تجزیه مقدارهای منفرد

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو

به عنوان یک تجزیه و فاکتورگیری ماتریسی، تجزیۀ مقدارهای منفرد یا تجزیۀ مقدارهای تکین (Singular value decomposition) قدمی اساسی در بسیاری از محاسبات علمی و مهندسی به‌حساب می‌آید.

مثال‌ها[ویرایش]

ماتریس زیر را در نظر می‌گیریم:

\begin{bmatrix}
1 & 0 & 0 & 0 & 2\\
0 & 0 & 3 & 0 & 0\\
0 & 0 & 0 & 0 & 0\\
0 & 4 & 0 & 0 & 0\end{bmatrix}.

یکی از تجزیۀ مقدارهای منفرد این ماتریس به صورت زیر است:


U = \begin{bmatrix}
0 & 0 & 1 & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 0 & -1\\
1 & 0 & 0 & 0\end{bmatrix} ,

\Sigma = \begin{bmatrix}
4 & 0 & 0 & 0 & 0\\
0 & 3 & 0 & 0 & 0\\
0 & 0 & \sqrt{5} & 0 & 0\\
0 & 0 & 0 & 0 & 0\end{bmatrix} ,

V^* = \begin{bmatrix}
0 & 1 & 0 & 0 & 0\\
0 & 0 & 1 & 0 & 0\\
\sqrt{0.2} & 0 & 0 & 0 & \sqrt{0.8}\\
0 & 0 & 0 & 1 & 0\\
-\sqrt{0.8} & 0 & 0 & 0 & \sqrt{0.2}\end{bmatrix}

یعنی داریم که

\begin{bmatrix}
1 & 0 & 0 & 0 & 2\\
0 & 0 & 3 & 0 & 0\\
0 & 0 & 0 & 0 & 0\\
0 & 4 & 0 & 0 & 0\end{bmatrix} 

=

\begin{bmatrix}
0 & 0 & 1 & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 0 & -1\\
1 & 0 & 0 & 0\end{bmatrix}

\cdot

\begin{bmatrix}
4 & 0 & 0 & 0 & 0\\
0 & 3 & 0 & 0 & 0\\
0 & 0 & \sqrt{5} & 0 & 0\\
0 & 0 & 0 & 0 & 0\end{bmatrix}

\cdot

\begin{bmatrix}
0 & 1 & 0 & 0 & 0\\
0 & 0 & 1 & 0 & 0\\
\sqrt{0.2} & 0 & 0 & 0 & \sqrt{0.8}\\
0 & 0 & 0 & 1 & 0\\
-\sqrt{0.8} & 0 & 0 & 0 & \sqrt{0.2}\end{bmatrix}

جستارهای وابسته[ویرایش]

منابع[ویرایش]

  • Strang G (1998). "Introduction to Linear Algebra". Section 6.7. 3rd ed., Wellesley-Cambridge Press. ISBN 0-9614088-5-5.
  • Friedberg, S. H., Insel, A. J., Spence, L. E. (2003). "Linear Algebra", 4th ed., Prentice Hall. ISBN 0-13-008451-4

پیوندهای بیرونی[ویرایش]