هدایت هیدرولیکی

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو

هدایت هیدرولیکی، با نماد K، نوعی ویژگی در خاک، سنگ و گیاهان آوندی است که میزان آسانی جابجایی آب را در فضاهای خالی و شکاف‌ها نشان می‌دهد. میزان آن به میزان نفوذپذیری ماده و میزان اشباعیت آن بستگی دارد. Ksat یا هدایت هیدرولیکی حالت اشباع میزان توان جابجایی آب در حالتی که محیط اشباع است را نشان می‌دهد.

روش‌های تعیین[ویرایش]

خلاصه‌ای از روش‌های تعیین هدایت هیدرولیکی.

دو رویکرد کلی برای تعیین میزان هدایت هیدرولیکی آب وجود دارد:

  • رویکرد تجربی، در این رویکرد هدایت هیدرولیکی وابسته به ویژگی‌های خاک مانند پوکی، توزیع اندازه‌های گوناگون دانه‌های خاک در لایه‌های آن و بافت خاک است.
  • رویکرد آزمایشگاهی، در این رویکرد هدایت هیدرولیکی را به کمک آزمایش‌های هیدرولیکی و استفاده از قانون دارسی بدست می‌آوریم.

روش آزمایشگاهی خود به دو دسته بزرگ زیر تقسیم می‌شود:

  • آزمون آزمایشگاهی بر روی نمونه‌های برداشته شده از خاک محل.
  • آزمون صحرایی (آزمون درجا) که خود شامل دو زیرگروه‌است:
    • آزمون‌های صحرایی در اندازهٔ کوچک که به کمک مشاهدهٔ بلندی سطح آب در فضاهای خالی خاک انجام می‌شود.
    • آزمون‌های صحرایی در اندازهٔ بزرگ مانند آزمون پمپ یا آزمون تخلیه در چاه و یا به کمک مشاهدهٔ نحوهٔ عملکرد سامانهٔ افقی زهکشی محل.

آزمون‌های صحرایی در اندازهٔ کوچک خود دوباره به دو زیرشاخهٔ دیگر زیر تقسیم می‌شوند:

برآورد به کمک روش تجربی[ویرایش]

برآورد از روی اندازهٔ دانه‌ها[ویرایش]

شِفرد[۱] با بررسی اندازهٔ دانه‌ها توانست یک رابطهٔ تجربی برای برآورد تقریبی هدایت هیدرولیکی بدست آورد:

K = a (D_{10})^b

که در آن

a و b پارامترهای تجربی بدست آمده از روی جنس خاک اند.
D_{10} قطر دانه‌ای است که ۱۰ درصد دانه‌های خاک از آن کوچکتر است.

هشدار: شفرد در سومین تصویری که نشان داده بود به روشنی از D_{10} بجای D_{50} استفاده کرده بود. بنابراین رابطه به صورت K = a (D_{50})^b در می‌آید. او در شکلی که کشیده بود بر پایهٔ تحلیلی که از داده‌ها براساس D_{10} تا D_{50} بدست می‌آید، روش‌های گوناگونی را بسته به نوع ماده پیشنهاد کرده بود.

تابع Pedotransfer[ویرایش]

تابع Pedotransfer یا PTF یک روش ویژهٔ برآورد تجربی است که در علوم خاک و آبشناسی کاربرد دارد.[۲] روش‌های PTF گوناگونی در دسترس است که در همهٔ آن‌ها تلاش می‌شود تا ویژگی‌های خاک مانند هدایت هیدرولیکی، اندازهٔ دانه‌های خاک و چگالی خاک (جرم دانه‌های خاک به حجم دانه‌ها و فضای خالی میان آن‌ها) بدست آورده شود.

تعیین به کمک رویکرد آزمایشگاهی[ویرایش]

چندین آزمون آزمایشگاهی آسان و ارزان برای بدست آوردن هدایت هیدرولیکی خاک وجود دارد.

آزمون‌های آزمایشگاهی[ویرایش]

ارتفاع آب ثابت[ویرایش]

روش ارتفاع ثابت آب معمولا در خاک‌های دانه‌ای مورد استفاده قرار می‌گیرد. در این رویکرد به آب اجازه داده می‌شود تا در یک فشار یکنواخت (ارتفاع آب در لوله‌های فشار یکنواخت است) داخل خاک حرکت کند، در این حالت در یک بازهٔ زمانی معلوم حجم آب جابجا شده در طول نمونهٔ خاک را اندازه می‌گیرند. اگر Q مقدار آب جابجا شده، L طول نمونهٔ خاک، A سطح مقطع نمونه، t مدت زمان لازم برای جابجایی مقدار آب Q در داخل نمونه و h ارتفاع آب (در لولهٔ فشارسنج) باشد، آنگاه هدایت هیدرولیکی از رابطهٔ زیر بدست می‌آید:

Q = Av\,

که در آن v سرعت جریان آب است. با استفاده از قانون دارسی داریم:

v = Ki\,

اگر گرادیان هیدرولیکی را با i نمایش دهیم:

i = \frac{h}{L}

که در آن h اختلاف ارتفاع سطح آب در لوله‌های فشارسنج در دو سوی فاصلهٔ L است. مقدار آب جابجا شده می‌شود:

Q = \frac{AKh}{L}

و هدایت هیدرولیکی یا K برابر می‌شود با:

K = \frac{QL}{Ah}

افت ارتفاع آب[ویرایش]

درحالتی که افت ارتفاع آب داریم، روش کاملا با ارتفاع ثابت آب متفاوت است. این روش برای هر دو گونه خاک ریزدانه و درشت دانه قابل استفاده‌است. نخست باید نمونهٔ خاک را در یک ارتفاع ثابت آب، کاملا اشباع کرد. سپس باید به آب اجازه داد تا در طول نمونه جریان پیدا کند در این حالت دیگر ارتفاع آب را در طول نمونه ثابت نگه نمی‌داریم.[۳]

K = \frac{2.3aL}{At}\log\left(\frac{h_1}{h_2}\right)

آزمون صحرایی یا آزمون برجا[ویرایش]

روش سوراخ با مته[ویرایش]

چندین روش برجا برای اندازه‌گیری میزان هدایت هیدرولیکی خاک وجود دارد.

هنگامی که عمق آب کم باشد (ارتفاع آب در لوله‌های فشارسنج کم باشد) روش سوراخ با مته یا augerhole method که یک روش نفوذی برای بدست آوردن هدایت هیدرولیکی در عمقی پایین تر از ارتفاع آب است. این روش برای نخستین بار از سوی هوگوت (۱۹۳۴) در هلند[۴] پیشنهاد شد و در آمریکا بوسیلهٔ فان باول‌آن‌کیرخام (۱۹۴۸) معرفی شد.[۵]

این روش به ترتیب شامل گام‌های زیر است:

  1. سوراخی (با مته) بر روی خاک ایجاد می‌کنیم و تا عمقی که پایین تر از ارتفاع آب باشد پیش می‌رویم.
  2. آب از سوراخ بیرون خواهد زد.
  3. نرخ بالا آمدن آب از سوراخ را باید یادداشت کرد.
  4. مقدار K از رابطهٔ زیر بدست می‌آید:[۶]
Kh = C (Ho-Ht) / t
توزیع تجمعی هدایت هیدرولیکی (لُگ نرمال). داده‌ها در محور x است.

که در آن Kh هدایت هیدرولیکی اشباع در جهت افقی است و یکای آن متر بر روز (m/day) می‌باشد. H عمق آب در سوراخ که نسبت به ارتفاع آب در خاک سنجیده می‌شود و یکای آن سانتی متر است. Ht همان H در زمان t است. درنتیجه H۰، همان H در زمان t = 0 است. یکای t ثانیه می‌باشد. F عاملی وابسته به هندسهٔ سوراخ است.

F = 4000r / h'(20+D/r)(2−h'/D)

در رابطهٔ بالا، r با یکای سانتی متر، شعاع سوراخ استوانه‌ای است. h' با یکای سانتی متر، عمق متوسط آب در سوراخ نسبت به آب در خاک است و h'=(Ho+Ht)/۲ می‌باشد و D عمق کف سوراخ نسبت به ارتفاع آب در خاک است (سانتی متر).

نگارهٔ روبرو، هدایت هیدرولیکی اندازه‌گیری شده با این روش در زمینی به مساحت ۱ هکتار را نشان می‌دهد.[۷] نسبت بیشترین مقدار و کمترین مقدار آن ۲۵ است. در این نمودار از توزیع لگ نرمال استفاده شده‌است.

مقدارهای مرتبط[ویرایش]

توان جابجایی[ویرایش]

یک سفرهٔ آب زیرزمینی، می‌تواند از n لایهٔ خاک تشکیل شده باشد. توان جابجایی (به انگلیسی: Transmissivity) در جهت افقی Ti برای لایهٔ i-th خاک که ضخامت لایهٔ اشباع آن برابر با d_i و هدایت هیدرولیکی افقی آن Khi است برابر است با:

Ti = Khi d_i

توان جابجایی با هدایت هیدرولیکی افقی، Khi و ضخامت، d_i نسبت مستقیم دارد. یکای Khi، روز/متر و یکای d_i متر است، درنتیجه یکای Ti (روز/متر مربع) می‌شود.

