کنترل عددی

از ویکی‌پدیا، دانشنامهٔ آزاد
(تغییرمسیر از سی‌ان‌سی)
فارسیEnglish
یک مرکز فرزکاری (Milling Center) با کنترلر عددی رایانه‌ای (CNC). منظور از «سنتر» یا «مرکز» در ماشین‌های ابزار، دستگاهی است که توانایی انجام بسیاری از فرایندها (برای مثال فرزکاری، دریل کاری، قلاویزکاری و بورینگ) را دارد. ماشین‌آلات قدیمی‌تر تنها توانایی انجام یک یا دو عملیات را دارند.

کنترل عددی (به انگلیسی: Numerical control به اختصار NC) به کنترل خودکار ابزارهای ماشین‌کاری (مانند دریل‌ها، دستگاه‌های تراش و دستگاه فرز) یا چاپگرهای سه‌بعدی توسط یک رایانه گفته می‌شود.

دستگاه‌های CNC، دستگاه‌هایی با ابزارهای قابل حرکت توسط موتور هستند که این موتور (یا موتورها) توسط رایانه کنترل می‌شوند. این رایانه‌ها به کمک دستورهایی مرتب که G-Code یا M-Code نامیده می‌شوند، ابزارها را کنترل می‌کنند. این دستورها ممکن است به صورت دستی توسط اشخاص نوشته شده یا توسط نرم‌افزارهای CAM تولید شوند. پرینترهای سه بعدی نیز برای تولید قطعه ابتدا مدل رایانه ای را به صورت «لایه لایه ای» پردازش کرده و سپس توسط دستورهای G-Code قطعه را تولید می‌کنند.

در دستگاه‌های ماشین ابزار سی‌ان‌سی مدرن، طراحی یک قطعهٔ مکانیکی و برنامه تولید آن کاملاً خودکار انجام می‌شود. هندسه مکانیکی جسم با استفاده از نرم‌افزارهای طراحی به کمک کامپیوتر (CAD) تعریف شده و پس از آن به وسیله نرم‌افزارهای ساخت به کمک کامپیوتر (CAM) به دستورهای تولیدی و ساختی تبدیل می‌شود. سرانجام این دستورها که برای سیستم یک ماشین تولیدی قابل فهم است، روی یک ماشین کنترل عددی (CNC) بارگذاری می‌شوند.[۱]

از آن‌جایی که یک جزء خاص برای ساخته شدن ممکن است به ابزارهای متفاوتی چون: مته، ارّه و … نیاز داشته باشد؛ ماشین آلات مدرن اغلب ترکیبی از ابزارهای متعدد در یک «اتاقک» واحد هستند.

تاریخچه و کلیات[ویرایش]

اولین ماشین ابزار دارای کنترلر عددی (NC) در سال ۱۹۵۲ و در دانشگاه MIT ساخته شد. این ماشین دارای کنترل حلقه بسته موقعیت دهی سه-محوره بود و به‌طور کلی به عنوان اولین ماشین ابزار کنترل عددی شناخته می‌شود. در سال ۱۹۵۸، اولین مرکز ماشینکاری NC توسط Kearney و Trecker به بازار عرضه شد. مرکز ماشینکاری تلفیق مجموعه ای از ماشین‌های ابزار مختلف بود که قادر به انجام بسیاری از فرایندها بودند (فرزکاری، دریل کاری، قلاویزکاری و بورینگ). این دستگاه NC قابلیت موقعیت‌یابی خودکار را داشت. تقریباً از همان ابتدا برای کمک به برنامه‌ریزی این ماشین‌ها، نیاز به رایانه بود. در عرض ۱۰ سال، ماشین آلات NC به ریزپردازنده‌های مستقل مجهز شدند و آنها را تبدیل به ماشین ابزار کنترل عددی رایانه ای (CNC) کردند که می‌توانستند مستقیماً برنامه‌ریزی شوند، اگرچه اصطلاح NC هنوز هم برای اشاره به فن آوری پایه استفاده می‌شود.[۲]

با ظهور ماشین‌های نوع NC (و اخیراً ربات‌های قابل برنامه‌ریزی)، دو نوع اتوماسیون تعریف شد. اتوماسیون سخت یا ثابت که ماشین‌های انتقال و ماشین‌های پیچ زنی اتوماتیک که توسط بادامک کنترل می‌شوند نمونه‌های آن هستند. اتوماسیون انعطاف‌پذیر یا اتوماسیون برنامه پذیر که ماشین‌های CNC و ربات‌های یادگیرنده و برنامه پذیر نمونه‌های آن هستند. در این ماشین‌ها کنترل به جای اینکه در سخت‌افزار باشد در داخل نرم‌افزار انجام می‌شود.[۲]

کنترل عددی یا NC از یک زبان پردازشی برای کنترل حرکت ابزار برشی یا قطعه کار یا هر دو استفاده می‌کند. این برنامه‌ها مسیر یا موقعیت‌های پایانی را که ابزار برش یا سایر تجهیزات باید دنبال کنند، همراه با پارامترهای ماشینکاری (سرعت، خوراک و عمق برش) برای ساخت قطعه مورد نظر، مشخص می‌کنند. دستگاه‌های CNC می‌توانند هندسه‌های پیچیده را کنترل کرده و قطعات متوالی را با دقت تکرار کنند. قطعات ساخته شده در آینده همان قطعات ساخته شده امروز خواهند بود.[۲]

