مقاومت و رسانایی الکتریکی

از ویکی‌پدیا، دانشنامهٔ آزاد
(تغییرمسیر از رسانایی الکتریکی)
پرش به ناوبری پرش به جستجو
فارسیEnglish

رسانایی الکتریکی به مفهوم قابلیت هدایت جریان الکتریکی در یک ماده، و یکای آن در سیستم استاندارد بین‌المللی واحدها، زیمنس است. در بعضی از مواد، انتقال بار الکتریکی از نقطه ای از ماده به نقطه دیگر آن به آسانی صورت می‌گیرد و در بعضی چنین نیست. به عنوان مثال اگر سر یک سیم مسی را به میلهٔ نایلونی باردار و سر دیگر آن را به یک گلوله چوب‌پنبه‌ای که در ابتدا بدون بار است، وصل کنیم، با نزدیک کردن اجسام باردار دیگر، معلوم می‌شود که گلوله باردار شده‌است؛ بنابراین سیم مسی که در آن انتقال بار صورت می‌گیرد، رسانا است.

تعریف رسانایی از دیدگاه جریان الکتریکی[ویرایش]

اجسامی که می‌توانند جریان الکتریسیته را بدون اتلاف زیاد (با مقاومت الکتریکی کم) از خود عبور دهند، رسانای الکتریسته خوانده می‌شوند.

افرادی که بیشتر با وسایل برقی کار می‌کنند، در هنگام کار از وسایلی استفاده می‌کنند که دچار برق گرفتگی نشوند. به عنوان مثال، کفش‌های مخصوص می پوشند. یعنی از آنجا که بدن انسان رسانا است، برای اینکه جریان برق از طریق بدن انسان به زمین منتقل نشود، (چون در این صورت برق گرفتگی اتفاق می‌افتد) باید از کفش‌ها و دستکش‌‌های مخصوص استفاده کنند. دسته فازمتر ماده‌ای عایق است و لذا می‌توان با استفاده از آن به راحتی برای تشخیص وجود یا عدم جریان برق استفاده نمود.

هنگام کار با برق باید بدانیم که چه اجسامی (موادی) قابلیت انتقال جریان الکتریکی دارند و چه موادی ندارند. دسته اول را رسانا و دسته دوم را نارسانا می‌نامند.

رسانایی الکترونی[ویرایش]

برای پی بردن به دلیل رسانایی می‌توان ساختمان مواد رسانا را مورد توجه قرار داد. از جمله مواد رسانای بسیار معروف، فلزات هستند. ویژگی عمده فلزات از نظر الکتریکی این است که این مواد دارای الکترون‌های آزاد هستند. این الکترون‌ها را اصطلاحاً حاملان بار می‌گویند. هنگامی که اتم‌های منزوی برای تشکیل جسم جامد فلزی با هم ترکیب می‌شوند، الکترون‌های لایه خارجی اتم، مقید به اتم‌های منفرد باقی نمی‌مانند، بلکه آزادانه در سراسر جسم جامد حرکت می‌کنند.

زمانی که در جسمی جابجایی بار صورت می‌گیرد، می‌گویند از جسم جریان الکتریکی می‌گذرد؛ بنابراین اگر فلزی را در مسیر جریان الکتریکی قرار دهیم، این جریان توسط الکترون‌های آزاد منتقل می‌شود و از این رو خاصیت رسانایی بیشتر به دلیل حاملان بار و سرعت آنهاست. البته غیر از فلزات رساناهای دیگری نیز وجود دارند. از این جمله می‌توان به محلول‌های آبی نمک‌ها و اسیدها اشاره کرد در این مواد رسانایی به شیوهٔ یونی انجام می‌گیرد.

رسانایی یونی[ویرایش]

یک واکنش شیمیایی است که با عبور جریان برق از یک محلول به وقوع می‌پیوندند.

