پرش به محتوا

ال‌ئی‌دی: تفاوت میان نسخه‌ها

از ویکی‌پدیا، دانشنامهٔ آزاد
محتوای حذف‌شده محتوای افزوده‌شده
ویرایش به‌وسیلهٔ ابرابزار:
بدون خلاصۀ ویرایش
خط ۱۱۶: خط ۱۱۶:


==== سه-رنگه RGB ====
==== سه-رنگه RGB ====
[[پرونده:RGB LED.jpg|بندانگشتی|یک ال‌ئی‌دی RGB]]
[[پرونده:RGB-SMD-LED.jpg|بندانگشتی|یک ال‌ئی‌دی [[فناوری نصب-سطحی|نصب سطحی]] سه رنگه (RGB).]]
ال‌ئی‌دی‌های سه-رنگه شامل سه ساطع کننده LED مختلف در یک قاب هستند. هر ساطع کننده به یک سیم جداگانه متصل است تا بتوان آنها را به طور مستقل کنترل کرد. در این ال‌ئی‌دی‌ها آرایش چهار-پایه با یک پایه مشترک (آند یا کاتد) و یک پایه اضافی برای هر رنگ معمول است. در صورتی که، سایر ال‌ئی‌دی‌ها فقط دو پایه دارند (مثبت و منفی) و دارای یک کنترل کننده الکترونیکی داخلی هستند.[[پرونده:RGB LED.jpg|بندانگشتی|یک ال‌ئی‌دی سه رنگه RGB]]ال‌ئی‌دی‌های RGB از یک LED قرمز، یک LED سبز و یک LED آبی تشکیل شده اند.<ref>{{Cite book|url=https://books.google.com/books?id=qk1hmpEQVxIC&pg=PA349|title=5th Kuala Lumpur International Conference on Biomedical Engineering 2011: BIOMED 2011, 20–23 June 2011, Kuala Lumpur, Malaysia|last=Ting|first=Hua-Nong|date=2011-06-17|publisher=Springer Science & Business Media|isbn=9783642217296}}</ref> با تنظیم مستقل هر یک از این سه ، LED های RGB قادر به تولید یک طیف رنگی گسترده هستند. برخلاف ال‌ئی‌دی‌های با رنگ اختصاصی، این ال‌ئی‌دی‌ها طول موج خاصی تولید نمی کنند. می توان این ماژول‌ها را برای ترکیب رنگ روان تنظیم کرد.


==== چندرنگه-تزئینی ====
==== چندرنگه-تزئینی ====

نسخهٔ ‏۲۱ فوریهٔ ۲۰۲۱، ساعت ۱۸:۴۱

دیود نورگسیل (ال‌ئی‌دی)
سه ال‌ئی‌دی ۵ میلیمتری به رنگ‌های آبی، سبز و قرمز
نوعPassive, optoelectronic
اصول کارکردبرق‌درخشی
اختراع شدهاولگ لسف (۱۹۲۷)
James R. Biard (1961)
نیک هولونیاک (۱۹۶۲)
نخستین تولیداکتبر ۱۹۶۲
تنظیمات پینآند (شیمی) و کاتد
نمادهای الکترونیک
اجزای یک لامپ ای ئی دی معمولی. سطوح مورب دو قسمت post و anvil مانند یک قلاب عمل کرده و از بیرون آمدن آنها از درون قاب اپوکسی توسط نیروی خارجی جلوگیری می‌کنند

دیود نورگسیل[۱] (به انگلیسی: Light-Emitting Diode) یا ال‌ئی‌دی (به انگلیسی: LED) یک منبع نور نیم‌رسانا است که با عبور جریان الکتریکی از آن، از خود نور ساطع می‌کند. الکترون‌های موجود در ماده نیم‌رسانا با حفره‌های الکترون بازترکیب می‌شوند و انرژی خود را به شکل فوتون آزاد می‌کنند. رنگ نور ساطع شده (مربوط به انرژی فوتون‌ها) بستگی به انرژی مورد نیاز الکترون‌ها برای عبور از شکاف انرژی نیم‌رسانا دارد.[۲] برای بدست آوردن نور سفید از چندین نیم‌رسانای مختلف استفاده می‌شود یا اینکه لایه‌ای از فسفر ساطع کننده نور بر روی وسیله نیم‌رسانا قرار داده می‌شود.[۳]

ال‌ئی‌دی‌ها به عنوان یک قطعه الکترونیکی کاربردی در سال ۱۹۶۲ ظهور کردند، و فقط می‌توانستند نور مادون-قرمز ضعیفی از خود ساطع کنند.[۴] از ال‌ئی‌دی‌های مادون قرمز در کنترل از راه دور دستگاه‌های الکترونیکی مصرفی مانند تلویزیون‌ها استفاده گردید. اولین ال‌ئی‌دی‌های با نور مرئی بسیار ضعیف بوده و فقط محدود به رنگ قرمز بودند. امروزه ال‌ئی‌دی‌هایی با خروجی‌های بالا و در کل طیف نور مرئی، ماوراء بنفش، و امواج مادون قرمز موجود هستند.

ال‌ئی‌دی‌های اولیه اغلب به عنوان لامپ‌های نشانگر، جایگزینی برای لامپ‌های رشته‌ای کوچک و در نمایشگرهای هفت بخشی استفاده می‌شدند. تحولات اخیر ال‌ئی‌دی‌های سفید با نور بالا و مناسب برای روشنایی اتاق و فضای باز تولید کرده‌اند. اختراع ال‌ئی‌دی‌ها منجر به اختراع نمایشگرها و حسگرهای جدید شده‌است، و نرخ بالای کلیدزنی آنها در فناوری ارتباطات پیشرفته مفید است.

یک لامپ ال‌ئی‌دی مدرن به شکل یک لامپ رشته‌ای به همراه هیت سینک آلومینیومی، یک پخش کننده نور گنبدی‌شکل و پایه پیچ E27، با استفاده از منبع تغذیه داخلی که با برق شهری کار می‌کند.