تکرارپذیری و کیفیت نسبت به دستگاه‌های معمولی (دستگاه‌های دستی) بهبود می‌یابد. می‌توان دستگاه‌های کارگیر (Workholding devices) را جامع تر کرده و زمان ستاپ و تغییرابزار را کاهش داد. به همین دلیل استفاده از ماشین‌های ابزار برنامه پذیر می‌تواند برای تولید چندین قطعه یا حتی یک قطعه تنها، مقرون به صرفه باشد. ترکیب ماشین‌های برنامه پذیر با اصول مدیریتی تولید ناب (lean manufacturing) می‌تواند به افزایش فوق‌العاده کیفیت و بهره‌وری بیانجامد.[۲]

اصول کار ماشین‌های CNC[ویرایش]

کنترل یک ماشین ابزار با استفاده از ورودی‌های متغیر توسط یک برنامه رایانه ای به عنوان کنترل عددی شناخته می‌شود و توسط انجمن صنایع الکترونیکی (EIA) به این صورت تعریف می‌شود: "سیستمی که در آن اَعمال با درج مستقیم داده‌های عددی کنترل می‌شوند. سیستم باید حداقل برخی از داده‌ها را به طور خودکار تفسیر کند. "[۳]

به‌طور سنتی، ماشین‌های ابزار NC دارای یک واحد کنترل ماشین (MCU) هستند (گاهی به آن کنترلر می‌گویند)، که خود از دو قسمت تشکیل شده‌است: واحد پردازش داده (DPU) و واحد حلقه های-کنترل (CLU). DPU داده‌هایی که از روی نوار یا هر وسیله دیگری خوانده می‌شود پردازش کرده و اطلاعاتی از قبیل: موقعیت دقیق هر محور، جهت حرکت خوراک، و دیگر سیگنال‌های کنترل عملکرد-کمکی را به CPU ارسال می‌کند. CLU مکانیسم‌های حرکت دستگاه را اداره می‌کند.[۳]

سیستم موقعیت‌یابی در کنترل عددی[ویرایش]

مقایسه بین اجزای یک سیستم کنترل الف) حلقه باز ب) حلقه بسته (کنترل بازخوردی) در دستگاه‌های کنترل عددی

موقعیت‌یابی یکی از کارهایی است که در جریان کنترل عددی و در دستگاه‌های سی ان سی باید انجام گیرد تا دقت انجام کار برش و حکاکی در دستگاه در بالاترین سطح ممکن قرار گیرد. دستگاه‌های CNC و NC از دو شیوه متفاوت برای موقعیت‌یابی استفاده می‌کنند که یکی از آنها سامانه کنترل حلقه باز (Open-loop controller) و دیگری سامانه کنترل حلقه بسته (closed loop system) است.

در سیستم‌های حلقه باز سیگنال‌ها توسط کنترلر به سرووموتورها فرستاده می‌شود، اما میزان حرکت یا موقعیت نهایی میزکار، جهت اصلاح آن سنجیده نمی‌شود. در مقابل، سیستم حلقه بسته به ترنسدیوسرها، سنسورها و شمارنده‌های مختلفی مجهز است که موقعیت میز کار را به‌طور دقیق اندازه‌گیری می‌کنند. از طریق کنترل بازخورد دار، موقعیت میزکار با سیگنال فرستاده شده مقایسه شده، و زمانی که موقعیت میز با سیگنال فرستاده شده یکسان شد، حرکت متوقف می‌شود.[۴]

سیستم کنترل حلقه باز[ویرایش]

سیستم کنترل حلقه باز که تحت عنوان سیستم بدون پسخورد نیز نامیده می‌شود، یک سیستم کنترلی است که در آن خروجی کار تأثیری بر گام‌های بعدی ندارد. در واقع در این سیستم، خروجی کار نه اندازه‌گیری می‌شود و نتیجه آن بر کارهای بعدی دستگاه تأثیر گذاری می‌شود. این روش در دستگاه‌های کنترل عددی بسیار ارزان قیمت است و امروزه در دستگاه‌های پیشرفته کمتر از آن استفاده می‌شود. نکته مهم در این روش، سهولت کار دستگاه است که نیازی به تنظیمات پیشرفته ندارد. اگر کالیبراسیون دستگاه به شکل مناسب انجام نگیرد یا اغتشاشاتی در انجام کار به وجود بیاید، سیستم حلقه باز چندان مطلوب نیست و به جای آن از سیستم حلقه بسته استفاده می‌شود.

دستگاه‌های CNC ساده گاهی اوقات از کنترل حلقه باز استفاده می‌کنند. استفاده از استِپ موتور برای دستیابی به جابجایی محور مورد نظر با ارسال تعدادی پالس DC کنترل شده، نمونه ای از کنترل حلقه باز CNC است. کنترل حلقه باز از نظر اقتصادی مقرون به صرفه است، اما نمی‌تواند بررسی کند که حرکت مورد نظر، واقعاً حاصل شده یا اینکه خطا را تصحیح کند.[۳]

سیستم کنترل حلقه بسته[ویرایش]

سیستم کنترل حلقه بسته یا سیستم پسخوردی به سیستمی گفته می‌شود که حرکت بعدی سیستم تحت تأثیر خروجی آن قرار دارد. در واقع بازخورد هر کدام از فعالیتهای دستگاه به کنترل کننده ارائه می‌شود تا بتواند از این طریق اشتباه در موقعیت‌یابی، سرعت و شتاب خود را درست کند و تغییرات لازم را به وجود بیاورد. این سیستم در دستگاه سی ان سی پیشرفته به کار گرفته می‌شود و معمولاً باعث افزایش قیمت دستگاه می‌شود.