ابر رسانا، رسانا، نیمه رسانا، نارسانا (عایق)[ویرایش]

همه عناصر و مواد از لحاظ عبور جریان برق به سه گروه رسانا، نیمه رسانا، و نارسانا (یا عایق) طبقه‌بندی می‌شوند. معمولاً در بین عناصر شناخته شده فلزات رسانای خوب جریان الکتریکی هستند و غیر فلزات، نارسانا و در برخی مواقع نیمه رسانا هستند. عدد اتمی و چینش الکترون‌ها و پیوندهای آن‌ها نقش به سزایی در رسانای الکتریکی دارد. بنابراین در این مورد استثنائاتی هم دارد. مثلاً نافلز بروم در گروه هفدهم و دوره چهارم جدول مندلیف قرار دارد. برم نافلزی است که رسانای جریان برق است. فلزات جریان برق را از خود عبور می‌دهند. ولی نافلزات این طور نیستند. "شبه فلز" نیز یک عنوان برای طبقه‌بندی عناصر شیمیایی است و به عناصری گفته می‌شود که خواصشان میان فلز و نافلز است. تعریف معینی برای شبه فلزها وجود ندارد اما آن‌ها دارای دو مشخصه هستند:

  1. شبه‌ فلزها معمولاً به شکل اکسیدهای آمفوتر یافت می‌شوند.
  2. شبه‌ فلزها معمولاً نیمه‌رسانا هستند

عناصری که در دسته شبه‌فلزها جای می‌گیرند عبارتند از بور (B)، سیلیسیوم (Si)، ژرمانیوم (Ge)، آرسنیک (As)، آنتیموان (Sb)، تلوریوم (Te)، و پولونیوم (Po). بعضی از آلوتروپ‌های دیگر عناصر نیز مانند شبه‌ فلزها رفتار می‌کنند. همه این عناصر در بلوک پی قرار دارند. کربن دارای آلوتروپ‌ها یا دگر شکل‌هایی است. الماس و گرافیت از جمله دگر شکل‌‌های کربن هستند. در بلور الماس هر اتم کربن به وسیلهٔ چهار پیوند کووالانسی به چهار اتم کربن دیگر متصل است، در نتیجه چهار الکترون ظرفیت آن درگیر پیوند می‌باشند. الماس رسانای برق نیست، اما رسانایی گرمایی آن حدود پنج برابر فلز مس است.

گرافیت آلوتروپ دیگر کربن ماده‌ای سیاه و نرم بوده و ساختار لایه‌ای دارد؛ در گرافیت، هر یک از اتم‌های کربن در هر لایه با سه اتم مجاور خود پیوند دارد. یعنی چهار الکترون پیوندی با سه اتم کربن دیگر پیوند برقرار می‌کنند، بنابراین هر اتم کربن با یکی از اتم‌های کربنی که با آن پیوند دارد، پیوندی دوگانه برقرار می‌کند. یکی از این پیوندها سست بوده و در نتیجه یکی از الکترون‌های متعلق به هر کربن تقریباً آزاد بوده و می‌تواند در سراسر لایه حرکت کند. حرکت یون یا الکترون سبب رسانایی الکتریسیته می‌شود. در نتیجه گرافیت در طول هر لایه از لایه‌های خود رسانایی الکتریسیته دارد البته با پیش رفت علوم نانو، کاربرد کربن بسیار بیشتر شده‌است. از این لحاظ اتم کربن به لحاظ انواع پیوندهایی که می‌تواند تشکیل دهد بی نظیر است. همین موضوع باعث اهمیت فوق‌العاده کربن در علوم نانو شده‌ است.

ابر رسانا[ویرایش]

. اَبَررسانایی پدیده‌ای است که در دماهای بسیار پایین برای برخی از مواد رخ می‌دهد. در حالت ابررسانایی مقاومت الکتریکی ماده صفر می‌شود و ماده خاصیت دیامغناطیسی کامل پیدا می‌کند، یعنی میدان مغناطیسی را دفع می‌کند. دفع میدان مغناطیسی تنها تفاوت اصلی ابررسانا با رسانای کامل است، زیرا رسانای کامل میدان مغناطیسی را عبور می‌دهد (آن را دفع نمی‌کند).