ال‌ئی‌دی‌ها نسبت به لامپ‌های رشته مزایای فراوانی دارند، از جمله: مصرف انرژی کمتر، عمر بالاتر، استحکام فیزیکی بالاتر، اندازه کوچکتر، و کلیدزنی سریع‌تر. ال‌ئی‌دی‌ها همچنین در کاربردهای متنوعی استفاده می‌شوند، از جمله: لامپ هواپیماها، لامپ‌های ریسه‌ای، چراغ‌جلوی خودروها، تبلیغات، نورپردازی‌های عمومی، چراغ‌های راهنمایی، فلش دوربین‌ها، لامپ‌های پرورش گیاه، و تجهیزات پزشکی.[۵]

بر خلاف لیزر، نوری که از ال‌ئی‌دی ساطع می‌شود نه از نظر طیفی همدوس است و نه حتی خیلی مونوکرومیک است. با این حال، طیف آن به اندازه کافی باریک است که در چشم انسان به عنوان یک رنگ خالص (اشباع) ظاهر می‌شود.[۶][۷] همچنین برخلاف اکثر لیزرها، تابش آن از نظر مکانی همدوس نیست، بنابراین نمی‌تواند به روشنایی‌های بسیار زیاد مشخصه لیزرها نزدیک شود.

تاریخچه

نمای نزدیک از یک ال‌ئی‌دی نصب سطحی.

اکتشافات و دستگاه‌های اولیه

الکترونورتابی سبز از یک تماس نقطه‌ای روی یک کریستال کاربید سیلیسیم که بازسازی آزمایش H. J. Round درسال ۱۹۰۷ است.

الکترونورتابی به عنوان یک پدیده در سال ۱۹۰۷ توسط آزمایشگر انگلیسی اچ جی روند از آزمایشگاه‌های مارکونی، با استفاده از کریستال کاربید سیلیسیم و آشکارساز سیبیل گربه‌ای کشف شد.[۸][۹] اولِگ لوسِف، مخترع روسی، اختراع اولین ال‌ئی‌دی را در سال ۱۹۲۷ خبر داد.[۱۰] تحقیقات وی در مجلات علمی شوروی، آلمان و انگلیس توزیع شد، اما تا چندین دهه از این کشف استفاده عملی نشد.[۱۱][۱۲]

در سال ۱۹۳۶، ژورژ دِسترائو مشاهده کرد که هنگامی که پودر روی سولفید در یک عایق به حالت تعلیق در می‌آید و میدان الکتریکی متناوبی به آن اعمال می‌شود، می‌توان الکترونورتابی تولید کرد. دسترائو در انتشارات خود اغلب از نورتابی به عنوان نور-لوسِف یاد می‌کند. دسترائو در آزمایشگاه‌های ماری کوری، که او هم یک پیشگام در زمینه نورتابی با تحقیق در مورد رادیوم بود، کار کرد.[۱۳][۱۴]

زولتان لایوش بای به همراه گئورگ سیگتی در سال ۱۹۳۹ با ثبت اختراع یک دستگاه روشنایی مبتنی بر کاربید سیلیسیم، و کاربید بور به عنوان یک جایگزین، نور ال‌ئی‌دی را در مجارستان انحصاری کردند، که بسته به ناخالصی‌های موجود، نوری سفید، سفید مایل به زرد یا سفید مایل به سبز منتشر می‌کرد.[۱۵]

روبین براونشتاین از شرکت رادیویی آمریکا در مورد انتشار امواج مادون قرمز از گالیم آرسنید و سایر آلیاژهای نیم‌رسانا در سال ۱۹۵۵ گزارش داد.[۱۶] براونشتاین انتشار مادون قرمز تولید شده توسط ساختارهای ساده دیود را با استفاده از گالیم آنتیمونید، گالیم آرسنید، ایندیم فسفید و آلیاژهای سیلیکون-ژرمانیم در دمای اتاق و در ۷۷ کلوین مشاهده کرد. در سال ۱۹۵۷، براونشتاین همچنین نشان داد که می‌توان از وسایل ابتدایی برای ارتباطات غیر-رادیویی در یک فاصله کوتاه استفاده کرد.

ال‌ئی‌دی SNX-100 GaAs ساخت شرکت تگزاس اینسترومنتس در سال ۱۹۶۲ که در یک محفظه ترانزیستور TO-18 قرار داده شده‌است.

در سپتامبر ۱۹۶۱، جیمز آر. بیارد و گری پیتمن که در شرکت تگزاس اینسترومنتس کار می‌کردند، انتشار نور نزدیک مادون قرمز (۹۰۰ نانومتر) را از دیود تونلی که روی بستر GaAs ساخته بودند، مشاهده و کشف کردند.[۴] تا اکتبر ۱۹۶۱، آنها انتشار نور و اتصال سیگنال کارآمد را بین یک فرستنده نوری اتصال پی-ان گالیم آرسنید و یک آشکارساز نوری نیم‌رسانای الکتریکی نشان دادند.[۱۷] در اکتبر ۱۹۶۲، تگزاس اینسترومنتس اولین محصول تجاری ال‌ئی‌دی یعنی (SNX-100) را معرفی کرد که از کریستال خالص گالیم آرسنید برای تولید نور ۸۹۰ نانومتر استفاده می‌کرد.[۴] در اکتبر ۱۹۶۳، تگزاس اینسترومنتس اولین ال‌ئی‌دی نیم‌کره‌ای تجاری را با نام SNX-110 اعلام کرد.[۱۸]

اولین ال‌ئی‌دی با طیف نور مرئی (قرمز) توسط نیک هولونیاک در ۹ اکتبر ۱۹۶۲ هنگامی که برای جنرال الکتریک کار می‌کرد، نشان داده شد.[۱۹] جورج کرافورد،[۲۰] دانشجوی سابق تحصیلات تکمیلی هولونیاک، اولین ال‌ئی‌دی زرد را اختراع کرد و روشنایی ال‌ئی‌دی‌های قرمز و نارنجی-قرمز را در سال ۱۹۷۲ با ضریب ده بهبود داد.[۲۱] در سال ۱۹۷۶، تی.پی. پیرسال با اختراع مواد نیم‌رسانا جدید اولین ال‌ئی‌دی‌های با روشنایی بالا و کارایی بالا را برای مخابرات فیبر نوری طراحی کرد.[۲۲]

توسعه تجاری اولیه

اولین ال‌ئی‌دی‌های تجاری با طول موج مرئی معمولاً به عنوان جایگزین لامپ‌های رشته‌ای و لامپ‌های نئون و در نمایشگرهای هفت بخشی،[۲۳] ابتدا در تجهیزات گران‌قیمت مانند تجهیزات آزمایشگاهی و الکترونیکی و سپس در وسایل خانگی مانند ماشین حساب، تلویزیون، رادیو، تلفن و همچنین ساعت استفاده شدند. تا سال ۱۹۶۸، ال‌ئی‌دی‌های مرئی و مادون قرمز به میزان ۲۰۰ دلار در هر واحد قیمت داشتند که بسیار گران بودند و از این رو کاربرد عملی کمی داشتند.[۲۴]