سیستم کنترل حلقه بسته به یک ترنسدیوسر یا سایر انواع سنسورها نیاز دارد تا بتواند موقعیت میز دستگاه را تشخیص دهد و آن را به عنوان بازخورد موقعیت محور، یا بازخورد سرعت در صورتی که کنترل مسیر کانتور نیز مورد نیاز باشد، به MCU (واحد کنترل ماشین) ارسال کند.[۳]

مختصات دکارتی[ویرایش]

موقعیت کد G & M بر اساس یک سیستم مختصات سه بعدی دکارتی است. این سیستم یک نوع سیستم مختصات معمولی است که اغلب هنگام محاسبات در ریاضی دیده می‌شود. این سیستم برای نقشه مسیرهای ماشین‌ها و هر گونه اقدام دیگری را که باید در یک مختصات خاص اتفاق بیافتد، طراحی شده‌است. مختصات مطلق چیزی است که به‌طور معمول برای ماشین آلات استفاده می‌شود و نشان دهنده نقطه (۰٬۰٬۰) در طرح کلی است.

انواع سیستم‌های کنترلی[ویرایش]

در کنترل عددی دو نوع سیستم کنترل اصلی وجود دارد:

  1. سیستم نقطه-به-نقطه
  2. سیستم مسیر پیوسته

سیستم نقطه-به-نقطه[ویرایش]

در یک سیستم نقطه-به-نقطه، که سیستم موقعیت‌یابی نیز نامیده می‌شود، هر محور دستگاه، بسته به نوع کار، به صورت جداگانه توسط پیچ‌های انتقال و با سرعت‌های مختلف هدایت می‌شود. این ابزار ابتدا برای رفتن به نقطه تعریف شده با سرعت حداکثر حرکت می‌کند تا زمان غیرتولیدی کاهش یابد، اما بعد از نزدیک شدن ابزار به موقعیت تعریف شده عددی، سرعت آن کاهش می‌یابد؛ بنابراین، در عملیاتی مانند دریل کاری، ابتدا موقعیت‌یابی و سپس سوراخ کاری انجام می‌شود.[۵]

سیستم مسیر پیوسته[ویرایش]

در سیستم کانتورینگ، که به آن سیستم مسیر پیوسته نیز گفته می‌شود، عمل موقعیت‌یابی و عملیات مورد نظر هر دو باهم و در طول مسیرهای کنترل شده انجام می‌شوند، اما با سرعت‌های مختلف. از آنجا که این ابزار در حین حرکت در مسیری تعیین شده عمل می‌کند (یعنی ماشینکاری، مته کاری، قلاویزکاری و … انجام می‌دهد) ، کنترل دقیق و هماهنگ سازی سرعت‌ها و حرکات بسیار مهم است. سیستم کانتورینگ معمولاً در دستگاه‌های تراش، دستگاه فرز، دستگاه سنگ زنی، ماشین آلات جوشکاری و ایستگاه‌های ماشینکاری استفاده می‌شود.[۵]

میان یابی[ویرایش]

امروزه استفاده از ربات‌های صنعتی در صنایع خودروسازی بسیار متداول گشته‌است. حرکت این ربات‌ها توسط درون یابی‌های مختلف انجام می‌شود.

حرکت یک ابزار در طول یک مسیر (میان یابی) به صورت تدریجی بوده و توسط یکی از روش‌های ساده انجام می‌شود. در تمام فرایندهای میان یابی، مسیر کنترل شده، مرکز دوران ابزار است. در برنامه کنترل عددی (NC) می‌توان مقادیر اصلاحی برای ابزارهای مختلف، قطرهای مختلف ابزارها یا حتی سایش ابزار در حین کار را لحاظ کرد.[۵]

  • در درون یابی خطی، ابزار از ابتدا تا انتها در یک خط مستقیم و در امتداد دو یا سه محور حرکت می‌کند. از لحاظ تئوری، با کم کردن فاصله بین نقاط می‌توان انواع پروفیل را با این روش تولید کرد، اما برای این کار باید داده زیادی پردازش شود.
  • در درون یابی دایره ای، ورودی‌های مورد نیاز مسیر، مختصات نقاط انتهایی، مختصات مرکز دایره و شعاع آن و جهت ابزار در امتداد قوس هستند.
  • در درون یابی سهمی و درون یابی مکعبی، مسیر با منحنی‌های مبتنی بر معادلات ریاضی مرتبه بالاتر تقریب زده می‌شود. این روش در ماشین‌های ۵-محوره بسیار کارامد بوده و در عملیات‌های Die-sinking کاربرد فراوانی دارد، برای مثال قالب‌های شکل دهی ورق‌های فلزی ساخت بدنه خودرو. این درون یابی‌ها همچنین برای حرکت ربات‌های صنعتی نیز استفاده می‌شود.[۵]

نمونه‌هایی از دستگاه‌های CNC[ویرایش]

دستگاه فرز[ویرایش]

فرز یک دستگاه ماشین‌کاری است که از ابزار تراش دوّار برای براده برداری از جسم مورد نظر استفاده می‌کند. محور ابزار تراش توسط برنامه‌های داده شده به دستگاه با پیشروی در یک جهت و زاویهٔ مشخص عمل براده برداری مورد نظر را انجام می‌دهد. بسیاری از فرزهای CNC از G-کد که یک کد استاندارد بین تمامی دستگاه‌های ماشین کاری سی‌ان‌سی است استفاده می‌کنند. حرکت دستگاه‌های فرز، اغلب به سه راستای X(طول)،Y(عرض) وZ(عمق) محدود شده‌است. اما امروزه فرزهای CNC چهار تا شش محوره نیز در بازار وجود دارند.[۶][۷]

دستگاه تراش CNC

دستگاه تراش[ویرایش]

دستگاه تراش، ماشین ابزاری است که برای تراشیدن و شکل‌دهی به قطعات چوبی و فلزی به کار می‌رود. این دستگاه مناسب برای قطعه‌هایی است که مقاطع دایروی دارند. دستگاه قطعه را حول محور خود می‌چرخاند و عملیات شکل‌دهی را با تیغهٔ نصب شده انجام می‌دهد. به صورت کلی ماشین تراش در دو مدل معمولی (دستی) و CNC وجود دارد. ماشین‌های تراش عمدتاً دارای دو محورX و Z هستند ولی امروزه دستگاه‌های پیشرفته تر که دارای ۳ محور (x و y وz) چهار محور و ۵ محور و ۶ محور و n محور ساخته می‌شود.