مقاومت الکتریکی یک رسانای فلزی به تدریج با کاهش دما کم می‌شود. در رساناهای معمولی مثل مس و نقره، وجود ناخالصی و مشکلات دیگر این روند را کند می‌کند. به طوری که حتی در صفر مطلق هم نمونه‌های معمول مس همچنان مقاومت الکتریکی کمی دارند. در مقابل ابررساناها موادی هستند که اگر دمایشان از یک دمای بحرانی کمتر شود، ناگهان مقاومت الکتریکی خود را از دست می‌دهند. جریانی از الکتریسیته در یک حلقهٔ ابررسانا می‌تواند برای مدت نامحدودی بدون وجود مولد جریان وجود داشته باشد. مانند پدیدهٔ فرّومغناطیس و خطوط طیفی اتم‌ها، ابررسانایی نیز پدیده‌ای کوانتومی است. هر چند یک تئوری جهانشمول برای اَبَررسانایی وجود ندارد؛ و نمی‌توان آن را با فیزیک کلاسیک به مانند یک رسانای مطلوب توصیف کرد.

پدیدهٔ ابررسانایی برای طیف وسیعی از مواد مانند قلع و آلومینیوم وجود دارد. همچنین برخی آلیاژها و نیمه‌رساناها نیز ابررسانا هستند، ولی فلزاتی مثل طلا و نقره این پدیده را از خود نشان نمی‌دهند، همچنین پدیدهٔ ابررسانایی در فلزات فرومغناطیس هم روی نمی‌دهد. در سال ۱۹۸۶ ابررسانایی دمای بالا کشف شد. دمای بحرانی این ابررساناها بیش از ۹۰ کلوین است. نظریه‌های کنونی ابررسانایی نمی‌توانند ابررسانایی دمای بالا را، که به ابررسانایی نوع ۲ (Type II) معروف است، توضیح دهند. از نظر عملی ابررساناهای دمای بالا کاربردهای بسیار بیشتری دارند، زیرا در دماهایی ابررسانا می‌شوند که راحت‌تر قابل ایجاد هستند. پژوهش برای یافتن موادی که دمای بحرانی آن‌ها باز هم بیشتر باشد، و همچنین برای یافتن نظریه‌ای برای توضیح ابررسانایی دمای بالا همچنان ادامه دارد.

رسانا[ویرایش]

اجسامی که می‌توانند جریان الکتریسیته را بدون اتلاف زیاد (با مقاومت الکتریکی کم) از خود عبور دهند، رسانای الکتریسته خوانده می‌شوند.

نیمه رسانا[ویرایش]

نیمه رسانا یا نیمه‌هادی عنصر یا ماده‌ای است که در حالت عادی عایق است ولی با افزودن مقداری ناخالصی قابلیت هدایت الکتریکی پیدا می‌کند. (منظور از ناخالصی عنصر یا عناصر دیگری است غیر از عنصر اصلی؛ مثلا اگر عنصر اصلی سیلیسیوم باشد ناخالصی می‌تواند آلومینیوم یا فسفر باشد). نیمه‌رساناها در لایه ظرفیت خود چهار الکترون دارند. مقاومت الکتریکی نیمه‌رساناها، چیزی بین رساناها و نارساناها است. از نیمه رساناها برای ساخت قطعاتی مانند دیود، ترانزیستور، آی سی و … استفاده می‌شود. ظهور نیمه رساناها در علم الکترونیک انقلاب عظیمی ایجاد کرده که اختراع رایانه یکی از دستاوردهای این انقلاب است. نیمه‌رساناها به دو نوع دارند

در نیمه‌رسانای ذاتی تعداد حفره و الکترون برابر است، در صورتی که در نیمه‌رسانای غیر ذاتی چنین نیست. نیمه رسانای غیر ذاتی با آلاییدن نیمه‌رسانای چهار ظرفیتی با یک عنصر سه یا پنج ظرفیتی پدید می‌آید. نیمه‌رساناهای غیر ذاتی به دو دسته تقسیم می‌شوند.

