Four of the largest natural satellites, Europa, Ganymede, Callisto, and Titan, are thought to have subsurface oceans of liquid water, while smaller Enceladus may have localized subsurface liquid water.

Natural satellites of the Solar System

Euler diagram showing the types of bodies in the Solar System.

Of the objects within our Solar System known to have natural satellites, there are 76 in the asteroid belt (five with two each), four Jupiter trojans, 39 near-Earth objects (two with two satellites each), and 14 Mars-crossers.[2] There are also 84 known natural satellites of trans-Neptunian objects.[2] Some 150 additional small bodies have been observed within the rings of Saturn, but only a few were tracked long enough to establish orbits. Planets around other stars are likely to have satellites as well, and although numerous candidates have been detected to date, none have yet been confirmed.

Of the inner planets, Mercury and Venus have no natural satellites; Earth has one large natural satellite, known as the Moon; and Mars has two tiny natural satellites, Phobos and Deimos. The giant planets have extensive systems of natural satellites, including half a dozen comparable in size to Earth's Moon: the four Galilean moons, Saturn's Titan, and Neptune's Triton. Saturn has an additional six mid-sized natural satellites massive enough to have achieved hydrostatic equilibrium, and Uranus has five. It has been suggested that some satellites may potentially harbour life.[25]

Among the identified dwarf planets, Ceres has no known natural satellites. Pluto has the relatively large natural satellite Charon and four smaller natural satellites; Styx, Nix, Kerberos, and Hydra.[26] Haumea has two natural satellites, and Eris and Makemake have one each. The Pluto–Charon system is unusual in that the center of mass lies in open space between the two, a characteristic sometimes associated with a double-planet system.

The seven largest natural satellites in the Solar System (those bigger than 2,500 km across) are Jupiter's Galilean moons (Ganymede, Callisto, Io, and Europa), Saturn's moon Titan, Earth's moon, and Neptune's captured natural satellite Triton. Triton, the smallest of these, has more mass than all smaller natural satellites together. Similarly in the next size group of nine mid-sized natural satellites, between 1,000 km and 1,600 km across, Titania, Oberon, Rhea, Iapetus, Charon, Ariel, Umbriel, Dione, and Tethys, the smallest, Tethys, has more mass than all smaller natural satellites together. As well as the natural satellites of the various planets, there are also over 80 known natural satellites of the dwarf planets, minor planets and other small Solar System bodies. Some studies estimate that up to 15% of all trans-Neptunian objects could have satellites.

The following is a comparative table classifying the natural satellites in the Solar System by diameter. The column on the right includes some notable planets, dwarf planets, asteroids, and trans-Neptunian objects for comparison. The natural satellites of the planets are named after mythological figures. These are predominantly Greek, except for the Uranian natural satellites, which are named after Shakespearean characters. The nineteen bodies massive enough to have achieved hydrostatic equilibrium are in bold in the table below. Minor planets and satellites suspected but not proven to have achieved a hydrostatic equilibrium are italicized in the table below.

Mean
diameter
(km)
Satellites of planets Satellites of dwarf planets Satellites of
other
minor planets
Non-satellites
for comparison
Earth Mars Jupiter Saturn Uranus Neptune Pluto Makemake Haumea Eris
4,000–6,000 Ganymede
Callisto
Titan Mercury
3,000–4,000 Moon Io
Europa
2,000–3,000 Triton Eris
Pluto
1,000–2,000 Rhea
Iapetus
Dione
Tethys
Titania
Oberon
Umbriel
Ariel
Charon Makemake
Haumea
2007 OR10,
Quaoar
500–1,000 Enceladus Dysnomia Sedna, Ceres,
Salacia, Orcus,
Pallas, Vesta
many more TNOs
250–500 Mimas
Hyperion
Miranda Proteus
Nereid
Hiʻiaka Orcus I Vanth
Salacia I Actaea
10 Hygiea
704 Interamnia
87 Sylvia
and many others
100–250 Amalthea
Himalia
Thebe
Phoebe
Janus
Epimetheus
Sycorax
Puck
Portia
Larissa
Galatea
Despina
S/2015 (136472) 1 Namaka S/2005 (82075) 1
Sila–Nunam I
Ceto I Phorcys
Patroclus I Menoetius
~21 more moons of TNOs
3 Juno
15760 Albion
5 Astraea
42355 Typhon
and many others
50–100 Elara
Pasiphae
Prometheus
Pandora
Caliban
Juliet
Belinda
Cressida
Rosalind
Desdemona
Bianca
Thalassa
Halimede
Neso
Naiad
Quaoar I Weywot
90 Antiope I
Typhon I Echidna
Logos I Zoe
5 more moons of TNOs
90 Antiope
58534 Logos
253 Mathilde
and many others
25–50 Carme
Metis
Sinope
Lysithea
Ananke
Siarnaq
Helene
Albiorix
Atlas
Pan
Ophelia
Cordelia
Setebos
Prospero
Perdita
Stephano
Sao
Laomedeia
Psamathe
Hippocamp
Hydra
Nix[27]
Kalliope I Linus 1036 Ganymed
243 Ida
and many others
10–25 Phobos
Deimos
Leda
Adrastea
Telesto
Paaliaq
Calypso
Ymir
Kiviuq
Tarvos
Ijiraq
Erriapus
Mab
Cupid
Francisco
Ferdinand
Margaret
Trinculo
Kerberos
Styx
762 Pulcova I
Sylvia I Romulus
624 Hektor I Skamandrios
Eugenia I Petit-Prince
121 Hermione I
283 Emma I
1313 Berna I
107 Camilla I
433 Eros
1313 Berna
and many others
< 10 63 moons 56 moons Sylvia II Remus
Ida I Dactyl
and many others
many

