پردازش تصویر

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو
Halftone example black and white.png

پردازش تصاویر امروزه بیشتر به موضوع پردازش تصویر دیجیتال گفته می‌شود که شاخه‌ای از دانش رایانه است که با پردازش سیگنال دیجیتال که نماینده تصاویر برداشته شده با دوربین دیجیتال یا پویش شده توسط پویشگر هستند سر و کار دارد.

پردازش تصاویر دارای دو شاخه عمدهٔ بهبود تصاویر و بینایی ماشین است. بهبود تصاویر دربرگیرندهٔ روشهایی چون استفاده از فیلتر محوکننده و افزایش تضاد برای بهتر کردن کیفیت دیداری تصاویر و اطمینان از نمایش درست آنها در محیط مقصد(مانند چاپگر یا نمایشگر رایانه)است، در حالی که بینایی ماشین به روشهایی می‌پردازد که به کمک آنها می‌توان معنی و محتوای تصاویر را درک کرد تا از آنها در کارهایی چون رباتیک و محور تصاویر استفاده شود.

در معنای خاص آن پردازش تصویر عبارتست از هر نوع پردازش سیگنال که ورودی یک تصویر است مثل عکس یا صحنه‌ای از یک فیلم. خروجی پردازشگر تصویر می‌تواند یک تصویر یا یک مجموعه از نشانهای ویژه یا متغیرهای مربوط به تصویر باشد. اغلب تکنیک‌های پردازش تصویر شامل برخورد با تصویر به عنوان یک سیگنال دو بعدی و بکاربستن تکنیک‌های استاندارد پردازش سیگنال روی آنها می‌شود. پردازش تصویر اغلب به پردازش دیجیتالی تصویر اشاره می‌کند ولی پردازش نوری و آنالوگ تصویر هم وجود دارند. این مقاله در مورد تکنیک‌های کلی است که برای همه آنها به کار می‌رود.

تصاویر رقمی(دیجیتالی)[ویرایش]

تصاویر سنجش شده که از تعداد زیادی مربعات کوچک(پیکسل) تشکیل شده‌اند. هر پیکسل دارای یک شماره رقمی(Digital Number) می‌باشد که بیانگر مقدار روشنایی آن پیکسل است. به این نوع تصاویر، تصاویر رستری هم می‌گویند. تصاویر رستری دارای سطر و ستون میاشند.

مقادیر پیکسلها[ویرایش]

مقدار انرژی مغناطیسی که یک تصویر رقومی به هنگام تصویر برداری کسب می‌کند، رقم‌های دوتایی(Digit binary) یا بیت ها(Bits) را تشکیل می‌دهند که از قوه صفر تا ۲ ارزش گذاری شده‌است. هر بیت، توان یک به قوه ۲ (۱بیت=۲۱)می‌باشد. حداکثر تعداد روشنایی بستگی به تعداد بیت‌ها دارد. بنابراین ۸ بیت یعنی ۲۵۶ شماره رقومی که دامنه‌ای از ۰ تا ۲۵۵ دارد. به همین دلیل است که وقتی شما تصویر رستری از گیرنده خاصی مانند TM را وارد [[نرم افزار|نرم افزاری]] می‌کنید تغییرات میزان روشنایی را بین ۰ تا ۲۵۵ نشان می‌دهد.

دقت تصویر[ویرایش]

دقت تصویر بستگی به شماره پیکسل‌ها دارد. با یک تصویر ۲ بیتی، حداکثر دامنه روشنایی ۲*۲ یعنی ۴ می‌باشد که دامنه آن از ۰ تا ۳ تغییر می‌کند. در این حالت تصویر دقت (تفکیک پذیری لازم) را ندارد. تصویر ۸ بیتی حداکثر دامنه ۲۵۶ دارد و تغییرات آن بین ۰ تا ۲۵۵ است. که دقت بالاتری دارد.

عملیات اصلی در پردازش تصویر[ویرایش]

  1. تبدیلات هندسی: همانند تغییر اندازه، چرخش و...
  2. رنگ: همانند تغییر روشنایی، وضوح و یا تغییر فضای رنگ
  3. ترکیب تصاویر: ترکیب دو و یا چند تصویر
  4. فشرده سازی پرونده: کاهش حجم تصویر
  5. ناحیه بندی پرونده: تجزیهٔ تصویر به نواحی با معنی
  6. بهبود کیفیت پرونده: کاهش نویز، افزایش کنتراست، اصلاح گاما و ...
  7. سنجش کیفیت تصویر
  8. ذخیره سازی اطلاعات در تصویر
  9. انطباق تصاویر

فشرده‌سازی تصاویر[ویرایش]

مقالهٔ اصلی: فشرده‌سازی تصاویر

برای ذخیره‌سازی تصاویر باید حجم اطلاعات را تا جایی که ممکن است کاهش داد و اساس تمام روش‌های فشرده‌سازی کنار گذاردن بخش‌هایی از اطلاعات و داده‌ها است.