  1. نوع پی P یا Positive یا دارنده الکترون آزاد (دهنده) که در آن تعداد حفره‌ها بیشتر است.
  2. نوع ان N یا Negative یا گیرنده الکترون آزاد (پذیرنده) که در آن تعداد الکترون‌ها بیشتر است.

عایق[ویرایش]

موادی که نمی‌توانند جریان الکتریسیته را بدون اتلاف زیاد از خود عبور دهند، نارسانای الکتریسته خوانده می‌شوند.

اهمیت اجسام رسانا[ویرایش]

در زندگی امروزی اجسام رسانا نقش بسیار اساسی ایفا می‌کنند. به عنوان نمونه، می‌توان به سیم‌های انتقال اشاره کرد که به این وسیله جریان برق تولید شده در نیروگاه‌ها به شهرها و مناطق مسکونی منتقل می‌شود. البته اهمیت مواد رسانا تنها به این مورد خاص محدود نمی‌شود. اگر وسایل برقی خانگی را مورد توجه قرار دهیم و به مواد مختلف رسانا که در ساختمان آن بکار رفته‌است توجه کنیم، اهمیت این مواد بیشتر واضح خواهد بود.

منابع[ویرایش]

دانشنامه رشد.

The electrical resistance of an object is a measure of its opposition to the flow of electric current. The inverse quantity is electrical conductance, and is the ease with which an electric current passes. Electrical resistance shares some conceptual parallels with the notion of mechanical friction. The SI unit of electrical resistance is the ohm (Ω), while electrical conductance is measured in siemens (S).

The resistance of an object depends in large part on the material it is made of—objects made of electrical insulators like rubber tend to have very high resistance and low conductivity, while objects made of electrical conductors like metals tend to have very low resistance and high conductivity. This material dependence is quantified by resistivity or conductivity. However, resistance and conductance are extensive rather than bulk properties, meaning that they also depend on the size and shape of an object. For example, a wire's resistance is higher if it is long and thin, and lower if it is short and thick. All objects show some resistance, except for superconductors, which have a resistance of zero.

The resistance (R) of an object is defined as the ratio of voltage across it (V) to current through it (I), while the conductance (G) is the reciprocal:

For a wide variety of materials and conditions, V and I are directly proportional to each other, and therefore R and G are constants (although they will depend on the size and shape of the object, the material it is made of, and other factors like temperature or strain). This proportionality is called Ohm's law, and materials that satisfy it are called ohmic materials.

In other cases, such as a transformer, diode or battery, V and I are not directly proportional. The ratio V over I is sometimes still useful, and is referred to as a "chordal resistance" or "static resistance",[1][2] since it corresponds to the inverse slope of a chord between the origin and an I–V curve. In other situations, the derivative may be most useful; this is called the "differential resistance".

Introduction

The hydraulic analogy compares electric current flowing through circuits to water flowing through pipes. When a pipe (left) is filled with hair (right), it takes a larger pressure to achieve the same flow of water. Pushing electric current through a large resistance is like pushing water through a pipe clogged with hair: It requires a larger push (electromotive force) to drive the same flow (electric current).

In the hydraulic analogy, current flowing through a wire (or resistor) is like water flowing through a pipe, and the voltage drop across the wire is like the pressure drop that pushes water through the pipe. Conductance is proportional to how much flow occurs for a given pressure, and resistance is proportional to how much pressure is required to achieve a given flow. (Conductance and resistance are reciprocals.)