توان جابجایی برای اینکه بدانیم چه میزان آب می‌تواند در جهت افقی جابجا شود، اهمیت دارد؛ برای نمونه در یک چاه تخلیه.

توان جابجایی کل یک سفرهٔ آب زیرزمینی (Tt) عبارت است از:[۶]

Tt = Σ Ti = Σ Khi d_i

نماد سیگما، در عبارت بالا، نشانهٔ مجموع کل لایه‌های خاک است و i = ۱، ۲، ۳،...  n
هدایت هیدرولیکی افقی ظاهری با نماد KhA از رابطهٔ زیر بدست می‌آید:

KhA = Tt / Dt

که Dt= Σ d_i ضخامت کل سفرهٔ آب زیرزمینی است.

توان جابجایی در یک سفرهٔ آب زیرزمینی را می‌توان بوسیلهٔ آزمون تخلیه نیز بدست آورد.[۸]

یادآوری می‌شود که، هنگامی که لایه‌ای از خاک بالای سطح آب قرار داشته باشد، آن لایه اشباع نیست و در جابجایی جریان نقشی ندارد. هرگاه ارتفاع آب در طول مسیر تغییر کند مقدار توان جابجایی نیز بسته به آن تغییر خواهد کرد.

مقاومت[ویرایش]

مقاومت (به انگلیسی: Resistance) در جهت عمودی، Ri برای لایهٔ i-th خاک که ضخامت لایهٔ اشباع آن برابر با d_i و هدایت هیدرولیکی عمودی آن Kvi است برابر است با:

Ri = d_i / Kvi

یکای Kvi روز/متر، d_i متر و Ri روز است.
مقاومت کل سفرهٔ آب زیرزمینی (Rt) عبارت است از:[۶]

Rt = Σ Ri = Σ d_i / Kvi

که در آن Σ نشانهٔ مجموع روی کل لایه‌ها است.

هدایت هیدرولیکی عمودی ظاهری (KvA) برابر است با:

KvA = Dt / Rt

که Dt = Σ d_i همان ضخامت کل سفرهٔ آب زیرزمینی است.

ناهمسانگردی[ویرایش]

یادداشت و منبع[ویرایش]

مشارکت‌کنندگان ویکی‌پدیا، «Hydraulic conductivity»، ویکی‌پدیای انگلیسی، دانشنامهٔ آزاد (بازیابی در ۲۴ اکتبر ۲۰۱۱).

  1. Shepherd, Russell G. (1989). "Correlations of permeability and grain-size". Ground Water 27 (5): 633–638. DOI:10.1111/j.1745-6584.1989.tb00476.x. 
  2. Wösten, J.H.M. , Pachepsky, Y.A. , and Rawls, W.J. (2001). "Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics". Journal of Hydrology 251 (3-4): 123–150. DOI:10.1016/S0022-1694(01)00464-4. 
  3. Liu, Cheng «Soils and Foundations.» Upper Saddle River, New Jersey: Prentice Hall, 2001 ISBN 0-13-025517-3
  4. S.B.Hooghoudt, 193۴, in Dutch. Bijdrage tot de kennis van enige natuurkundige grootheden van de grond. Verslagen Landbouwkundig Onderzoek No. ۴۰ B, p. ۲۱۵-۳۴۵.
  5. C.H.M. van Bavel and D. Kirkham, 1948. Field measurement of soil permeability using auger holes. Soil. Sci. Soc. Am. Proc 1۳:۹۰-۹۶.
  6. ۶٫۰ ۶٫۱ ۶٫۲ Determination of the Saturated Hydraulic Conductivity. Chapter 12 in: H.P.Ritzema (ed. , 1994) Drainage Principles and Applications, ILRI Publication 16, p.43۵-۴۷۶. International Institute for Land Reclamation and Improvement, Wageningen (ILRI), The Netherlands. ISBN 90 70754 3 3۹. Free download from: [۱] , under nr. 6, or directly as PDF: [۲]
  7. Drainage research in farmers' fields: analysis of data. Contribution to the project “Liquid Gold” of the International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands. Free download from: [۳] , under nr. 2, or directly as PDF: [۴]
  8. J.Boonstra and R.A.L.Kselik, SATEM 200۲: Software for aquifer test evaluation, 200۱. Publ. 57, International Institute for Land reclamation and Improvement (ILRI), Wageningen, The Netherlands. ISBN 90-70754-54-1 On line: [۵]