دستگاه برش پلاسما[ویرایش]

برش پلاسما

دستگاهی است که به کمک آن قطعات (عموماً فلزی) را با استفاده از یک جت شتاب‌دهندهٔ پلاسمای داغ برش می‌دهند. در این روش یک گاز نجیب یا هوای فشرده با سرعت بالا از نازل دستگاه دمیده می‌شود و در همان لحظه یک قوس الکتریکی اجاد شده و گاز به حالت پلاسما در می‌آید. پلاسما به اندازهٔ کافی گرم است تا فلز را ذوب کند. هوای فشرده دمیده شده نیز به اندازه‌ای فشار دارد که فلز ذوب شده را از جای خود خارج کند. دستگاه‌های برش پلاسما با استفاده از کامپیوتر خود الگوی برش را به زبان قابل فهم خود، دریافت کرده و عمل برش را به صورت خودکار و یکنواخت انجام می‌دهند.[۸] در فاز اولیه، قوس در داخل تورچ ایجاد می‌شود و یک منطقه کوچک پلاسمایی بوجود می‌آورد. اصطلاحاً به آن قوس پیلوت گفته می‌شود. پلاسما که اکنون رسانا شده‌است، توسط یک جریان گاز پرفشار (معمولاً هوای فشرده)، با فشار از نازل خارج می‌شود. سپس در معرض قطعه برش (آند) قرار می‌گیرد. پلاسما، مدار بین الکترود و قطعه کار را می‌بندد. سپس منجر به هدایت جریان جوشکاری و انتقال گرمای لازم برای ذوب می‌شود. بدین ترتیب قطعه کار برش می‌خورد. لازم است ذکر شود گازهایی که در این فرایند استفاده می‌شوند بر کیفیت نهایی سطح کار تأثیر بسزایی دارند.

دستگاه EDM یا اسپارک[ویرایش]

در این دستگاه از تخلیه الکتریکی به منظور براده برداری استفاده می‌شود. فرایند براده برداری به وسیلهٔ جرقه‌های متناوب و کنترل شده‌ای است که بین دو الکترود (فلز دستگاه و قطعه کار) زده می‌شود. در این روش هیچ‌گونه تماس مستقیمی بین الکترود و قطعه‌کار برقرار نمی‌شود. مبنای ایجاد تخلیهٔ الکتریکی پدیده شکست خازن است. هنگامی که فاصله بین دو الکترود (صفحه‌های خازن) کاهش می‌یابد شدت میدان الکتریکی افزایش یافته و تخلیهٔ الکتریکی رخ می‌دهد.

دستگاه برش جت آب[ویرایش]

دستگاه برش جت آب

دستگاه برش جت آب (WaterJet Cutting) یک دستگاه برش در مقیاس صنعتی است که قابلیت برشکاری طیف وسیعی از مواد را داراست. در این دستگاه برای برش از یک جت آب پرفشار یا مخلوط آب پرفشار و مواد ساینده استفاده می‌شود که با استفاده از یک نازل به سطح جسم برخورد کرده و آن را برش می‌دهد. از مزایای استفاده از واترجت می‌توان به درجه حرارت بسیار پایین در هنگام برش (برش سرد) و هزینه نگهداری کمتر نسبت به برش‌های لیزر و پلاسما اشاره کرد.[۹]

از دیگر دستگاه‌های سی‌ان‌سی می‌توان به موارد زیر اشاره کرد:

جی-کد (G-Code)[ویرایش]

تهیه برنامه کنترل برای استفاده در دستگاه‌های CNC یک مرحله حیاتی است. امروزه متداول‌ترین زبان استاندارد سی ان سی، "G-code" نامیده می‌شود و نام خود را از کدهای حرکت ابزاری می‌گیرد که با حرف "G" آغاز می‌شوند. این زبان اولین بار در سال ۱۹۶۰ توسط انجمن صنایع الکترونیک (EIA) در ایالات متحده استانداردسازی شد و با نام RS-274D مشخص گردید. سازنده‌های مختلف ماشین ابزار در سراسر دنیا، کدها را بسته به نیازهای ماشین خود تغییر می‌دهند، اما عمده کدهای پایه یکسان باقی می‌ماند. جدول زیر برخی از رایج‌ترین دستورات حرکتی، ابزار و ماشین را برای برنامه‌های ماشینکاری CNC ذکر کرده‌است. هر دستور از ترکیبی از حرف و عدد تشکیل می‌شود که به آن "کلمه NC" گفته می‌شود.[۳]