Visual summary

Solar System moons
Ganymede g1 true-edit1.jpg
Titan in true color.jpg
Callisto.jpg
Io highest resolution true color.jpg
FullMoon2010.jpg
Europa-moon.jpg
Triton moon mosaic Voyager 2 (large).jpg
Ganymede
(moon of Jupiter)
Titan
(moon of Saturn)
Callisto
(moon of Jupiter)
Io
(moon of Jupiter)
Moon
(moon of Earth)
Europa
(moon of Jupiter)
Triton
(moon of Neptune)
Titania (moon) color, edited.jpg
PIA07763 Rhea full globe5.jpg
Voyager 2 picture of Oberon.jpg
Iapetus as seen by the Cassini probe - 20071008.jpg
Charon in True Color - High-Res.jpg
PIA00040 Umbrielx2.47.jpg
Ariel (moon).jpg
Titania
(moon of Uranus)
Rhea
(moon of Saturn)
Oberon
(moon of Uranus)
Iapetus
(moon of Saturn)
Charon
(moon of Pluto)
Umbriel
(moon of Uranus)
Ariel
(moon of Uranus)
Dione in natural light.jpg
PIA18317-SaturnMoon-Tethys-Cassini-20150411.jpg
PIA17202 - Approaching Enceladus.jpg
PIA18185 Miranda's Icy Face.jpg
Proteus (Voyager 2).jpg
Mimas Cassini.jpg
Hyperion true.jpg
Dione
(moon of Saturn)
Tethys
(moon of Saturn)
Enceladus
(moon of Saturn)
Miranda
(moon of Uranus)
Proteus
(moon of Neptune)
Mimas
(moon of Saturn)
Hyperion
(moon of Saturn)
Phoebe cassini.jpg
PIA12714 Janus crop.jpg
Amalthea (moon).png
PIA09813 Epimetheus S. polar region.jpg
Thebe.jpg
Prometheus 12-26-09a.jpg
PIA21055 - Pandora Up Close.jpg
Phoebe
(moon of Saturn)
Janus
(moon of Saturn)
Amalthea
(moon of Jupiter)
Epimetheus
(moon of Saturn)
Thebe
(moon of Jupiter)
Prometheus
(moon of Saturn)
Pandora
(moon of Saturn)
Hydra Enhanced Color.jpg
Nix best view.jpg
Leading hemisphere of Helene - 20110618.jpg
Atlas (NASA).jpg
Pan by Cassini, March 2017.jpg
Telesto cassini closeup.jpg
N00151485 Calypso crop.jpg
Hydra
(moon of Pluto)
Nix
(moon of Pluto)
Helene
(moon of Saturn)
Atlas
(moon of Saturn)
Pan
(moon of Saturn)
Telesto
(moon of Saturn)
Calypso
(moon of Saturn)
Phobos colour 2008.jpg
Deimos-MRO.jpg
Daphnis (Saturn's Moon).jpg
Methone PIA14633.jpg
Dactyl-HiRes.jpg
Phobos
(moon of Mars)
Deimos
(moon of Mars)
Daphnis
(moon of Saturn)
Methone
(moon of Saturn)
Dactyl
(moon of Ida)

