ایزوتوپ‌های لیتیم

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو
درصد فراوانی ایزوتوپ های طبیعی لیتیم.

عنصر لیتیم دارای دو ایزوتوپ پایدار ۶Li و ۷Li است که دارای فراوانی (۹۲٫۵٪) می‌باشد.[۱][۲][۳] این دو ایزوتوپ پایدار در مقایسه با دو عنصر سبک و سنگین همسایگی خود یعنی هلیم و بریلیم، به صورت غیر طبیعی، انرژی پیوستگی هسته‌ای پایینی به ازای هر هسته دارند. به جز دوتریوم و هلیم-۳، دو هستهٔ لیتیم انرژی پیوستگی کمتری به ازای هر هسته، نسبت به هر هستهٔ پایدار دیگری دارند.[۴] در نتیجهٔ این پدیده، عنصر لیتیم با اینکه وزن اتمی کمی دارد اما در سامانهٔ خورشیدی از دید فراوانی، در میان ۳۲ عنصر، رتبهٔ ۲۵ ام را دارد.[۵] هفت ایزوتوپ پرتوزا برای لیتیم پیدا شده‌است که پایدارترین آن‌ها ۸Li با نیمه‌عمر ۸۳۸ میلی ثانیه و ۹Li با نیمه‌عمر ۱۷۸ میلی ثانیه‌است. دیگر ایزوتوپ‌های پرتوزا نیمه‌عمری کمتر از ۸٫۶ میلی ثانیه دارند. ناپایدارترین ایزوتوپ این عنصر ۴Li با نیمه‌عمر ۷٫۶ × ۱۰−۲۳ ثانیه‌است که در آن پروتون پرتوزایی می‌کند.[۶]

۷Li یکی از عنصرهای بسیار کهن (یا دقیق تر بگوییم هسته‌های بسیار کهن) است که در جریان هسته‌زایی مهبانگ پدید آمده‌است. گمان آن می‌رود که مقدار اندکی از ۶Li و ۷Li در ستاره‌ها پدید می‌آید اما به همان سرعتی که ایجاد می‌شود به همان سرعت، می‌سوزد و دوباره مصرف می‌شود.[۷] علاوه بر این احتمالاً مقدار اندکی از ۶Li و۷Li در اثر بادهای خورشیدی و برخورد پرتوهای کیهانی با اتم‌های سنگین تر و درنتیجه واپاشی ایزوتوپ‌هایی مانند ۷Be و ۱۰Be پدید می‌آیند.[۸] هنگامی که لیتیم در جریان هسته‌زایی ستاره‌ها پدید می‌آید دوباره سوخته و مصرف می‌شود. همچنین ۷Li در ستاره‌های کربنی هم می‌تواند تولید شود.[۹]

فرایندهای طبیعی گوناگونی می‌توانند ایزوتوپ‌های لیتیم را تولید کنند.[۱۰] از جملهٔ آن‌ها می‌توان به پدیدهای شیمیایی هنگام ساخت کانی‌ها، دگرگشت و داد و ستدهای یونی اشاره کرد. یون لیتیم در کانی‌های رسی هشت وجهی جایگزین منیزیم و آهن می‌شود.

منابع[ویرایش]

  1. خطای یادکرد: خطای یادکرد:برچسب <ref>‎ غیرمجاز؛ متنی برای یادکردهای با نام krebs وارد نشده‌است.
  2. خطای یادکرد: خطای یادکرد:برچسب <ref>‎ غیرمجاز؛ متنی برای یادکردهای با نام emsley وارد نشده‌است.
  3. "Isotopes of Lithium". Berkeley National Laboratory, The Isotopes Project. Retrieved 2008-04-21. 
  4. File:Binding energy curve - common isotopes.svg shows binding energies of stable nuclides graphically; the source of the data-set is given in the figure background.
  5. Numerical data from: Lodders, Katharina (July 10, 2003). "Solar System Abundances and Condensation Temperatures of the Elements" (PDF). The Astrophysical Journal (The American Astronomical Society) 591 (2): 1220–1247. Bibcode:2003ApJ...591.1220L. doi:10.1086/375492.  ویرایش Graphed at File:SolarSystemAbundances.jpg
  6. Sonzogni, Alejandro. "Interactive Chart of Nuclides". National Nuclear Data Center: Brookhaven National Laboratory. Retrieved 2008-06-06. 
  7. خطای اسکریپتی
  8. Chaussidon, M.; Robert, F.; McKeegan, K.D. (2006). "Li and B isotopic variations in an Allende CAI: Evidence for the in situ decay of short-lived ۱۰Be and for the possible presence of the short−lived nuclide ۷Be in the early solar system". Geochimica et Cosmochimica Acta 70 (1): 224–245. Bibcode:2006GeCoA..70..224C. doi:10.1016/j.gca.2005.08.016. 
  9. خطای اسکریپتی
  10. Seitz, H.M.; Brey, G.P.; Lahaye, Y.; Durali, S.; Weyer, S. (2004). "Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes". Chemical Geology 212 (1–2): 163–177. doi:10.1016/j.chemgeo.2004.08.009. 

پیوند به بیرون[ویرایش]

Lewis, G. N.; MacDonald, R. T. (1936). "The Separation of Lithium Isotopes". Journal of the American Chemical Society 58 (12): 2519. doi:10.1021/ja01303a045.