کلمه‌های دستور CNC متداول[۳]
G90,G91 مختصات مطلق، مختصات افزایشی
G20, G21 سیستم مختصات اینچی، سیستم مختصات متریک
G00 عبور سریع (حرکت به موقعیت)
G01 درون یابی خطی
G02, G03 درون یابی دایره ای (در جهت عقربه‌های ساعت، خلاف جهت عقربه‌های ساعت)
G82, G83, G80 مته نقطه ای، مته دارکوبی، لغو سیکل ذخیره شده
G28 بازگشت به نقطه صفر ماشین از طریق نقطه مرجع (محورهای مشخص شده)
M03, M04, M05 روشن کردن اسپیندل در جهت عقربه‌های ساعت، روشن کردن اسپیندل در خلاف جهت عقربه‌های ساعت، خاموش کردن اسپیندل
M08, M09 روشن کردن خنک‌کننده، خاموش کردن خنک‌کننده
G43 + H_; G49 مقدار انحراف طول ابزار (TLO)؛ لغو TLO
G41,G42 + D_; G40 جبران شعاع برش سمت چپ، جبران شعاع برش سمت راست؛ لغو جبران شعاع برش

اپراتور با استفاده از این کدها، دستورهای لازم برای ایجاد طرح مورد نظر را به دستگاه می‌دهد. مثلاً با دریافت دستور G1 X100 Y100، ابزار روی یک خط مستقیم به مختصات (۱۰۰٬۱۰۰) حرکت می‌کند. این حرکت با دقت زیاد و بدون نیاز به اندازه‌گیری توسط اپراتور انجام می‌شود. به همین دلیل ماشین‌های سی‌ان‌سی، سرعت و دقت ماشین‌کاری را به مراتب افزایش می‌دهند.

نمونه‌ای از کد راهبری ماشین‌ها به شرح زیر است:

N0080 ...
N0090 G00 X100 Y100
N0100 G00 Z-2
N0110 G01 X110 F20
N0120 Y200 F15
N0130 G00 Z10
N0140 ...

تفاوت دستگاه‌های CNC با NC[ویرایش]

سیستم‌های NC، از سخت‌افزار الکترونیکی بر پایه تکنولوژی مدارهای دیجیتالی استفاده می‌کنند. CNC یک مینی کامپیوتر یا میکرو کامپیوتر را برای کنترل ماشین ابزار بکار می‌گیرد و تا حد امکان مدارهای سخت‌افزار اضافی را در واحد کنترل حذف می‌کند. گرایش از NC بر پایه سخت‌افزار، به CNC مبتنی بر نرم‌افزار، انعطاف‌پذیری سیستم را افزایش داد و امکان تصحیح برنامه‌ها را در حین استفاده فراهم ساخت. در دستگاه NC چیزی به نام کامپیوتر یا سنسور وجود ندارد؛ ولی در دستگاه CNC قطعه کار را روی صفحهٔ سنسور دار گذاشته و در اصطلاح آن را بند می‌کنیم. دستگاه به کمک هوش مصنوعی خود و با دادن طرح به کامپیوتر دستگاه، می‌تواند با وجود ۳ محور خود طرح مورد نظر را روی قطعه کار پیاده کند.[۱۰]

منابع[ویرایش]

  1. «سی‌ان‌سی چیست؟ فرایند ماشین‌کاری CNC». میا. خرداد ۱۳۹۸.[پیوند مرده]
  2. ۲٫۰ ۲٫۱ ۲٫۲ ۲٫۳ J. T. Black, Ronald A. Kohser (۲۰۲۰). DeGarmo's Materials and Processes in Manufacturing (ویراست ۱۳). John Wiley & Sons. صص. ۴۸۲. شابک ۱-۱۱۹-۷۲۳۲۹-۹.
  3. ۳٫۰ ۳٫۱ ۳٫۲ ۳٫۳ ۳٫۴ ۳٫۵ J. T. Black, Ronald A. Kohser (۲۰۲۰). DeGarmo's Materials and Processes in Manufacturing (ویراست ۱۳). John Wiley & Sons. صص. ۴۸۵. شابک ۱-۱۱۹-۷۲۳۲۹-۹.
  4. Serope Kalpakjian, Steven R. Schmid. Manufacturing Engineering and Technology. صص. ۱۰۶۲. شابک ۹۸۱۰۶۹۴۰۶۷.
  5. ۵٫۰ ۵٫۱ ۵٫۲ ۵٫۳ Serope Kalpakjian, Steven R. Schmid. Manufacturing Engineering and Technology. صص. ۱۰۶۲–۱۰۶۴. شابک ۹۸۱۰۶۹۴۰۶۷.
  6. Practical treatise on milling and milling machines. Brown & Sharpe Manufacturing Company. 1914. Retrieved 2013-01-28. صص. Brown & Sharpe ۱۹۱۴, p٫ ۷٫.
  7. Usher, John T. (1896). The Modern Machinist (2nd ed.). N. W. Henley. Retrieved 2013-02-01. صص. Usher ۱۸۹۶, p٫ ۱۴۲٫.
  8. «"What is CNC Plasma Cutting?"».
  9. About waterjets, archived from the original on 2010-02-13, retrieved 2010-02-13. پارامتر |عنوان= یا |title= ناموجود یا خالی (کمک)
  10. «دانلود مقاله آشنایی با ماشین هایCNC». دریافت‌شده در ۲۰۱۷-۰۳-۱۸.
A CNC machine that operates on wood

Numerical control (also computer numerical control, and commonly called CNC) is the automated control of machining tools (such as drills, lathes, mills and 3D printers) by means of a computer. A CNC machine processes a piece of material (metal, plastic, wood, ceramic, or composite) to meet specifications by following a coded programmed instruction and without a manual operator directly controlling the machining operation.

A CNC machine is a motorized maneuverable tool and often a motorized maneuverable platform, which are both controlled by a computer, according to specific input instructions. Instructions are delivered to a CNC machine in the form of a sequential program of machine control instructions such as G-code and M-code, then executed. The program can be written by a person or, far more often, generated by graphical computer-aided design (CAD) software and/or computer aided manufacturing (CAM) software. In the case of 3D printers, the part to be printed is "sliced", before the instructions (or the program) is generated. 3D printers also use G-Code.

