یادگیری عمیق

از ویکی‌پدیا، دانشنامهٔ آزاد

یادگیری ژرف (به انگلیسی: Deep learning) (به بیانی دیگر: یادگیری ژرف ماشین، یادگیری ساختار ژرف یا یادگیری سلسله مراتبی) یک زیر شاخه از یادگیری ماشین و بر مبنای مجموعه‌ای از الگوریتم‌ها است که در تلاش هستند مفاهیم انتزاعی سطح بالا در دادگان را مدل نمایند که این فرایند را با استفاده از یک گراف عمیق که دارای چندین لایه پردازشی متشکل از چندین لایه تبدیلات خطی و غیر خطی هستند، مدل می‌کنند. به بیان دیگر پایهٔ آن بر یادگیری نمایش دانش و ویژگی‌ها در لایه‌های مدل است.[۱]

یک نمونه آموزشی (برای نمونه: تصویر یک گربه) می‌تواند به صورت‌های گوناگون بسان یک بردار ریاضی پر شده از مقدار به ازای هر پیکسل و در دید کلی‌تر به شکل یک مجموعه از زیرشکل‌های کوچک‌تر (نظیر اعضای صورت گربه) مدل‌سازی شود. برخی از این روش‌های مدل‌سازی سبب ساده شدن فرایند یادگیری ماشین (برای نمونه: تشخیص تصویر گربه) می‌شوند. در یادگیری ژرف امید به جایگزینی استخراج این ویژگی‌های تصویر به دست بشر (مانند اعضای گربه) با روش‌های کامل خودکار بی‌نظارت و نیمه نظارتی وجود دارد.[۲]

انگیزهٔ نخستین در به وجود آمدن این ساختار یادگیری از راه بررسی ساختار عصبی در مغز انسان الهام گرفته شده‌است که در آن یاخته‌های عصبی با فرستادن پیام به یکدیگر درک را امکان‌پذیر می‌کنند.[۳] بسته به فرض‌های گوناگون در مورد نحوهٔ اتصال این یاخته‌های عصبی، مدل‌ها و ساختارهای مختلفی در این حوزه پیشنهاد و بررسی شده‌اند، هرچند که این مدل‌ها به صورت طبیعی در مغز انسان وجود ندارد و مغز انسان پیچیدگی‌های بیشتری را دارا است. این مدل‌ها نظیر شبکه عصبی عمیق، شبکه عصبی پیچیده، شبکه باور عمیق پیشرفت‌های خوبی را در حوزه‌های پردازش زبان‌های طبیعی، پردازش تصویر ایجاد کرده‌اند.

در حقیقت عبارت یادگیری عمیق، بررسی روش‌های تازه برای شبکه عصبی مصنوعی است.[۴][۵]

امروزه از یادگیری عمیق در طرح‌های سرمایه‌گذاری برای افزایش میزان بازده استفاده می‌کنند.[۶]

تعریف[ویرایش]

یادگیری عمیق، رده‌ای از الگوریتم‌های یادگیری ماشین است که[۷](pp۱۹۹–۲۰۰) از چندین لایه برای استخراج ویژگی‌های سطح بالا از ورودی خام استفاده می‌کنند. به بیانی دیگر، رده‌ای از تکنیک‌های یادگیری ماشین که از چندین لایه‌ی پردازش اطلاعات و به‌ویژه اطلاعات غیرخطی بهره می‌برد تا عملیات تبدیل یا استخراج ویژگی نظارت‌شده یا نظارت‌نشده را عموماً با هدف تحلیل یا بازشناخت الگو، کلاس‌بندی، خوشه‌بندی انجام دهد.[۸]

برای مثال، در پردازش تصویر، لایه‌های پست‌تر می‌توانند لبه‌ها را تشخیص دهند، در حالی که لایه‌های عالی‌تر ممکن است ویژگی‌های پرمعناتر برای انسان، همچون حروف یا چهره‌ها، را تشخیص دهند.