شرکت هیولت پاکارد بین سال‌های ۱۹۶۲ تا ۱۹۶۸ در اچ‌پی شرکا و آزمایشگاه‌های اچ‌پی، توسط یک تیم تحقیقاتی با رهبری هاوارد بوردون، جرالد پیگینی و محمد عطاالله، به تحقیق و توسعه در مورد ال‌ئی‌دی‌های عملی مشغول بود.[۲۵] در طی این دوره، عطاالله پروژه تحقیقاتی علم مواد در مورد دستگاه‌هایی بر مبنای گالیم آرسنید، فسفید آرسنید گالیم و ایندیم آرسنید را در اچ‌پی آغاز کرد[۲۶] و آنها در زمینه تولید اولین محصولات ال‌ئی‌دی قابل استفاده با شرکت مونسانتو همکاری کردند.[۲۷] اولین محصولات قابل استفاده ال‌ئی‌دی، نمایشگر ال‌ئی‌دی اچ‌پی و چراغ نشانگر ال‌ئی‌دی مونسانتو بودند که هر دو در سال ۱۹۶۸ راه اندازی شدند.[۲۷] مونسانتو اولین سازمانی بود که با تولید انبوه ال‌ئی‌دی‌های با نور مرئی، با استفاده از فسفید آرسنید گالیم در سال ۱۹۶۸، ال‌ئی‌دی‌های قرمز مناسب برای نشانگرها (چراغ سیگنال تابلوهای برق) تولید کرد.[۲۴] مونسانتو پیش از این پیشنهاد کرده بود که فسفید آرسنید گالیوم را برای اچ‌پی تأمین کند، اما اچ‌پی تصمیم گرفت فسفید آرسنید گالیم را خود تولید کند.[۲۴] در فوریه ۱۹۶۹، اچ‌پی نشانگر عددی مدل ۵۰۸۲–۷۰۰۰ را معرفی کرد، که اولین دستگاه ال‌ئی‌دی با فناوری مدار مجتمع (مدار ال‌ئی‌دی یکپارچه) بود.[۲۵] این دستگاه اولین نمایشگر ال‌ئی‌دی هوشمند بود و انقلابی در فناوری نمایشگرهای دیجیتال به وجود آورد و جایگزین لامپ نیکسی شد و مبنایی برای نمایشگرهای ال‌ئی‌دی جدید گردید.[۲۸]

عطاالله اچ‌پی را ترک کرد و در سال ۱۹۶۹ به فرچایلد سمیکانداکتر پیوست.[۲۹] او معاون رئیس و مدیر کل بخش میکروموج و الکترونیک نوری بود،[۳۰] از زمان آغاز به کارش در ماه مه ۱۹۶۹ تا نوامبر ۱۹۷۱.[۳۱] وی کار خود را در زمینه ال‌ئی‌دی‌ها ادامه داد و در سال ۱۹۷۱ پیشنهاد داد که آنها می‌توانند برای چراغ‌های نشانگر (لامپ سیگنال) و خواننده‌های نوری استفاده شوند.[۳۲]

ال‌ئی‌دی‌های اولیه قرمز فقط برای استفاده به عنوان نشانگر مناسب بودند، زیرا نور خروجی آنها برای روشن کردن یک اتاق کافی نبود. بازخوانی در ماشین حساب‌ها آنقدر کم بود که روی هر رقم عدسی‌های پلاستیکی ساخته می‌شد تا خوانایی بیشتری داشته باشد. بعداً رنگ‌های دیگر به‌طور گسترده در دسترس قرار گرفتند و در وسایل و تجهیزات ظاهر شدند.

ال‌ئی‌دی آبی

اولین ال‌ئی‌دی آبی-بنفش با استفاده از نیترید گالیم با آلایش منیزیم در دانشگاه استنفورد در سال ۱۹۷۲ توسط هرب ماروسکا و والی راینز، دانشجویان دکترای علوم و مهندسی مواد ساخته شد.[۳۳][۳۴]

در اواخر دهه ۱۹۸۰، موفقیت‌های کلیدی کسب شده در رشد برآرایی GaN و آلایش نوع-پی،[۳۵] عصر جدیدی از دستگاه‌های نوری-الکترونیکی مبتنی بر نیترید گالیم را آغاز کرد. با استفاده از این پایه، تئودور موستاکاس در دانشگاه بوستون روشی را برای تولید ال‌ئی‌دی‌های آبی با روشنایی بالا با استفاده از یک فرایند دو مرحله ای جدید در سال ۱۹۹۱ ثبت اختراع کرد.[۳۶] دو سال بعد، یعنی در سال ۱۹۹۳، شوجی ناکامورا از شرکت نیچیا با استفاده از فرایندی برای رشد گالیم نیترید، ال‌ئی‌دی‌های آبی با روشنایی بالا را اختراع کرد. به موازات آن، ایسامو آکازاکی و هیروشی آمانو در شهر ناگویا ژاپن در حال توسعه رسوب GaN در بسترهای یاقوت کبود و نمایش آلایش نوع-پی از GaN بودند. این پیشرفت جدید، انقلابی در روشنایی ال‌ئی‌دی ایجاد کرد و منابع نور آبی پرقدرت را عملی ساخت و منجر به توسعه فناوری‌هایی مانند بلو-ری شد.

پرونده:Shuji Nakamura.jpg
شوجی ناکامورا «برای اختراع دیودهای نوری آبی [رنگ] کارآمد که منابع نور سفید پرنور و کم مصرف را امکان‌پذیر کرد»،[۳۷] برنده جایزه نوبل فیزیک ۲۰۱۴ گردید.

ناکامورا به خاطر اختراع خود جایزه فناوری هزاره ۲۰۰۶ را دریافت کرد.[۳۸] در سال ۲۰۱۴ ایسامو آکاساکی، هیروشی آمانو و شوجی ناکامورا سه دانشمند ژاپنی، به دلیل کارهایی که در اوایل دهه ۱۹۹۰ در ساخت گالیم نیترید با کیفیت و ساخت ال‌ئی‌دی آبی انجام داده بودند موفق به دریافت جایزه نوبل فیزیک شدند.[۳۹] در سال ۲۰۱۵، دادگاه ایالات متحده حکم داد که سه شرکت حق ثبت اختراع قبلی موستاکاس را نقض کرده‌اند و به آنها دستور پرداخت هزینه‌های صدور مجوز حداقل ۱۳ میلیون دلار را داده‌است.[۴۰]

