ماتریس درهم‌ریختگی

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو

در حوزهٔ هوش مصنوعی، ماتریس در هم ریختگی (به انگلیسی: confusion matrix) به ماتریسی گفته می‌شود که در آن عملکرد الگوریتم‌های مربوطه را نشان می‌دهند. معمولاً چنین نمایشی برای الگوریتم‌های یادگیری با ناظر استفاده می‌شود، اگرچه در یادگیری بدون ناظر نیز کاربرد دارد. معمولاً به کاربرد این ماتریس در الگوریتم‌های بدون ناظر ماتریس تطابق می گویند. هر ستون از ماتریس، نمونه‌ای از مقدار پیش‌بینی شده را نشان می‌دهد. در صورتی که هر سطر نمونه‌ای واقعی (درست) را در بر دارد. اسم این ماتریس نیز از آنجا بدست می‌آید که امکان این را آسانتر اشتباه و تداخل بین نتایج را مشاهده کرد. در خارج از هوش مصنوعی این ماتریس معمولاً ماتریس پیشایندی (contingency matrix) یا ماتریس خطا (error matrix) نامیده می‌شود.[۱]

در مباحث هوش مصنوعی از این جدول برای تعیین مقدار شاخص‌های ارزیابی مانند دقت (Precision) و صحت (Recall) استفاده می‌شود. دقت عبارت است از اینکه "چه میزان از نمونه‌های انتخابی درست هستند" و صحت بر این مفهوم که "چه میزان از نمونه‌های صحیح موجود انتخاب شده اند" دلالت دارند. البته ممکن است در منابعی، Accuracy نیز دقت ترجمه شود که مفهومی کاملاً متفاوت داشته و بر میزان نمونه‌هایی اشاره دارد که سیستم در تشخیص آن‌ها موفق بوده‌است. [۲]

مثال[ویرایش]

فرض کنیم الگوریتمی برای کلاس بندی بین گربه‌ها، سگ‌ها، خرگوش‌ها طراحی کرده‌ایم. فرض کنیم در این مثال ۸ گربه، ۶ سگ و ۱۳ خرگوش داریم. در سطر مربوط به گربه‌ها، ۵ مورد به عنوان گربه و ۲ مورد به عنوان سگ دسته بندی شده‌اند. در صورتی که در سطر مربوط به خرگوش‌ها، تنها چند مورد اشتباه وجود دارد. به سادگی مشاهده می‌شود که عملکرد الگوریتم در تمییز دسته‌های خرگوش‌ها نسبت به گربه‌ها بسیار بهتر است. مشخص است که اعداد روی قطر اصلی ماتریس نمایش تعداد کلاس بندی‌های درست هستند. لذا در صورتی که تمام اعداد غیر روی قطر اصلی صفر باشند، الگوریتم دارای دقت حداکثر است.

برای بدست آوردن Performance یک دسته بندی‌کننده کافی است مجموع عناصر قطر اصلی را بر مجموع کل عناصر ماتریس تقسیم نمود.

کلاس واقعی
class
گربه سگ خرگوش
کلاس پیش‌بینی شده گربه ۵ ۳ ۰
سگ ۲ ۳ ۱
خرگوش ۰ ۲ ۱۱

منابع[ویرایش]

  1. Stehman, Stephen V. (۱۹۹۷). "Selecting and interpreting measures of thematic classification accuracy". Remote Sensing of Environment. ۶۲ (۱): ۷۷–۸۹. doi:10.1016/S0034-4257(97)00083-7.  Check date values in: |date= (help)
  2. "ماتریس اغتشاش یا ماتریس درهم ریختگی". رضا داوطلب.