پرش به محتوا

انتگرال ریمان

از ویکی‌پدیا، دانشنامهٔ آزاد

نسخه‌ای که می‌بینید، نسخهٔ فعلی این صفحه است که توسط Fatranslator (بحث | مشارکت‌ها) در تاریخ ‏۲۱ آوریل ۲۰۲۱، ساعت ۲۳:۲۱ ویرایش شده است. آدرس فعلی این صفحه، پیوند دائمی این نسخه را نشان می‌دهد.

(تفاوت) → نسخهٔ قدیمی‌تر | نمایش نسخهٔ فعلی (تفاوت) | نسخهٔ جدیدتر ← (تفاوت)
انتگرال سطح زیر یک منحنی در بازه [a,b].

انتگرال ریمان، در آنالیز حقیقی، اولین تعریف دقیق از انتگرال تابع در یک بازه شناخته می‌شود. این تعریف را برنهارت ‫ریمان ارائه داد. گرچه انتگرال ریمان دارای محدودیت‌هایی برای بسیاری از مسائل تئوری است، ولی یکی از ساده‌ترین روش‌های تعریف انتگرال بوده و به‌طور گسترده‌ای بکار می‌رود.

تعریف انتگرال ریمان

[ویرایش]
دنباله‌ای از مجموع ریمان. عدد نمایش داده شده در بالای شکل، سمت راست، برابر با مجموع مساحت مستطیل‌های خاکستری است. این مجموع به مقدار انتگرال تابع میل می‌کند.

تقسیم بازه

[ویرایش]

تقسیم بازه [a,b] یک دنباله متناهی به صورت است، که هر یک زیربازه نامیده می‌شود. اندازه چنین تقسیمی برابر است با طول طولانی‌ترین زیربازه، یعنی: ، .

جستارهای وابسته

[ویرایش]

منابع

[ویرایش]

مشارکت‌کنندگان ویکی‌پدیا. «Riemann integral». در دانشنامهٔ ویکی‌پدیای انگلیسی، بازبینی‌شده در ۱۵ فوریه ۲۰۰۸.