The voltage drop (i.e., difference between voltages on one side of the resistor and the other), not the voltage itself, provides the driving force pushing current through a resistor. In hydraulics, it is similar: The pressure difference between two sides of a pipe, not the pressure itself, determines the flow through it. For example, there may be a large water pressure above the pipe, which tries to push water down through the pipe. But there may be an equally large water pressure below the pipe, which tries to push water back up through the pipe. If these pressures are equal, no water flows. (In the image at right, the water pressure below the pipe is zero.)

The resistance and conductance of a wire, resistor, or other element is mostly determined by two properties:

  • geometry (shape), and
  • material

Geometry is important because it is more difficult to push water through a long, narrow pipe than a wide, short pipe. In the same way, a long, thin copper wire has higher resistance (lower conductance) than a short, thick copper wire.

Materials are important as well. A pipe filled with hair restricts the flow of water more than a clean pipe of the same shape and size. Similarly, electrons can flow freely and easily through a copper wire, but cannot flow as easily through a steel wire of the same shape and size, and they essentially cannot flow at all through an insulator like rubber, regardless of its shape. The difference between copper, steel, and rubber is related to their microscopic structure and electron configuration, and is quantified by a property called resistivity.

In addition to geometry and material, there are various other factors that influence resistance and conductance, such as temperature; see below.

Conductors and resistors

A 65 Ω resistor, as identified by its electronic color code (blue–green–black-gold-red). An ohmmeter could be used to verify this value.

Substances in which electricity can flow are called conductors. A piece of conducting material of a particular resistance meant for use in a circuit is called a resistor. Conductors are made of high-conductivity materials such as metals, in particular copper and aluminium. Resistors, on the other hand, are made of a wide variety of materials depending on factors such as the desired resistance, amount of energy that it needs to dissipate, precision, and costs.

Ohm's law

The current–voltage characteristics of four devices: Two resistors, a diode, and a battery. The horizontal axis is voltage drop, the vertical axis is current. Ohm's law is satisfied when the graph is a straight line through the origin. Therefore, the two resistors are ohmic, but the diode and battery are not.

For many materials, the current I through the material is proportional to the voltage V applied across it:

over a wide range of voltages and currents. Therefore, the resistance and conductance of objects or electronic components made of these materials is constant. This relationship is called Ohm's law, and materials which obey it are called ohmic materials. Examples of ohmic components are wires and resistors. The current–voltage (IV) graph of an ohmic device consists of a straight line through the origin with positive slope.

Other components and materials used in electronics do not obey Ohm's law; the current is not proportional to the voltage, so the resistance varies with the voltage and current through them. These are called nonlinear or nonohmic. Examples include diodes and fluorescent lamps. The IV curve of a nonohmic device is a curved line.

Relation to resistivity and conductivity

A piece of resistive material with electrical contacts on both ends.

The resistance of a given object depends primarily on two factors: What material it is made of, and its shape. For a given material, the resistance is inversely proportional to the cross-sectional area; for example, a thick copper wire has lower resistance than an otherwise-identical thin copper wire. Also, for a given material, the resistance is proportional to the length; for example, a long copper wire has higher resistance than an otherwise-identical short copper wire. The resistance R and conductance G of a conductor of uniform cross section, therefore, can be computed as

where is the length of the conductor, measured in metres (m), A is the cross-sectional area of the conductor measured in square metres (m²), σ (sigma) is the electrical conductivity measured in siemens per meter (S·m−1), and ρ (rho) is the electrical resistivity (also called specific electrical resistance) of the material, measured in ohm-metres (Ω·m). The resistivity and conductivity are proportionality constants, and therefore depend only on the material the wire is made of, not the geometry of the wire. Resistivity and conductivity are reciprocals: . Resistivity is a measure of the material's ability to oppose electric current.

This formula is not exact, as it assumes the current density is totally uniform in the conductor, which is not always true in practical situations. However, this formula still provides a good approximation for long thin conductors such as wires.