ضریب یا نسبت فشرده‌سازی است که میزان و در صد کنار گذاشتن اطلاعات را مشخص می‌کند. این روش ذخیره‌سازی و انتقال اطلاعات را آسان‌تر می‌کند و پهنای‌باند و فرکانس مورد نیاز کاهش می‌یابد.

امروزه روش‌هایی متعدد و پیشرفته برای فشرده‌سازی وجود دارد. فشرده‌سازی تصویر از این اصل مهم تبعیت می‌کند که چشم انسان حد فاصل دو عنصر تصویری نزدیک به هم را یکسان دیده و تمایز آنها را نمی‌تواند تشخیص دهد. همچنین اثر نور و تصویر برای مدت زمان معینی در چشم باقی مانده و از بین نمی‌رود که این ویژگی در ساخت تصاویر متحرک مورد توجه بوده‌است.

نام این فرمت در واقع مخفف کلمات JOINT PHOTOGRAPHIC EXPERT GROUP است. از این روش در فشرده‌سازی عکس و تصاویر گرافیکی ساکن استفاده می‌شود JPEG اولین و ساده‌ترین روش در فشرده‌سازی تصویر است به همین دلیل در ابتدا سعی شد برای فشرده‌سازی تصاویر متحرک مورد استفاده قرار گیرد. برای این منظور تصاویر به صورت فریم به فریم مانند عکس فشرده می‌شدند وبا ابداع روش MOTION JPEG برای ارتباط دادن این عکس‌ها به هم تلاش شد که با مشکلاتی همراه بود.

نام این فرمت مخفف عبارت MOVING PICTURE EXPERT GROUP است. این روش در ابتدای سال ۹۰ ابداع شد و در آن اطلاعات تصویر با سرعت حدود ۵/۱ مگابیت بر ثانیه انتقال پیدا می‌کرد که در تهیه تصاویر ویدئویی استفاده می‌شد. با این روش امکان ذخیره حدود ۶۵۰ مگابایت اطلاعات معادل حدود ۷۰ دقیقه تصویر متحرک در یک دیسک به وجود آمد. در MPEG بیت‌های اطلاعات به صورت سریال ارسال می‌شوند و به همراه آنها بیت‌های کنترل و هماهنگ‌کننده نیز ارسال می‌شوند که موقعیت و نحوه قرارگیری بیت‌های اطلاعاتی را برای انتقال و ثبت اطلاعات صدا و تصویر تعیین می‌کند.

  • روش MP۳

MP۳ نیز روشی برای فشرده سازی اطلاعات صوتی به ویژه موسیقی است که از طریق آن حجم زیادی از اطلاعات صوتی در فضای نسبتاً کوچکی ذخیره می‌شود.

  • روش MPEG۲

در روش MPEG۲ از ضریب فشرده‌سازی بالاتری استفاده می‌شود و امکان دسترسی به اطلاعات ۳ تا ۱۵ مگابیت بر ثانیه‌است از این روش در دی‌وی‌دی‌های امروزی استفاده می‌شود در اینجا نیز هر فریم تصویری شامل چندین سطر از اطلاعات دیجیتالی است.

  • روش MPEG ۴

از این روش برای تجهیزاتی که با انتقال سریع یا کند اطلاعات سرو کار دارند استفاده می‌شود. این روش توانایی جبران خطا و ارائه تصویر با کیفیت بالا را دارد. مسئله خطا و جبران آن در مورد تلفن‌های همراه و کامپیوترهای خانگی و لپ‌تاپ‌ها و شبکه‌ها از اهمیت زیادی برخوردار است. در شبکه‌های کامپیوتری باید تصویر برای کاربرانی که از مودم‌های سریع یا کند استفاده می‌کنند به خوبی نمایش داده شود، در چنین حالتی روش MPEG ۴ مناسب است. از این روش در دوربین‌های تلویزیونی نیز استفاده می‌شود. ایده اصلی این روش تقسیم یک فریم ویدئویی به یک یا چند موضوع است که مطابق قاعده خاصی کنار هم قرار می‌گیرند مانند درختی که از روی برگ‌های آن بتوان به شاخه تنه یا ریشه آن دست یافت. هر برگ می‌تواند شامل یک موضوع صوتی یا تصویری باشد. هر کدام از این اجزا به صورت مجزا و جداگانه قابل کپی و یا انتقال هستند. این تکنیک را با آموزش زبان می‌توان مقایسه کرد.