See also

Moons of planets

Moons of dwarf planets and small Solar System bodies

References

  1. ^ "Planet and Satellite Names and Discoverers". International Astronomical Union (IAU) Working Group for Planetary System Nomenclature (WGPSN). Retrieved 27 January 2012.
  2. ^ a b c Wm. Robert Johnston (30 September 2018). "Asteroids with Satellites". Johnston's Archive. Retrieved 22 October 2018.
  3. ^ Glenday, Craig (2014). Guinness World Records 2014. p. 186. ISBN 978-1-908843-15-9.
  4. ^ a b "Early History – First Satellites". www.jpl.nasa.gov. Retrieved 8 February 2018.
  5. ^ Kenneth R. Lang. "The Cambridge Guide to the Solar System". 2011. p. 15. quote: "Any object that orbits a planet is now called a satellite, and a natural satellite is also now called a moon."
  6. ^ Therese Encrenaz, et. al. "The Solar System". 2004. p. 30.
  7. ^ Tilman Spohn, Doris Breuer, Torrence Johnson. "Encyclopedia of the Solar System". 2014. p. 18.
  8. ^ David Andrew Weintraub. "Is Pluto a Planet?: A Historical Journey Through the Solar System". p. 65 quote: "... the general concept of a "moon" as a satellite of a planet and "planet" as a satellite of a star."
  9. ^ "Satellite". www.merriam-webster.com. Merriam Webster. Retrieved 16 November 2015.
  10. ^ Stillman, Dan (16 June 2015). "What Is a Satellite?". www.nasa.gov. NASA. Retrieved 16 November 2015.
  11. ^ F. Marchis, et al. (2005). "Discovery of the triple asteroidal system 87 Sylvia". Nature. 436 (7052): 822–24. Bibcode:2005Natur.436..822M. doi:10.1038/nature04018. PMID 16094362.
  12. ^ Canup, Robin M.; Ward, William R. (30 December 2008). Origin of Europa and the Galilean Satellites. University of Arizona Press. p. 59. arXiv:0812.4995. Bibcode:2009euro.book...59C. ISBN 978-0-8165-2844-8.
  13. ^ D'Angelo, G.; Podolak, M. (2015). "Capture and Evolution of Planetesimals in Circumjovian Disks". The Astrophysical Journal. 806 (1): 29–. arXiv:1504.04364. Bibcode:2015ApJ...806..203D. doi:10.1088/0004-637X/806/2/203.
  14. ^ Encyclopedia of the Solar System, page 366, Academic Press, 2007, Lucy-Ann Adams McFadden, Paul Robert Weissman, Torrence V. Johnson
  15. ^ Canup, RM & Asphaug, E (2001). "Origin of the Moon in a giant impact near the end of the Earth's formation". Nature. 412 (6848): 708–12. Bibcode:2001Natur.412..708C. doi:10.1038/35089010. PMID 11507633.
  16. ^ Stern, SA; Weaver, HA; Steffl, AJ; Mutchler, MJ; et al. (2006). "A giant impact origin for Pluto's small natural satellites and satellite multiplicity in the Kuiper belt". Nature. 439 (7079): 946–49. Bibcode:2006Natur.439..946S. doi:10.1038/nature04548. PMID 16495992.
  17. ^ Camille M. Carlisle (30 December 2011). "Pseudo-moons Orbit Earth". Sky & Telescope.
  18. ^ Fedorets, Grigori; Granvik, Mikael; Jedicke, Robert (15 March 2017). "Orbit and size distributions for asteroids temporarily captured by the Earth-Moon system". Icarus. 285: 83–94. Bibcode:2017Icar..285...83F. doi:10.1016/j.icarus.2016.12.022.
  19. ^ "2006 RH120 ( = 6R10DB9) (A second moon for the Earth?)". Great Shefford Observatory. 14 September 2017. Archived from the original on 6 February 2015. Retrieved 13 November 2017.
  20. ^ Roger W. Sinnott (17 April 2007). "Earth's "Other Moon"". Sky & Telescope. Archived from the original on 2 April 2012.
  21. ^ G.H. Jones, E. Roussos, N. Krupp, U. Beckmann, A.J. Coates, F. Crar, I. Dandouras, V. Dikarev & M.K. Dougherty, P. Garnier, C.J. Hansen, A.R. Hendrix, G.B. Hospodarsky, R.E. Johnson, S. Kempf, K.K. Khurana, S.M. Krimigis, H. Krüger, W.S. Kurth, A. Lagg, H.J. McAndrews, D.G. Mitchell, C. Paranicas, F. Postberg, C.T. Russell, J. Saur, M. Seiß, F. Spahn, R. Srama, D.F. Strobel, R. Tokar, J.-E. Wahlund, R.J. Wilson, J. Woch, D. Young (2008). "The Dust Halo of Saturn's Largest Icy Moon, Rhea – Jones et al. 319 (5868): 1380 – Science". Science. 319 (5868): 1380–1384. Bibcode:2008Sci...319.1380J. doi:10.1126/science.1151524. PMID 18323452.CS1 maint: multiple names: authors list (link) Pdf
  22. ^ Jeff Hecht (6 March 2008). "Saturn satellite reveals first moon rings". New Scientist.
  23. ^ Tiscareno, Matthew S.; Burns, Joseph A.; Cuzzi, Jeffrey N.; Hedman, Matthew M. (2010). "Cassini imaging search rules out rings around Rhea – Tiscareno – 2010". Geophysical Research Letters. 37 (14): n/a. arXiv:1008.1764. Bibcode:2010GeoRL..3714205T. doi:10.1029/2010GL043663.
  24. ^ "How Iapetus, Saturn's outermost moon, got its ridge". 13 December 2010.
  25. ^ Woo, Marcus (27 January 2015). "Why We're Looking for Alien Life on Moons, Not Just Planets". Wired. Retrieved 27 January 2015.
  26. ^ "Hubble Discovers New Pluto Moon". ESA/Hubble Press Release. Retrieved 13 July 2012.
  27. ^ "How Big Is Pluto? New Horizons Settles Decades-Long Debate". NASA. 13 July 2015.

Cite error: A list-defined reference named "shep-main" is not used in the content (see the help page).
Cite error: A list-defined reference named "bodies" is not used in the content (see the help page).

External links

All moons

Jupiter's moons

Saturn's moons