Another situation for which this formula is not exact is with alternating current (AC), because the skin effect inhibits current flow near the center of the conductor. For this reason, the geometrical cross-section is different from the effective cross-section in which current actually flows, so resistance is higher than expected. Similarly, if two conductors near each other carry AC current, their resistances increase due to the proximity effect. At commercial power frequency, these effects are significant for large conductors carrying large currents, such as busbars in an electrical substation,[3] or large power cables carrying more than a few hundred amperes.

The resistivity of different materials varies by an enormous amount: For example, the conductivity of teflon is about 1030 times lower than the conductivity of copper. Why is there such a difference? Loosely speaking, a metal has large numbers of "delocalized" electrons that are not stuck in any one place, but free to move across large distances, whereas in an insulator (like teflon), each electron is tightly bound to a single molecule, and a great force is required to pull it away. Semiconductors lie between these two extremes. More details can be found in the article: Electrical resistivity and conductivity. For the case of electrolyte solutions, see the article: Conductivity (electrolytic).

Resistivity varies with temperature. In semiconductors, resistivity also changes when exposed to light. See below.

Measuring resistance

An instrument for measuring resistance is called an ohmmeter. Simple ohmmeters cannot measure low resistances accurately because the resistance of their measuring leads causes a voltage drop that interferes with the measurement, so more accurate devices use four-terminal sensing.

Typical resistances

Component Resistance (Ω)
1 meter of copper wire with 1 mm diameter 0.02[4]
1 km overhead power line (typical) 0.03[5]
AA battery (typical internal resistance) 0.1[6]
Incandescent light bulb filament (typical) 200–1000[7]
Human body 1000 to 100,000[8]

Static and differential resistance

Differential versus chordal resistance
The IV curve of a non-ohmic device (purple). The static resistance at point A is the inverse slope of line B through the origin. The differential resistance at A is the inverse slope of tangent line C.
Negative differential resistance
The IV curve of a component with negative differential resistance, an unusual phenomenon where the IV curve is non-monotonic.

Many electrical elements, such as diodes and batteries do not satisfy Ohm's law. These are called non-ohmic or non-linear, and their I–V curves are not straight lines through the origin.

Resistance and conductance can still be defined for non-ohmic elements. However, unlike ohmic resistance, non-linear resistance is not constant but varies with the voltage or current through the device; i.e., its operating point. There are two types of resistance:[1][2]

  • Static resistance (also called chordal or DC resistance) – This corresponds to the usual definition of resistance; the voltage divided by the current
.
It is the slope of the line (chord) from the origin through the point on the curve. Static resistance determines the power dissipation in an electrical component. Points on the IV curve located in the 2nd or 4th quadrants, for which the slope of the chordal line is negative, have negative static resistance. Passive devices, which have no source of energy, cannot have negative static resistance. However active devices such as transistors or op-amps can synthesize negative static resistance with feedback, and it is used in some circuits such as gyrators.
  • Differential resistance (also called dynamic, incremental or small signal resistance) – Differential resistance is the derivative of the voltage with respect to the current; the slope of the IV curve at a point
.
If the IV curve is nonmonotonic (with peaks and troughs), the curve has a negative slope in some regions—so in these regions the device has negative differential resistance. Devices with negative differential resistance can amplify a signal applied to them, and are used to make amplifiers and oscillators. These include tunnel diodes, Gunn diodes, IMPATT diodes, magnetron tubes, and unijunction transistors.

AC circuits

Impedance and admittance

The voltage (red) and current (blue) versus time (horizontal axis) for a capacitor (top) and inductor (bottom). Since the amplitude of the current and voltage sinusoids are the same, the absolute value of impedance is 1 for both the capacitor and the inductor (in whatever units the graph is using). On the other hand, the phase difference between current and voltage is −90° for the capacitor; therefore, the complex phase of the impedance of the capacitor is −90°. Similarly, the phase difference between current and voltage is +90° for the inductor; therefore, the complex phase of the impedance of the inductor is +90°.