CNC is a vast improvement over non-computerized machining that must be manually controlled (e.g. using devices such as hand wheels or levers) or mechanically controlled by pre-fabricated pattern guides (cams). In modern CNC systems, the design of a mechanical part and its manufacturing program is highly automated. The part's mechanical dimensions are defined using CAD software and then translated into manufacturing directives by computer-aided manufacturing (CAM) software. The resulting directives are transformed (by "post processor" software) into the specific commands necessary for a particular machine to produce the component and then are loaded into the CNC machine.

Since any particular component might require the use of a number of different tools – drills, saws, etc. – modern machines often combine multiple tools into a single "cell". In other installations, a number of different machines are used with an external controller and human or robotic operators that move the component from machine to machine. In either case, the series of steps needed to produce any part is highly automated and produces a part that closely matches the original CAD drawing.

Description

Motion is controlling multiple axes, normally at least two (X and Y),[1] and a tool spindle that moves in the Z (depth). The position of the tool is driven by direct-drive stepper motors or servo motors in order to provide highly accurate movements, or in older designs, motors through a series of step-down gears. Open-loop control works as long as the forces are kept small enough and speeds are not too great. On commercial metalworking machines, closed-loop controls are standard and required in order to provide the accuracy, speed, and repeatability demanded.

Parts Description

As the controller hardware evolved, the mills themselves also evolved. One change has been to enclose the entire mechanism in a large box as a safety measure, often with additional safety interlocks to ensure the operator is far enough from the working piece for safe operation. Most new CNC systems built today are 100% electronically controlled.

CNC-like systems are used for any process that can be described as movements and operations. These include laser cutting, welding, friction stir welding, ultrasonic welding, flame and plasma cutting, bending, spinning, hole-punching, pinning, gluing, fabric cutting, sewing, tape and fiber placement, routing, picking and placing, and sawing.

History

The first NC machines were built in the 1940s and 1950s, based on existing tools that were modified with motors that moved the tool or part to follow points fed into the system on punched tape. Those early servomechanisms were rapidly augmented with analog and digital computers, creating the modern CNC machine tools that have revolutionized machining processes.

Examples of CNC machines

CNC machine Description Image
Mill Translates programs consisting of specific numbers and letters to move the spindle (or workpiece) to various locations and depths. Many use G-code. Functions include: face milling, shoulder milling, tapping, drilling and some even offer turning. Today, CNC mills can have 3 to 6 axes. Most CNC mills require placing the workpiece on or in them and must be at least as big as the workpiece, but new 3-axis machines are being produced that are much smaller.[2]
Lathe Cuts workpieces while they are rotated. Makes fast, precision cuts, generally using indexable tools and drills. Effective for complicated programs designed to make parts that would be infeasible to make on manual lathes. Similar control specifications to CNC mills and can often read G-code. Generally have two axes (X and Z), but newer models have more axes, allowing for more advanced jobs to be machined.
Plasma cutter Involves cutting a material using a plasma torch. Commonly used to cut steel and other metals, but can be used on a variety of materials. In this process, gas (such as compressed air) is blown at high speed out of a nozzle; at the same time, an electrical arc is formed through that gas from the nozzle to the surface being cut, turning some of that gas to plasma. The plasma is sufficiently hot to melt the material being cut and moves sufficiently fast to blow molten metal away from the cut.
CNC plasma cutting
Electric discharge machining (EDM), also known as spark machining, spark eroding, burning, die sinking, or wire erosion, is a manufacturing process in which a desired shape is obtained using electrical discharges (sparks). Material is removed from the workpiece by a series of rapidly recurring current discharges between two electrodes, separated by a dielectric fluid and subject to an electric voltage. One of the electrodes is called the tool electrode, or simply the "tool" or "electrode," while the other is called the workpiece electrode, or "workpiece".
Master at the top, badge die workpiece at bottom, oil jets at left (oil has been drained). Initial flat stamping will be "dapped" to give a curved surface.
Multi-spindle machine Type of screw machine used in mass production. Considered to be highly efficient by increasing productivity through automation. Can efficiently cut materials into small pieces while simultaneously utilizing a diversified set of tooling. Multi-spindle machines have multiple spindles on a drum that rotates on a horizontal or vertical axis. The drum contains a drill head which consists of a number of spindles that are mounted on ball bearings and driven by gears. There are two types of attachments for these drill heads, fixed or adjustable, depending on whether the centre distance of the drilling spindle needs to be varied.[3]
Wire EDM Also known as wire cutting EDM, wire burning EDM, or traveling wire EDM, this process uses spark erosion to machine or remove material from any electrically conductive material, using a traveling wire electrode. The wire electrode usually consists of brass- or zinc-coated brass material. Wire EDM allows for near 90-degree corners and applies very little pressure on the material.[4] Since the wire is eroded in this process, a wire EDM machine feeds fresh wire from a spool while chopping up the used wire and leaving it in a bin for recycling.[5]
Sinker EDM Also called cavity type EDM or volume EDM, a sinker EDM consists of an electrode and workpiece submerged in oil or another dielectric fluid. The electrode and workpiece are connected to a suitable power supply, which generates an electrical potential between the two parts. As the electrode approaches the workpiece, dielectric breakdown occurs in the fluid forming a plasma channel and small spark jumps. Production dies and moulds are often made with sinker EDM. Some materials, such as soft ferrite materials and epoxy-rich bonded magnetic materials are not compatible with sinker EDM as they are not electrically conductive.[6]
Water jet cutter Also known as a "waterjet", is a tool capable of slicing into metal or other materials (such as granite) by using a jet of water at high velocity and pressure, or a mixture of water and an abrasive substance, such as sand. It is often used during the fabrication or manufacture of parts for machinery and other devices. Waterjet is the preferred method when the materials being cut are sensitive to the high temperatures generated by other methods. It has found applications in a diverse number of industries from mining to aerospace where it is used for operations such as cutting, shaping, carving, and reaming.
Thibaut Waterjet cutting machine
Waterjet cutting machine for all materials