نموداری چندلایه که در پست‌ترین لایه، عکس چند جانور (فیل، کانگورو و پنگوئن) قرار گرفته و فیل به عنوان ورودی برگزیده شده است. سپس در لایه‌های بالاتر لبه‌هایی از بدن فیل تشخیص داده شده و به تدریج شمای کلی بدن فیل را تشکیل می‌دهند تا نهایتاً در لایه‌ی خروجی (بالاترین لایه)، برچسب فیل (از میان برچسب‌های دیگری چون کانگورو و پنگوئن برگزیده شده است.
نمایی از چگونگی استخراج ویژگی جهت کلاس‌بندی تصاویر با روش یادگیری عمیق[۹]

مفهوم[ویرایش]

یادگیری عمیق زیرشاخه‌ای از یادگیری ماشین است که از لایه‌های متعدد تبدیلات خطی به منظور پردازش سیگنال‌های حسی مانند صدا و تصویر استفاده می‌کند. ماشین در این روش هر مفهوم پیچیده را به مفاهیم ساده‌تری تقسیم می‌کند، و با ادامهٔ این روند به مفاهیم پایه‌ای می‌رسد که قادر به تصمیم‌گیری برای آن‌ها است و بدین ترتیب نیازی به نظارت کامل انسان برای مشخص کردن اطلاعات لازم ماشین در هر لحظه نیست. موضوعی که در یادگیری عمیق اهمیت زیادی دارد، نحوهٔ ارائهٔ اطلاعات است. ارائه دادن اطلاعات به ماشین باید به نحوی باشد که ماشین در کمترین زمان اطلاعات کلیدی را که می‌تواند با استناد به آن‌ها تصمیم بگیرد را دریافت کند. هنگام طراحی الگوریتم‌های یادگیری عمیق می‌بایست به عوامل دگرگونی (به انگلیسی: factors of variation) که اطلاعات مشاهده شده را توضیح می‌دهند توجه کنیم، این عوامل معمولاً عوامل قابل‌مشاهده‌ای نیستند بلکه عواملی هستند که بر روی دستهٔ قابل مشاهده تأثیرگذار بوده یا زادهٔ ساختارهای ذهنی انسان برای ساده‌تر کردن مسائل هستند. برای مثال در هنگام پردازش گفتار عوامل دگرگونی می‌توانند لهجهٔ گوینده، سن یا جنسیت او باشند. در هنگام پردازش تصویر یک ماشین، میزان درخشش خورشید یک عامل دگرگونی است. یکی از مشکلات هوش مصنوعی تأثیر زیاد عوامل دگرگونی بر روی اطلاعات دریافتی است. برای مثال بسیاری از پیکسل‌های دریافتی از یک ماشین قرمز در شب ممکن است سیاه دیده بشوند. برای حل این مشکلات بعضاً به درک بالای اطلاعات (در حدود انسان) نیازمندیم و در واقع گاهی یافتن نحوهٔ مناسب نمایش اطلاعات به اندازهٔ خود مسئله سخت و زمان‌بر است.

جستارهای وابسته[ویرایش]

منابع[ویرایش]

  1. Bengio, Y. (2009). Learning Deep Architectures for AI (PDF). Now Publishers. Archived from the original (PDF) on 21 March 2014. Retrieved 17 February 2013.
  2. Song, Hyun Ah, and Soo-Young Lee. "Hierarchical Representation Using NMF." Neural Information Processing. Springer Berlin Heidelberg, 2013.
  3. Olshausen, Bruno A. "Emergence of simple-cell receptive field properties by learning a sparse code for natural images." Nature 381.6583 (1996): 607-609.
  4. Ronan Collobert (May 6, 2011). "Deep Learning for Efficient Discriminative Parsing". videolectures.net. Ca. 7:45.
  5. Gomes, Lee (20 October 2014). "Machine-Learning Maestro Michael Jordan on the Delusions of Big Data and Other Huge Engineering Efforts". IEEE Spectrum.
  6. «Improving Stock Return Forecasting by Deep Learning Algorithm» (PDF). Advances in mathematical finance & applications. ۴ (۳): ۱۳. ۳ فوریه ۲۰۱۹. doi:10.22034/amfa.2019.584494.1173. دریافت‌شده در ۳۰ مه ۲۰۱۹.
  7. Deng, L.; Yu, D. (2014). "Deep Learning: Methods and Applications" (PDF). Foundations and Trends in Signal Processing. 7 (3–4): 1–199. doi:10.1561/2000000039.
  8. DengLi; YuDong (2014-06-30). "Deep Learning". Foundations and Trends in Signal Processing. doi:10.1561/2000000039.
  9. Schulz, Hannes; Behnke, Sven (2012-11-01). "Deep Learning". KI - Künstliche Intelligenz. 26 (4): 357–363. doi:10.1007/s13218-012-0198-z. ISSN 1610-1987.

پیوند به بیرون[ویرایش]