When an alternating current flows through a circuit, the relation between current and voltage across a circuit element is characterized not only by the ratio of their magnitudes, but also the difference in their phases. For example, in an ideal resistor, the moment when the voltage reaches its maximum, the current also reaches its maximum (current and voltage are oscillating in phase). But for a capacitor or inductor, the maximum current flow occurs as the voltage passes through zero and vice versa (current and voltage are oscillating 90° out of phase, see image at right). Complex numbers are used to keep track of both the phase and magnitude of current and voltage:

where:

  • t is time,
  • V(t) and I(t) are, respectively, voltage and current as a function of time,
  • V0, I0, Z, and Y are complex numbers,
  • Z is called impedance,
  • Y is called admittance,
  • Re indicates real part,
  • is the angular frequency of the AC current,
  • is the imaginary unit.

The impedance and admittance may be expressed as complex numbers that can be broken into real and imaginary parts:

where R and G are resistance and conductance respectively, X is reactance, and B is susceptance. For ideal resistors, Z and Y reduce to R and G respectively, but for AC networks containing capacitors and inductors, X and B are nonzero.

for AC circuits, just as for DC circuits.

Frequency dependence of resistance

A key feature of AC circuits is that the resistance and conductance can be frequency-dependent, a phenomenon known as the universal dielectric response [9]. One reason, mentioned above is the skin effect (and the related proximity effect). Another reason is that the resistivity itself may depend on frequency (see Drude model, deep-level traps, resonant frequency, Kramers–Kronig relations, etc.)

Energy dissipation and Joule heating

Running current through a material with high resistance creates heat, in a phenomenon called Joule heating. In this picture, a cartridge heater, warmed by Joule heating, is glowing red hot.

Resistors (and other elements with resistance) oppose the flow of electric current; therefore, electrical energy is required to push current through the resistance. This electrical energy is dissipated, heating the resistor in the process. This is called Joule heating (after James Prescott Joule), also called ohmic heating or resistive heating.

The dissipation of electrical energy is often undesired, particularly in the case of transmission losses in power lines. High voltage transmission helps reduce the losses by reducing the current for a given power.

On the other hand, Joule heating is sometimes useful, for example in electric stoves and other electric heaters (also called resistive heaters). As another example, incandescent lamps rely on Joule heating: the filament is heated to such a high temperature that it glows "white hot" with thermal radiation (also called incandescence).

The formula for Joule heating is:

where P is the power (energy per unit time) converted from electrical energy to thermal energy, R is the resistance, and I is the current through the resistor.

Dependence of resistance on other conditions

Temperature dependence

Near room temperature, the resistivity of metals typically increases as temperature is increased, while the resistivity of semiconductors typically decreases as temperature is increased. The resistivity of insulators and electrolytes may increase or decrease depending on the system. For the detailed behavior and explanation, see Electrical resistivity and conductivity.

As a consequence, the resistance of wires, resistors, and other components often change with temperature. This effect may be undesired, causing an electronic circuit to malfunction at extreme temperatures. In some cases, however, the effect is put to good use. When temperature-dependent resistance of a component is used purposefully, the component is called a resistance thermometer or thermistor. (A resistance thermometer is made of metal, usually platinum, while a thermistor is made of ceramic or polymer.)

Resistance thermometers and thermistors are generally used in two ways. First, they can be used as thermometers: By measuring the resistance, the temperature of the environment can be inferred. Second, they can be used in conjunction with Joule heating (also called self-heating): If a large current is running through the resistor, the resistor's temperature rises and therefore its resistance changes. Therefore, these components can be used in a circuit-protection role similar to fuses, or for feedback in circuits, or for many other purposes. In general, self-heating can turn a resistor into a nonlinear and hysteretic circuit element. For more details see Thermistor#Self-heating effects.