Other CNC tools

Many other tools have CNC variants, including:

Tool / machine crashing

In CNC, a "crash" occurs when the machine moves in such a way that is harmful to the machine, tools, or parts being machined, sometimes resulting in bending or breakage of cutting tools, accessory clamps, vises, and fixtures, or causing damage to the machine itself by bending guide rails, breaking drive screws, or causing structural components to crack or deform under strain. A mild crash may not damage the machine or tools, but may damage the part being machined so that it must be scrapped. Many CNC tools have no inherent sense of the absolute position of the table or tools when turned on. They must be manually "homed" or "zeroed" to have any reference to work from, and these limits are just for figuring out the location of the part to work with it and are not really any sort of hard motion limit on the mechanism. It is often possible to drive the machine outside the physical bounds of its drive mechanism, resulting in a collision with itself or damage to the drive mechanism. Many machines implement control parameters limiting axis motion past a certain limit in addition to physical limit switches. However, these parameters can often be changed by the operator.

Many CNC tools also do not know anything about their working environment. Machines may have load sensing systems on spindle and axis drives, but some do not. They blindly follow the machining code provided and it is up to an operator to detect if a crash is either occurring or about to occur, and for the operator to manually abort the active process. Machines equipped with load sensors can stop axis or spindle movement in response to an overload condition, but this does not prevent a crash from occurring. It may only limit the damage resulting from the crash. Some crashes may not ever overload any axis or spindle drives.

If the drive system is weaker than the machine's structural integrity, then the drive system simply pushes against the obstruction, and the drive motors "slip in place". The machine tool may not detect the collision or the slipping, so for example the tool should now be at 210mm on the X-axis, but is, in fact, at 32mm where it hit the obstruction and kept slipping. All of the next tool motions will be off by −178mm on the X-axis, and all future motions are now invalid, which may result in further collisions with clamps, vises, or the machine itself. This is common in open-loop stepper systems but is not possible in closed-loop systems unless mechanical slippage between the motor and drive mechanism has occurred. Instead, in a closed-loop system, the machine will continue to attempt to move against the load until either the drive motor goes into an overload condition or a servo motor fails to get to the desired position.

Collision detection and avoidance are possible, through the use of absolute position sensors (optical encoder strips or disks) to verify that motion occurred, or torque sensors or power-draw sensors on the drive system to detect abnormal strain when the machine should just be moving and not cutting, but these are not a common component of most hobby CNC tools. Instead, most hobby CNC tools simply rely on the assumed accuracy of stepper motors that rotate a specific number of degrees in response to magnetic field changes. It is often assumed the stepper is perfectly accurate and never missteps, so tool position monitoring simply involves counting the number of pulses sent to the stepper over time. An alternate means of stepper position monitoring is usually not available, so crash or slip detection is not possible.

Commercial CNC metalworking machines use closed-loop feedback controls for axis movement. In a closed-loop system, the controller monitors the actual position of each axis with an absolute or incremental encoder. With proper control programming, this will reduce the possibility of a crash, but it is still up to the operator and programmer to ensure that the machine is operated in a safe manner. However, during the 2000s and 2010s, the software for machining simulation has been maturing rapidly, and it is no longer uncommon for the entire machine tool envelope (including all axes, spindles, chucks, turrets, tool holders, tailstocks, fixtures, clamps, and stock) to be modeled accurately with 3D solid models, which allows the simulation software to predict fairly accurately whether a cycle will involve a crash. Although such simulation is not new, its accuracy and market penetration are changing considerably because of computing advancements.[7]

Numerical precision and equipment backlash

Within the numerical systems of CNC programming, it is possible for the code generator to assume that the controlled mechanism is always perfectly accurate, or that precision tolerances are identical for all cutting or movement directions. This is not always a true condition of CNC tools. CNC tools with a large amount of mechanical backlash can still be highly precise if the drive or cutting mechanism is only driven so as to apply cutting force from one direction, and all driving systems are pressed tightly together in that one cutting direction. However, a CNC device with high backlash and a dull cutting tool can lead to cutter chatter and possible workpiece gouging. The backlash also affects the precision of some operations involving axis movement reversals during cutting, such as the milling of a circle, where axis motion is sinusoidal. However, this can be compensated for if the amount of backlash is precisely known by linear encoders or manual measurement.

The high backlash mechanism itself is not necessarily relied on to be repeatedly precise for the cutting process, but some other reference object or precision surface may be used to zero the mechanism, by tightly applying pressure against the reference and setting that as the zero references for all following CNC-encoded motions. This is similar to the manual machine tool method of clamping a micrometer onto a reference beam and adjusting the Vernier dial to zero using that object as the reference.[citation needed]

Positioning control system

In numerical control systems, the position of the tool is defined by a set of instructions called the part program. Positioning control is handled by means of either an open-loop or a closed-loop system. In an open-loop system, communication takes place in one direction only: from the controller to the motor. In a closed-loop system, feedback is provided to the controller so that it can correct for errors in position, velocity, and acceleration, which can arise due to variations in load or temperature. Open-loop systems are generally cheaper but less accurate. Stepper motors can be used in both types of systems, while servo motors can only be used in closed systems.