همان‌طوری‌که در آموزش زبان کلمات به صورت مجزا و جداگانه قرار داده می‌شوند و ما با مرتب کردن آن جملات خاصی می‌سازیم و می‌توانیم در چند جمله، کلمات مشترک را فقط یک‌بار بنویسیم و هنگام مرتب کردن آن‌ها به کلمات مشترک رجوع کنیم، در اینجا هم هر یک از این اجزا یک موضوع خاص را مشخص می‌کند و ما می‌توانیم اجزا مشترک را فقط یک‌بار به کار ببریم و هنگام ساختن موضوع به آنها رجوع کنیم. هر یک از موضوعات هم می‌توانند با موضوعات دیگر ترکیب و مجموعه جدیدی را بوجود آورند. این مسئله باعث انعطاف‌پذیری و کاربرد فراوان روش MPEG۴ می‌شود. برای مثال به صحنه بازی تنیس توجه کنید. در یک بازی تنیس می‌توان صحنه را به دو موضوع بازیکن و زمین بازی تقسیم کرد زمین بازی همواره ثابت است بنا بر این بعنوان یک موضوع ثابت همواره تکرار می‌شود ولی بازیکن همواره در حال حرکت است و چندین موضوع مختلف خواهد بود. این مسئله سبب کاهش پهنای باند اشغالی توسط تصاویر دیجیتالی می‌شود. توجه داشته باشید که علاوه بر سیگنال‌های مربوط به این موضوعات سیگنال‌های هماهنگ کننده‌ای هم وجود دارند که نحوه ترکیب و قرارگیری صحیح موضوعات را مشخص می‌کند.

روش‌های پردازش تصاویر[ویرایش]


کاربرد پردازش تصویر در زمینه‌های مختلف[ویرایش]

امروزه با پیشرفت سیستمهای تصویر برداری و الگوریتمهای پردازش تصویر شاخه جدیدی در کنترل کیفیت و ابزار دقیق به وجود آمده‌است. و هر روز شاهد عرضه سیستمهای تصویری پیشرفته برای سنجش اندازه، کالیبراسیون، کنترل اتصالات مکانیکی، افزایش کیفیت تولیدو........ هستیم.

اتوماسیون صنعتی[ویرایش]

با استفاده از تکنیکهای پردازش تصویر می‌توان دگرگونی اساسی در خطوط تولید ایجاد کرد. بسیاری از پروسه‌های صنعتی که تا چند دهه پیش پیاده سازیشان دور از انتظار بود، هم اکنون با بهرگیری از پردازش هوشمند تصاویر به مرحله عمل رسیده‌اند. از جمله منافع کاربرد پردازش تصویر به شرح زیر است.

  • افزایش سرعت و کیفیت تولید
  • کاهش ضایعات
  • اصلاح روند تولید
  • گسترش کنترل کیفیت

ماشین بینایی و پردازش تصویر در اتوماسیون صنعتی[ویرایش]

کنترل ماشین آلات و تجهیزات صنعتی یکی از وظایف مهم در فرآیندهای تولیدی است. بکارگیری کنترل خودکار و اتوماسیون روزبه روز گسترده تر شده و رویکردهای جدید با بهره گیری از تکنولوژی‌های نو امکان رقابت در تولید را فراهم می‌سازد. لازمه افزایش کیفیت و کمیت یک محصول، استفاده از ماشین آلات پیشرفته و اتوماتیک می‌باشد. ماشین آلاتی که بیشتر مراحل کاری آنها به طور خودکار صورت گرفته و اتکای آن به عوامل انسانی کمتر باشد. امروزه استفاده از تکنولوژی ماشین بینایی و تکنیک‌های پردازش تصویر کاربرد گسترده‌ای در صنعت پیدا کرده‌است و کاربرد آن بویژه در کنترل کیفیت محصولات تولیدی، هدایت روبات و مکانیزم‌های خود هدایت شونده روز به روز گسترده تر می‌شود.

عدم اطلاع کافی مهندسین از تکنولوژی ماشین بینایی و عدم آشنایی با توجیه اقتصادی بکارگیری آن موجب شده‌است که در استفاده از این تکنولوژی تردید و در بعضی مواقع واکنش منفی وجود داشته باشد. علی رغم این موضوع، ماشین بینایی روز به روز کاربرد بیشتری پیدا کرده و روند رشد آن چشمگیر بوده‌است. عملیات پردازش تصویر در حقیقت مقایسه دو مجموعه عدد است که اگر تفاوت این دو مجموعه از یک محدوده خاص فراتر رود، از پذیرفتن محصول امتناع شده و در غیر این‌صورت محصول پذیرفته می‌شود. در زیر پروژه‌هایی که در زمینه پردازش تصاویر پیاده سازی شده‌است، توضیح داده می‌شود. این پروژه‌ها با استفاده از پردازش تصویر، شمارش و اندازه گیری اشیا، تشخیص عیوب، تشخیص ترک، دسته بندی اشیا و عملیات بیشمار دیگری را انجام می‌دهند:

  1. اندازه گیری و کالیبراسیون
  2. جداسازی پینهای معیوب
  3. بازرسی لیبل و خواندن بارکد
  4. بازرسی عیوب چوب
  5. بازرسی قرص
  6. بازرسی و دسته بندی زعفران
  7. درجه بندی و دسته بندی کاشی
  8. بازرسی میوه
  9. بازرسی شماره چک

کالیبراسیون و ابزار دقیق[ویرایش]

اندازه گیری دقیق و سنجش فواصل کوچک یکی از دغدغه‌های اصلی در صنایع حساس می‌باشد. دوربینهای با کیفیت امکان کالیبراسیون با دقت بسیار بالا در حد میکرون را فراهم آورده‌اند. به کمک سیستم های مبتنی بر پردازش تصویر می توان اشکال پیچیده صنعتی را با سرعت و دقت بالا اندازگیری کرد.

حمل و نقل[ویرایش]

سیستم سرعت سنج ثابت شرکت پویا فن آوران کوثر نصب شده در جاده تهران-فیروزکوه.این سیستم با ثبت سرعت لحظه ای، سرعت متوسط، لاین تردد خودرو و خواندن اتوماتیک پلاک آن تخلفات مورد نظر را در شب و روز ثبت می کند.
  • سرعت سنجی خودرو

رشد استفاده از سیستم های کنترل هوشمند سرعت و ثبت تخلف در سال های اخیر مشهود بوده است. این سیستم ها برای تشخیص سرعت خودروهای عبوری، از روش های متفاوتی استفاده می کنند. یکی از این روش ها بهره گیری از پردازش تصویر است. با استفاده از دو دوربین و کالیبره کردن آن ها و پردازش تفاوت دید موجود در تصاویر بدست آمده از دو دوربین امکان تشخیص عمق خودروی عبوری فراهم می شود. با مشتق گیری از مکان سرعت خودرو بدست می آید. از مزایای استفاده از روش سرعت سنجی خودروها به کمک پردازش تصویر نسبت به دیگر روش ها مانند رادار و یا لیزر، پسیو بودن این روش است. بدین ترتیب امکان ثبت نشدن تخلف به علت استفاده متخلف از دستگاه های مختل کننده (Jammer) وجود ندارد. همچنین دستگاه های هشدار دهنده وجود سیستم های سرعت سنج که با آشکار سازی امواج رادار به متخلف هشدار می دهند نیز دیگر کاربری نخواهند داشت. این سیستم های سرعت سنج دارای دونوع هستند. [۱]

- سرعت سنج ثابت که بر روی پایه هایی در کنار بزرگراه ها و جاده ها نصب می شوند. [۲] - سرعت سنج خودرویی که بر روی خودروی پلیس سوار می شود.به علت حرکت خودروی پلیس استفاده از الگوریتم های ثابت کننده تصویر به منظور حذف حرکت خودروی پلیس لازم می باشد. از این نمونه بر روی خودروهای زانتیای کنترل نامحسوس پلیس ایران نصب شده است.[۳]

  • پلاک خوانی خودرو با آموختن کاراکتر هایی که پلاک خودرو از آن تشکیل شده است می توان در تصویر بدست آمده از دوربین پلاک خوان به دنبال آن کاراکتر ها گشت. سیستم های پلاک خوان خودرو کاربردهای مختلفی دارد که می توان به چند نمونه اشاره کرد.[۴]

- پلاک خوانی پارکینگ های مجتمع های بزرگ - پلاک خوانی جهت کنترل عبور و مرور در مرزها - پلاک خوانی خودروهای متخلف در سیستم های ثبت تخلف و اعمال جریمه

پیوند به بیرون[ویرایش]

منابع[ویرایش]

  • Strang, Gilbert (July 19, 2005), Linear Algebra and Its Applications (۴th ed.), Brooks Cole, ISBN 978-0-03-010567-8
  • Gonzalez, R. C. , and Woods, R. E. (۲۰۰۲), Digital Image Processing (۲nd ed.), Prentice-Hall, Inc. , ISBN 0-201-18075-8

پیوند به بیرون[ویرایش]


جستارهای وابسته[ویرایش]

جستجو در ویکی‌انبار در ویکی‌انبار پرونده‌هایی دربارهٔ پردازش تصویر موجود است.