در سال ۲۰۰۱[۴۱] و ۲۰۰۲،[۴۲] فرایندهایی برای رشد ال‌ئی‌دی‌های پایه نیترید گالیم روی سیلیسیم با موفقیت نشان داده شد. در ژانویه ۲۰۱۲، اوسرام ال‌ئی‌دی‌های InGaN با قدرت بالا که روی لایه‌های سیلیسیمی تولید می‌شوند را برای استفاده تجاری رونمایی کرد[۴۳] و ال‌ئی‌دی‌های نیترید گالیم بر روی سیلیسیم در شرکت نیم‌رساناهای پلسی در حال تولید هستند. در سال ۲۰۱۷، برخی از تولیدکنندگان از SiC به عنوان بستر تولید ال‌ئی‌دی استفاده می‌کنند، اما استفاده از یاقوت کبود متداول‌تر است، زیرا خصوصیات آن به گالیم نیترید بسیار مشابه است، و نیاز به الگودهی به ویفر یاقوت کبود را کاهش می‌دهد (ویفرهای طرح دار به عنوان اپی ویفر شناخته می‌شوند) سامسونگ، دانشگاه کمبریج و توشیبا در حال تحقیق دربارهٔ نیترید گالیم در مورد ال‌ئی‌دی‌های سیلیسیمی هستند. توشیبا احتمالاً به دلیل بازده پایین، تحقیقات را متوقف کرده‌است.[۴۴][۴۵][۴۶][۴۷][۴۸][۴۹][۵۰] بعضی از آنها برآرایی را انتخاب می‌کنند، که برای سیلیسیم دشوار است، در حالی که برخی دیگر، مانند دانشگاه کمبریج، به منظور کاهش عدم تطابق شبکه و نسبت‌های مختلف انبساط حرارتی، برای جلوگیری از ترک چیپ ال‌ئی‌دی در دماهای بالا (برای مثال در هنگام تولید)، کاهش تولید گرما و افزایش بهره درخشندگی، از ساختار چندلایه استفاده می‌کنند. برآرایی (یا یاقوت کبود الگودار) را می‌توان توسط طرح‌نگاری نقش-نانو انجام داد.[۵۱][۵۲][۵۳][۵۴][۵۵][۵۶][۵۷]

نیترید گالیم اغلب با استفاده از برآرایی بخار فلز-آلی (MOCVD) رسوب داده می‌شود و از Lift-off نیز استفاده می‌شود.

ال‌ئی‌دی‌های سفید و پیشرفت چشمگیر در زمینه روشنایی

با اینکه می‌توان با استفاده از ال‌ئی‌دی‌های قرمز، سبز و آبی جداگانه، نور سفید ایجاد کرد، اما نتیجه، یک نمایش رنگ ضعیف است، زیرا فقط سه باند باریک از طول موج نور ساطع می‌شود. کشف ال‌ئی‌دی آبی پرقدرت بلافاصله منجر به کشف ال‌ئی‌دی سفید شد. در این وسیله پوشش فسفر دوپ شده با Y
3
Al
5
O
12
:سریم (که به عنوان YAG نیز شناخته می‌شود) از خود نور زرد تا فِلوئورِسانس ساطع می‌کند. ترکیب این نور با نور آبی باقی مانده، در چسم سفید به نظر می‌رسد.

اولین ال‌ئی‌دی‌های سفید گران و ناکارآمد بودند. با این حال، خروجی نور ال‌ئی‌دی‌ها به‌طور تصاعدی افزایش یافته‌است. نتایج جدیدترین تحقیق و توسعه توسط تولیدکنندگان ژاپنی مانند پاناسونیک و نیچیا و تولیدکنندگان کره‌ای و چینی مانند سامسونگ، کینگسون و دیگران منتشر شده‌است. این روند در افزایش تولید به افتخار دکتر رولند هایتز، قانون هایتز نامیده شده‌است.[۵۸]

شدت نور و راندمان ال‌ئی‌دی‌های آبی و نزدیک به ماوراء بنفش افزایش یافت و قیمت آنها کاهش پیدا کرد. این امر منجر به استفاده از ال‌ئی‌دی‌های پرقدرت برای روشنایی محیط و جایگزینی آنها با لامپ‌های رشته‌ای و مهتابی گردید.[۵۹][۶۰]

در سال ۲۰۱۴ ال‌ئی‌دی‌های سفید آزمایشی برای تولید ۳۰۳ لومن در هر وات برق (وات/لومن) به نمایش گذاشته شد. بعضی از آنها می‌توانند تا ۱۰۰۰۰۰ ساعت دوام بیاورند.[۶۱][۶۲] با این وجود در سال ۲۰۱۸، ال‌ئی‌دی‌های موجود در بازار تا ۲۲۳ لومن بر وات بهره‌وری دارند.[۶۳][۶۴][۶۵] رکورد قبلی ۱۳۵ لومن بر وات توسط نیچیا در سال ۲۰۱۰ به دست آمد.[۶۶] در مقایسه با لامپ‌های رشته‌ای، این یک افزایش چشمگیر در بازده الکتریکی است، و با اینکه خرید ال‌ئی‌دی گران‌تر است، هزینه کلی آن به‌طور قابل توجهی ارزان‌تر از لامپ‌های رشته‌ای است.[۶۷]

کاربردها

چراغ روز ال‌ئی‌دی یک خودرو.

دیودهای نورافشان مصارف متفاوتی در نورپردازی شهری، علائم عبور و مرور و چراغ‌های امروزی خودرو دارند.[۶۸] همچنین اندازهٔ بسیار کوچک آن‌ها باعث شده‌است تا در نمایشگرهای گرافیکی نسل جدید بکار روند.[۶۹] سرعت بسیار بالای آن‌ها در خاموش و روشن شدن کاربردهای ویژه‌ای در فناوری مخابرات برای آن‌ها به ارمغان آورده‌است.