Cartesian coordinates

The G & M code positions are all based on a three-dimensional Cartesian coordinate system. This system is a typical plane often seen in mathematics when graphing. This system is required to map out the machine tool paths and any other kind of actions that need to happen in a specific coordinate. Absolute coordinates are what is generally used more commonly for machines and represent the (0,0,0) point on the plane. This point is set on the stock material in order to give a starting point or "home position" before starting the actual machining.

Coding

G-codes

G-codes are used to command specific movements of the machine, such as machine moves or drilling functions. The majority of G-Code programs start with a percent (%) symbol on the first line, then followed by an "O" with a numerical name for the program (i.e. "O0001") on the second line, then another percent (%) symbol on the last line of the program. The format for a G-code is the letter G followed by two to three digits; for example G01. G-codes differ slightly between a mill and lathe application, for example:

[G00 Rapid Motion Positioning]
[G01 Linear Interpolation Motion]
[G02 Circular Interpolation Motion-Clockwise]
[G03 Circular Interpolation Motion-Counter Clockwise]
[G04 Dwell (Group 00) Mill]
[G10 Set offsets (Group 00) Mill]
[G12 Circular Pocketing-Clockwise]
[G13 Circular Pocketing-Counter Clockwise]

M-codes

[Code Miscellaneous Functions (M-Code)][citation needed]. M-codes are miscellaneous machine commands that do not command axis motion. The format for an M-code is the letter M followed by two to three digits; for example:

[M02 End of Program]
[M03 Start Spindle - Clockwise]
[M04 Start Spindle - Counter Clockwise]
[M05 Stop Spindle]
[M06 Tool Change]
[M07 Coolant on mist coolant]
[M08 Flood coolant on]
[M09 Coolant off]
[M10 Chuck open]
[M11 Chuck close]
[M13 BOTH M03&M08 Spindle clockwise rotation & flood coolant]
[M14 BOTH M04&M08 Spindle counter clockwise rotation & flood coolant]
[M16 Special tool call]
[M19 Spindle orientate]
[M29 DNC mode ]
[M30 Program reset & rewind]
[M38 Door open]
[M39 Door close]
[M40 Spindle gear at middle]
[M41 Low gear select]
[M42 High gear select]
[M53 Retract Spindle] (raises tool spindle above current position to allow operator to do whatever they would need to do)
[M68 Hydraulic chuck close]
[M69 Hydraulic chuck open]
[M78 Tailstock advancing]
[M79 Tailstock reversing]

Example

%
O0001
G20 G40 G80 G90 G94 G54(Inch, Cutter Comp. Cancel, Deactivate all canned cycles, moves axes to machine coordinate, feed per min., origin coordinate system)
M06 T01 (Tool change to tool 1)
G43 H01 (Tool length comp. in a positive direction, length compensation for the tool)
M03 S1200 (Spindle turns CW at 1200RPM)
G00 X0. Y0. (Rapid Traverse to X=0. Y=0.)
G00 Z.5 (Rapid Traverse to z=.5)
G00 X1. Y-.75 (Rapid traverse to X1. Y-.75)
G01 Z-.1 F10 (Plunge into part at Z-.25 at 10in per min.)
G03 X.875 Y-.5 I.1875 J-.75 (CCW arc cut to X.875 Y-.5 with radius origin at I.625 J-.75)
G03 X.5 Y-.75 I0.0 J0.0 (CCW arc cut to X.5 Y-.75 with radius origin at I0.0 J0.0)
G03 X.75 Y-.9375 I0.0 J0.0(CCW arc cut to X.75 Y-.9375 with radius origin at I0.0 J0.0)
G02 X1. Y-1.25 I.75 J-1.25 (CW arc cut to X1. Y-1.25 with radius origin at I.75 J-1.25)
G02 X.75 Y-1.5625 I0.0 J0.0 (CW arc cut to X.75 Y-1.5625 with same radius origin as the previous arc)
G02 X.5 Y-1.25 I0.0 J0.0 (CW arc cut to X.5 Y-1.25 with same radius origin as the previous arc)
G00 Z.5 (Rapid traverse to z.5)
M05 (spindle stops)
G00 X0.0 Y0.0 (Mill returns to origin)
M30 (Program End)
%

Having the correct speeds and feeds in the program provides for a more efficient and smoother product run. Incorrect speeds and feeds will cause damage to the tool, machine spindle, and even the product. The quickest and simplest way to find these numbers would be to use a calculator that can be found online. A formula can also be used to calculate the proper speeds and feeds for a material. These values can be found online or in Machinery's Handbook.

See also

References

  1. ^ Mike Lynch, "Key CNC Concept #1—The Fundamentals Of CNC", Modern Machine Shop, 4 January 1997. Accessed 11 February 2015
  2. ^ Grace-flood, Liam (2017-11-10). "Goliath Represents a New Breed of CNC Machine". Wevolver. Retrieved 2018-01-20.
  3. ^ "Multi Spindle Machines - An In-Depth Overview". Davenport Machine. Retrieved 2017-08-25.
  4. ^ "Machining Types - Parts Badger". Parts Badger. Retrieved 2017-07-07.
  5. ^ "How it Works – Wire EDM | Today's Machining World". todaysmachiningworld.com. Retrieved 2017-08-25.
  6. ^ "Sinker EDM - Electrical Discharge Machining". www.qualityedm.com. Retrieved 2017-08-25.
  7. ^ Zelinski, Peter (2014-03-14), "New users are adopting simulation software", Modern Machine Shop.

Further reading

External links