If the temperature T does not vary too much, a linear approximation is typically used:

where is called the temperature coefficient of resistance, is a fixed reference temperature (usually room temperature), and is the resistance at temperature . The parameter is an empirical parameter fitted from measurement data. Because the linear approximation is only an approximation, is different for different reference temperatures. For this reason it is usual to specify the temperature that was measured at with a suffix, such as , and the relationship only holds in a range of temperatures around the reference.[10]

The temperature coefficient is typically +3×10−3 K−1 to +6×10−3 K−1 for metals near room temperature. It is usually negative for semiconductors and insulators, with highly variable magnitude.[11]

Strain dependence

Just as the resistance of a conductor depends upon temperature, the resistance of a conductor depends upon strain. By placing a conductor under tension (a form of stress that leads to strain in the form of stretching of the conductor), the length of the section of conductor under tension increases and its cross-sectional area decreases. Both these effects contribute to increasing the resistance of the strained section of conductor. Under compression (strain in the opposite direction), the resistance of the strained section of conductor decreases. See the discussion on strain gauges for details about devices constructed to take advantage of this effect.

Light illumination dependence

Some resistors, particularly those made from semiconductors, exhibit photoconductivity, meaning that their resistance changes when light is shining on them. Therefore, they are called photoresistors (or light dependent resistors). These are a common type of light detector.

Superconductivity

Superconductors are materials that have exactly zero resistance and infinite conductance, because they can have V=0 and I≠0. This also means there is no joule heating, or in other words no dissipation of electrical energy. Therefore, if superconductive wire is made into a closed loop, current flows around the loop forever. Superconductors require cooling to temperatures near 4 K with liquid helium for most metallic superconductors like niobium–tin alloys, or cooling to temperatures near 77K with liquid nitrogen for the expensive, brittle and delicate ceramic high temperature superconductors. Nevertheless, there are many technological applications of superconductivity, including superconducting magnets.

See also

References

  1. ^ a b Forbes T. Brown (2006). Engineering System Dynamics. CRC Press. p. 43. ISBN 978-0-8493-9648-9.
  2. ^ a b Kenneth L. Kaiser (2004). Electromagnetic Compatibility Handbook. CRC Press. pp. 13–52. ISBN 978-0-8493-2087-3.
  3. ^ Fink and Beaty, Standard Handbook for Electrical Engineers 11th Edition, page 17-19
  4. ^ The resistivity of copper is about 1.7×10−8 Ωm. See [1].
  5. ^ John D. McDonald (2016). Electric Power Substations Engineering, Second Edition. CRC Press. pp. 363–. ISBN 978-1-4200-0731-2.
  6. ^ [2] For a fresh Energizer E91 AA alkaline battery, the internal resistance varies from 0.9 Ω at -40 °C, to 0.1 Ω at +40 °C.
  7. ^ A 60 W light bulb in the USA (120 V mains electricity) draws RMS current 60 W/120 V=500 mA, so its resistance is 120 V/500 mA=240 Ω. The resistance of a 60 W light bulb in Europe (230 V mains) is 900 Ω. The resistance of a filament is temperature-dependent; these values are for when the filament is already heated up and the light is already glowing.
  8. ^ 100,000 Ω for dry skin contact, 1000 Ω for wet or broken skin contact. High voltage breaks down the skin, lowering resistance to 500 Ω. Other factors and conditions are relevant as well. For more details, see the electric shock article, and: "Publication No. 98-131: Worker Deaths by Electrocution" (PDF). National Institute for Occupational Safety and Health. Retrieved 2014-11-02.
  9. ^ Zhai, Chongpu; Gan, Yixiang; Hanaor, Dorian; Proust, Gwénaëlle (2018). "Stress-dependent electrical transport and its universal scaling in granular materials". Extreme Mechanics Letters. 22: 83–88. arXiv:1712.05938. doi:10.1016/j.eml.2018.05.005.
  10. ^ Ward, MR, Electrical Engineering Science, pp36–40, McGraw-Hill, 1971.
  11. ^ See Electrical resistivity and conductivity for a table. The temperature coefficient of resistivity is similar but not identical to the temperature coefficient of resistance. The small difference is due to thermal expansion changing the dimensions of the resistor.

External links