با توجه به اینکه ال‌ئی‌دی‌ها می‌توانند نورهای رنگی مختلفی تولید کنند، در نورپردازی‌های تزئینی کاربر دارند. از سوی دیگر این لامپ‌ها نور مخرب ماورای بنفش تولید نمی‌کنند و به همین سبب در موزه‌ها برای روشنایی اشیاء قیمتی به کار می‌روند. به علت توان مصرفی پایینشان می‌توان از آن‌ها در روشنایی اضطراری استفاده کرد. در چراغ‌های راهنمایی و رانندگی، طول عمر، ضریب اطمینان روشنایی، درخشندگی بالا و دید در روز اهمیت زیادی دارند و به همین علت ال‌ئی‌دی‌ها برای این منظور بسیار مناسبند. بسیاری از شرکت‌های معتبر خودروسازی، در چراغ راهنما، خطر و برخی چراغ‌های داخلی خودروهایشان از لامپ ال‌ئی‌دی استفاده می‌کنند.[۷۰]

دیودهای نورگسیل ارگانیک (اوال‌ئی‌دی)

لایهٔ الکترونورتابی در دیودهای نورگسیل ارگانیک (اوال‌ئی‌دی)، یک لایهٔ بسیار نازک (فیلم) از ترکیبی آلی است که در واکنش به جریان الکتریکی، از خود نور منتشر می‌کند. از مزایای بالقوه اوال‌ئی‌دی‌ها می‌توان به نمایشگرهای نازک کم هزینه با ولتاژ محرک پایین، زاویه دید وسیع، کنتراست بالا و وسعت رنگ زیاد اشاره کرد.[۷۱] مزیت اضافی ال‌ئی‌دی‌های پلیمری، ساخت نمایشگرهای قابل پرینت و نمایشگرهای انعطاف‌پذیر است.[۷۲][۷۳][۷۴] از اوال‌ئی‌دی‌ها برای ساخت صفحه نمایش‌های دستگاه‌های قابل حمل از قبیل گوشی‌های همراه، دوربین‌های دیجیتال و ام‌پی‌تیری پلیرها استفاده می‌شود و هم چنین در آینده ممکن است برای ساخت تلویزیون یا روشنایی ساختمان از آنها استفاده کرد.[۷۵][۷۱]

انواع

ال‌ئی‌دیها در بسته‌بندی‌های مختلف برای کاربردهای مختلف ساخته می‌شوند. یک یا چند اتصال ال‌ئی‌دی ممکن است در یک دستگاه مینیاتوری بسته‌بندی شود تا به عنوان نشانگر یا لامپ آزمایشی استفاده شود. یک آرایه ال‌ئی‌دی ممکن است شامل مدارهای کنترل‌کننده در همان بسته باشد، که ممکن است از یک مقاومت ساده ، کنترل‌کننده چشمک زدن یا تغییر رنگ، یا یک کنترل‌کننده آدرس پذیر برای دستگاه‌های آرجی‌بی باشد. دستگاه‌های توان بالا و نور-سفید بر روی گرماگیرها نصب شده و برای روشنایی محیط استفاده می‌شوند. نمایشگرهای عددی-حرفی در ساختارهای ماتریسی نقطه‌ای یا نواری به‌طور گسترده‌ای در دسترس هستند. بسته‌های ویژه اجازه اتصال ال‌ئی‌دیها به فیبرهای نوری را برای پیوندهای ارتباطی پرسرعت داده فراهم می‌کنند.

ال‌ئی‌دی‌ها در سایزها و شکل‌های متنوعی ساخته می‌شوند. در بیشتر موارد، اما نه همیشه، رنگ عدسی با نوری که ال‌ئی‌دی منتشر می‌کند یکسان است. ال‌ئی‌دی‌های مدرن و توان‌بالا، مانند آنهایی که برای روشن کردن یا بک‌لایتینگ استفاده می‌شود معمولاً در پکیج‌های «فناوری نصب سطحی» یا SMT یافت می‌شوند.

مینیاتوری

ال‌ئی‌دی‌های مینیاتوری نصب سطحی تک و چند رنگه در سایزهای متداول. این ال‌ئی‌دیها می‌توانند بسیار کوچکتر از لامپ‌های ال‌ئی‌دی ۵ میلیمتری سنتی که در گوشه سمت چپ بالا نشان داده شده‌است، باشند.

این ال‌ئی‌دی‌ها اکثراً ال‌ئی‌دی‌های تک-دای هستند که معمولاً به عنوان چراغ نشانگر استفاده شده و در ابعاد مختلفی از ۲ تا ۸ میلیمتر ساخته می‌شوند، و برای نصب سوراخ-کامل یا نصب سطحی ارائه می‌شوند.[۷۶] ریتینگ‌های معمول جریان از حدود ۱ میلی‌آمپر تا بالای ۲۰ میلی‌آمپر متغیر است. از چسباندن چندین ال‌ئی‌دی مینیاتوری بر روی یک نوار پشتیبان لامپ نواری ال‌ئی‌دی ساخته می‌شود.

ال‌ئی‌دی‌های ۵ ولت و ۱۲ ولت، ال‌ئی‌دی‌های مینیاتوری متداول هستند که برای اتصال مستقیم به منبع ۵ ولت یا ۱۲ ولت مقاومت آنها سری شده‌است.

توان-بالا

یک پکیج ال‌ئی‌دی نصب‌سطحی قرمز، آبی، سبز بسیار کوچک (1.6x1.6x0.۳۵ میلیمتر) که جزئیات اتصال سیمی طلایی آن مشخص است.

ال‌ئی‌دی‌های پرقدرت (اچ‌پی-ال‌ئی‌دی) یا ال‌ئی‌دی‌های خروجی-بالا (اچ‌او-ال‌ئی‌دی) را می‌توان با جریانی از صدها میلی‌آمپر تا بیش از یک آمپر روشن کرد. در مقایسه سایر ال‌ئی‌دی‌ها با چند ده میلی‌آمپر روشن می‌شوند. بعضی از این ال‌ئی‌دی‌ها حتی می‌توانند بیش از هزار لومن نور از خود ساطع کنند.[۷۷][۷۸] چگالی توان تا ۳۰۰ وات بر سانتی‌متر مربع برای برخی ال‌ئی‌دی‌ها بدست آمده‌است. از آنجا که گرم شدن بیش از حد مخرب است، اچ‌پی-ال‌ئی‌دی‌ها باید بر روی یک هیت سینک نصب شوند تا از گرمایش بیش از حد جلوگیری شود. اگر این گرما از ال‌ئی‌دی دفع نشود، در عرض چند ثانیه این ال‌ئی‌دی‌ها می‌سوزند. یک اچ‌پی-ال‌ئی‌دی اغلب می‌تواند جایگزین یک لامپ رشته‌ای در یک چراغ قوه شود یا در یک آرایه تنظیم شود تا یک لامپ ال‌ئی‌دی قدرتمند تشکیل دهد.

برخی از اچ‌پی-ال‌ئی‌دی‌های معروف در این گروه شامل سری Nichia 19، Lumileds Rebel Led , Osram Opto Semiconductors Golden Dragon و Cree X-lamp هستند.

جریان متناوب

دیودهای ساطع کننده نور با قدرت بالا متصل به پایه ال‌ئی‌دی ستاره‌ای شکل (Luxeon، Lumileds)

ال‌ئی‌دی‌های ساخته شده توسط سئول سمیکانداکتور می‌توانند بدون مبدل دی‌سی با مستقیماً با برق متناوب کار کنند. برای هر نیم سیکل، بخشی از ال‌ئی‌دی نور گسیل می‌کند و بخشی تاریک است، و این امر در نیم چرخه بعدی برعکس می‌شود. کارایی این نوع اچ‌پی-ال‌ئی‌دی‌ها معمولاً ۴۰ لومن بر وات است.[۷۹]

انواع کاربرد-خاص

چشمک‌زن

منحنی طیفی ترکیبی برای ال‌ئی‌دی‌های نیم‌رسانا حالت-جامد آبی، سبز-زرد و قرمز با روشنایی بالا. پهنای باند طیفی FWHM برای هر سه رنگ تقریباً ۲۴–۲۷ نانومتر است.

از ال‌ئی‌دی‌های چشمک‌زن به عنوان چراغ‌های سیگنال نشانگر توجهُ بدون نیاز به مدار الکترونیک خارجی استفاده می‌شود. ال‌ئی‌دی‌های چشمک‌زن شبیه ال‌ئی‌دی‌های استاندارد هستند اما حاوی یک تنظیم‌کننده ولتاژ و یک مدار نوسان‌ساز یکپارچه هستند که باعث می‌شود LED با یک دوره معمولاً یک ثانیه‌ای چشمک بزند. در ال‌ئی‌دی‌های دارای عدسی پخش‌کننده نور، این مدار به عنوان یک نقطه سیاه کوچک قابل مشاهده است. بیشتر ال‌ئی‌دی‌های چشمک زن فقط یک رنگ نور ساطع می‌کنند، اما دستگاه‌های پیچیده‌تر می‌توانند بین چندین رنگ چشمک بزنند و حتی با استفاده از اختلاط رنگ RGB پس از توالی رنگ محو شوند.

دو-رنگه

ال‌ئی‌دی‌های دو-رنگه حاوی دوساطع کننده نور در یک قاب هستند. دو گونه اصلی از ال‌ئی‌دی‌های دو-رنگه وجود دارد. در یک نوع، دو دای به یک پایه مشترک به صورت ضدموازی (Antiparallel) متصل شده‌اند. برقرار شدن جریان در یک جهت باعث ساطع شدن نور با یک رنگ و برقرار شدن جریان در جهت مخالف باعث ساطع شدن نور با رنگ دیگر می‌شود. نوع دیگر شامل دو دای با پایه‌های جداگانه برای هر کدام و یک پایه برای کاتد یا آند مشترک است تا بتوان آنها را به صورت جداگانه کنترل کرد. متداول‌ترین ال‌ئی‌دی‌های دو-رنگه ال‌ئی‌دی‌های قرمز/سبز متعارف هستند، با این حال ترکیبات دیگری نیز وجود دارند.

سه-رنگه RGB

یک ال‌ئی‌دی نصب سطحی سه رنگه (RGB).

ال‌ئی‌دی‌های سه-رنگه شامل سه ساطع کننده LED مختلف در یک قاب هستند. هر ساطع کننده به یک سیم جداگانه متصل است تا بتوان آنها را به طور مستقل کنترل کرد. در این ال‌ئی‌دی‌ها آرایش چهار-پایه با یک پایه مشترک (آند یا کاتد) و یک پایه اضافی برای هر رنگ معمول است. در صورتی که، سایر ال‌ئی‌دی‌ها فقط دو پایه دارند (مثبت و منفی) و دارای یک کنترل کننده الکترونیکی داخلی هستند.

یک ال‌ئی‌دی سه رنگه RGB

ال‌ئی‌دی‌های RGB از یک LED قرمز، یک LED سبز و یک LED آبی تشکیل شده اند.[۸۰] با تنظیم مستقل هر یک از این سه ، LED های RGB قادر به تولید یک طیف رنگی گسترده هستند. برخلاف ال‌ئی‌دی‌های با رنگ اختصاصی، این ال‌ئی‌دی‌ها طول موج خاصی تولید نمی کنند. می توان این ماژول‌ها را برای ترکیب رنگ روان تنظیم کرد.

چندرنگه-تزئینی

عددی-حرفی

RGB دیجیتال

رشته‌ای

آرایه‌های چیب-روی-برد

منابع

  1. آموزشی، دفتر انتشارات و فناوری. «دیود نورگسیل». دفتر انتشارات و فناوری آموزشی. دریافت‌شده در ۲۰۲۱-۰۲-۲۰.
  2. Edwards, Kimberly D. "Light Emitting Diodes" (PDF). University of California at Irvine. p. 2. Retrieved 12 January 2019.
  3. Lighting Research Center. "How is white light made with LEDs?". Rensselaer Polytechnic Institute. Retrieved 12 January 2019.
  4. ۴٫۰ ۴٫۱ ۴٫۲ Okon, Thomas M.; Biard, James R. (2015). "The First Practical LED" (PDF). EdisonTechCenter.org. Edison Tech Center. Retrieved 2016-02-02.
  5. Peláez, E. A; Villegas, E. R (2007). LED power reduction trade-offs for ambulatory pulse oximetry. 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol. 2007. pp. 2296–9. doi:10.1109/IEMBS.2007.4352784. ISBN 978-1-4244-0787-3. PMID 18002450. S2CID 34626885.
  6. "LED Basics | Department of Energy". www.energy.gov. Retrieved 2018-10-22.
  7. "LED Spectral Distribution". optiwave.com. 2013-07-25. Retrieved 20 June 2017.
  8. Round, H. J. (1907). "A note on carborundum". Electrical World. 19: 309.
  9. Margolin J. "The Road to the Transistor". jmargolin.com.
  10. Losev, O. V. (1927). "Светящийся карборундовый детектор и детектирование с кристаллами" [Luminous carborundum detector and detection with crystals]. Телеграфия и Телефония без Проводов [Wireless Telegraphy and Telephony] (به روسی). 5 (44): 485–494. English translation: Losev, O. V. (November 1928). "Luminous carborundum detector and detection effect and oscillations with crystals". Philosophical Magazine. 7th series. 5 (39): 1024–1044. doi:10.1080/14786441108564683.
  11. Zheludev, N. (2007). "The life and times of the LED: a 100-year history" (PDF). Nature Photonics. 1 (4): 189–192. Bibcode:2007NaPho...1..189Z. doi:10.1038/nphoton.2007.34. Archived from the original (PDF) on May 11, 2011. Retrieved April 11, 2007.
  12. Lee, Thomas H. (2004). The design of CMOS radio-frequency integrated circuits. Cambridge University Press. p. 20. ISBN 978-0-521-83539-8.
  13. Destriau, G. (1936). "Recherches sur les scintillations des sulfures de zinc aux rayons". Journal de Chimie Physique. 33: 587–625. doi:10.1051/jcp/1936330587.
  14. McGraw-Hill Concise Encyclopedia of Physics: electroluminescence. (n.d.) McGraw-Hill Concise Encyclopedia of Physics. (2002).
  15. "Brief history of LEDs" (PDF).
  16. Braunstein, Rubin (1955). "Radiative Transitions in Semiconductors". Physical Review. 99 (6): 1892–1893. Bibcode:1955PhRv...99.1892B. doi:10.1103/PhysRev.99.1892.
  17. Matzen, W. T. ed. (March 1963) "Semiconductor Single-Crystal Circuit Development," Texas Instruments Inc. , Contract No. AF33(616)-6600, Rept. No ASD-TDR-63-281.
  18. Carr, W. N.; G. E. Pittman (November 1963). "One-watt GaAs p-n junction infrared source". Applied Physics Letters. 3 (10): 173–175. Bibcode:1963ApPhL...3..173C. doi:10.1063/1.1753837.
  19. Kubetz, Rick (May 4, 2012). "Nick Holonyak, Jr. , six decades in pursuit of light". University of Illinois. Retrieved 2020-07-07.
  20. Perry, T.  S. (1995). "M. George Craford [biography]". IEEE Spectrum. 32 (2): 52–55. doi:10.1109/6.343989.
  21. "Brief Biography — Holonyak, Craford, Dupuis" (PDF). Technology Administration. Archived from the original (PDF) on August 9, 2007. Retrieved May 30, 2007.
  22. Pearsall, T. P.; Miller, B. I.; Capik, R. J.; Bachmann, K. J. (1976). "Efficient, Lattice-matched, Double Heterostructure LEDs at 1.1 mm from GaxIn1−xAsyP1−y by Liquid-phase Epitaxy". Appl. Phys. Lett. 28 (9): 499. Bibcode:1976ApPhL..28..499P. doi:10.1063/1.88831.
  23. Rostky, George (March 1997). "LEDs cast Monsanto in Unfamiliar Role". Electronic Engineering Times (944).
  24. ۲۴٫۰ ۲۴٫۱ ۲۴٫۲ Schubert, E. Fred (2003). "1". Light-Emitting Diodes. Cambridge University Press. ISBN 978-0-8194-3956-7.
  25. ۲۵٫۰ ۲۵٫۱ Borden, Howard C.; Pighini, Gerald P. (February 1969). "Solid-State Displays" (PDF). Hewlett-Packard Journal: 2–12.
  26. House, Charles H.; Price, Raymond L. (2009). The HP Phenomenon: Innovation and Business Transformation. Stanford University Press. pp. 110–1. ISBN 978-0-8047-7261-7.
  27. ۲۷٫۰ ۲۷٫۱ Kramer, Bernhard (2003). Advances in Solid State Physics. Springer Science & Business Media. p. 40. ISBN 978-3-540-40150-6.
  28. "Hewlett-Packard 5082-7000". The Vintage Technology Association. Retrieved 15 August 2019.
  29. Bassett, Ross Knox (2007). To the Digital Age: Research Labs, Start-up Companies, and the Rise of MOS Technology. Johns Hopkins University Press. p. 328. ISBN 978-0-8018-8639-3.
  30. Annual Report (PDF). Fairchild Camera and Instrument Corporation. 1969. p. 6.
  31. "Solid State Technology". Solid State Technology. Cowan Publishing Corporation. 15: 79. 1972. Dr. Atalla was general manager of the Microwave & Optoelectronics division from its inception in May 1969 until November 1971 when it was incorporated into the Semiconductor Components Group.
  32. "Laser Focus with Fiberoptic Communications". Laser Focus with Fiberoptic Communications. Advanced Technology Publication. 7: 28. 1971. Its chief, John Atalla — Greene's predecessor at Hewlett-Packard — sees early applications for LEDs in small displays, principally for indicator lights. Because of their compatibility with integrated circuits, these light emitters can be valuable in fault detection. “Reliability has already been demonstrated beyond any doubt,” Atalla continues. “No special power supplies are required. Design takes no time, you just put the diode in. So introduction becomes strictly an economic question." Bright Outlook for Optical Readers Atalla is particularly sanguine about applications of diodes in high-volume optical readers.
  33. "Nobel Shocker: RCA Had the First Blue LED in 1972". IEEE Spectrum. October 9, 2014
  34. "Oregon tech CEO says Nobel Prize in Physics overlooks the actual inventors". The Oregonian. October 16, 2014
  35. "GaN-based blue light emitting device development by Akasaki and Amano" (PDF). Takeda Award 2002 Achievement Facts Sheet. The Takeda Foundation. April 5, 2002. Retrieved November 28, 2007.
  36. Moustakas, Theodore D. U.S. Patent ۵٬۶۸۶٬۷۳۸A "Highly insulating monocrystalline gallium nitride thin films " Issue date: Mar 18, 1991
  37. «The Nobel Prize in Physics 2014». NobelPrize.org (به انگلیسی). دریافت‌شده در ۲۰۲۱-۰۲-۲۱.
  38. 2006 Millennium technology prize awarded to UCSB's Shuji Nakamura. Ia.ucsb.edu (June 15, 2006). Retrieved on August 3, 2019.
  39. Overbye, Dennis (7 October 2014). "Nobel Prize in Physics". The New York Times.
  40. Brown, Joel (7 December 2015). "BU Wins $13 Million in Patent Infringement Suit". BU Today. Retrieved 7 December 2015.
  41. Dadgar, A.; Alam, A.; Riemann, T.; Bläsing, J.; Diez, A.; Poschenrieder, M.; Strassburg, M.; Heuken, M.; Christen, J.; Krost, A. (2001). "Crack-Free InGaN/GaN Light Emitters on Si(111)". Physica Status Solidi A. 188: 155–158. doi:10.1002/1521-396X(200111)188:1<155::AID-PSSA155>3.0.CO;2-P.
  42. Dadgar, A.; Poschenrieder, M.; BläSing, J.; Fehse, K.; Diez, A.; Krost, A. (2002). "Thick, crack-free blue light-emitting diodes on Si(111) using low-temperature AlN interlayers and in situ Si\sub x]N\sub y] masking". Applied Physics Letters. 80 (20): 3670. Bibcode:2002ApPhL..80.3670D. doi:10.1063/1.1479455.
  43. "Success in research: First gallium-nitride LED chips on silicon in pilot stage" (PDF). Archived from the original (PDF) on September 15, 2012. Retrieved 2012-09-15.. www.osram.de, January 12, 2012.
  44. Lester, Steve (2014) Role of Substrate Choice on LED Packaging. Toshiba America Electronic Components.
  45. GaN on Silicon — Cambridge Centre for Gallium Nitride. Gan.msm.cam.ac.uk. Retrieved on 2018-07-31.
  46. Bush, Steve. (2016-06-30) Toshiba gets out of GaN-on-Si leds. Electronicsweekly.com. Retrieved on 2018-07-31.
  47. Nunoue, Shin-ya; Hikosaka, Toshiki; Yoshida, Hisashi; Tajima, Jumpei; Kimura, Shigeya; Sugiyama, Naoharu; Tachibana, Koichi; Shioda, Tomonari; Sato, Taisuke; Muramoto, Eiji; Onomura, Masaaki (2013). "LED manufacturing issues concerning gallium nitride-on-silicon (GaN-on-Si) technology and wafer scale up challenges". 2013 IEEE International Electron Devices Meeting. pp. 13.2.1–13.2.4. doi:10.1109/IEDM.2013.6724622. ISBN 978-1-4799-2306-9. S2CID 23448056.
  48. Wright, Maury (2 May 2016) Samsung's Tarn reports progress in CSP and GaN-on-Si LEDs. LEDs Magazine.
  49. Increasing The Competitiveness Of The GaN-on-silicon LED. compoundsemiconductor.net (30 March 2016).
  50. Samsung To Focus on Silicon-based LED Chip Technology in 2015. LED Inside (17 March 2015).
  51. Keeping, Steven. (2013-01-15) Material and Manufacturing Improvements. DigiKey. Retrieved on 2018-07-31.
  52. Keeping, Steven. (2014-12-09) Manufacturers Shift Attention to Light Quality to Further LED Market Share Gains. DigiKey. Retrieved on 2018-07-31.
  53. Keeping, Steven. (2013-09-24) Will Silicon Substrates Push LED Lighting. DigiKey. Retrieved on 2018-07-31.
  54. Keeping, Steven. (2015-03-24) Improved Silicon-Substrate LEDs Address High Solid-State Lighting Costs. DigiKey. Retrieved on 2018-07-31.
  55. Development of the Nano-Imprint Equipment ST50S-LED for High-Brightness LED. Toshiba Machine (2011-05-18). Retrieved on 2018-07-31.
  56. The use of sapphire in mobile device and LED industries: Part 2 | Solid State Technology. Electroiq.com (2017-09-26). Retrieved on 2018-07-31.
  57. Epitaxy. Applied Materials. Retrieved on 2018-07-31.
  58. "Haitz's law". Nature Photonics. 1 (1): 23. 2007. Bibcode:2007NaPho...1...23.. doi:10.1038/nphoton.2006.78.
  59. Morris, Nick (1 June 2006). "LED there be light, Nick Morris predicts a bright future for LEDs". Electrooptics.com.
  60. "The LED Illumination Revolution". Forbes. February 27, 2008.
  61. Press Release, Official Nobel Prize website, 7 October 2014
  62. Cree First to Break 300 Lumens-Per-Watt Barrier. Cree.com (2014-03-26). Retrieved on 2018-07-31.
  63. LM301B | SAMSUNG LED | Samsung LED Global Website. Samsung.com. Retrieved on 2018-07-31.
  64. Samsung Achieves 220 Lumens per Watt with New Mid-Power LED Package. Samsung.com (2017-06-16). Retrieved on 2018-07-31.
  65. LED breakthrough promises ultra efficient luminaires | Lux Magazine. Luxreview.com (2018-01-19). Retrieved on 2018-07-31.
  66. "White LEDs with super-high luminous efficacy could satisfy all general lighting needs". phys.org.
  67. LED bulb efficiency expected to continue improving as cost declines. U.S. Energy Information Administration (March 19, 2014)
  68. "انقلاب نورپردازی با ال‌ئی‌دی" (به انگلیسی). فوربز. Retrieved 10 May 2009.
  69. "لپ‌تاپ‌های ال‌ئی‌دی: نازکتر، سبکتر، پر عمرتر، بهتر" (به انگلیسی). سی‌نت. Retrieved 10 May 2009.
  70. اسلامی، خدادادی و حجرگشت، «لامپ‌های خاص»، روشنایی فنی و نقشه‌کشی رایانه، ۱۲۱ و ۱۲۲.
  71. ۷۱٫۰ ۷۱٫۱ Bardsley, J. N. (2004). "International OLED Technology Roadmap". IEEE Journal of Selected Topics in Quantum Electronics. 10 (1): 3–4. Bibcode:2004IJSTQ..10....3B. doi:10.1109/JSTQE.2004.824077.
  72. Hebner, T. R.; Wu, C. C.; Marcy, D.; Lu, M. H.; Sturm, J. C. (1998). "Ink-jet printing of doped polymers for organic light emitting devices". Applied Physics Letters. 72 (5): 519. Bibcode:1998ApPhL..72..519H. doi:10.1063/1.120807.
  73. Bharathan, J.; Yang, Y. (1998). "Polymer electroluminescent devices processed by inkjet printing: I. Polymer light-emitting logo". Applied Physics Letters. 72 (21): 2660. Bibcode:1998ApPhL..72.2660B. doi:10.1063/1.121090.
  74. Gustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J. (1992). "Flexible light-emitting diodes made from soluble conducting polymers". Nature. 357 (6378): 477–479. Bibcode:1992Natur.357..477G. doi:10.1038/357477a0.
  75. Kho, Mu-Jeong; Javed, T.; Mark, R.; Maier, E.; David, C (March 4, 2008). Final Report: OLED Solid State Lighting. Kodak European Research. Cambridge Science Park, Cambridge, UK.
  76. LED-design. Elektor.com. Retrieved on March 16, 2012. بایگانی‌شده در اوت ۳۱, ۲۰۱۲ توسط Wayback Machine
  77. "Luminus Products". Luminus Devices. Archived from the original on 2008-07-25. Retrieved October 21, 2009.
  78. "Luminus Products CST-90 Series Datasheet" (PDF). Luminus Devices. Archived from the original (PDF) on 2010-03-31. Retrieved October 25, 2009.
  79. "Seoul Semiconductor launches AC LED lighting source Acrich". LEDS Magazine. November 17, 2006. Retrieved February 17, 2008.
  80. Ting, Hua-Nong (2011-06-17). 5th Kuala Lumpur International Conference on Biomedical Engineering 2011: BIOMED 2011, 20–23 June 2011, Kuala Lumpur, Malaysia. Springer Science & Business Media. ISBN 9783642217296.