عدد قدرتمند

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو

عدد طبیعی مثبت n قدرتمند است اگر به ازای هر عدد اول p که بر n بخش پذیراست، عدد p^2 نیز بر n بخشپذیر باشد. می‌توان نشان داد هر عدد قدرتمند مانند m را می‌توان بصورت a^2b^3 نوشت که a, b هر دو اعدادی طبیعی هستند. ( در این تعریف اشکالی وجود دارد و آن این که عدد اول بر هیچ عددی بجز 1 و خودش بخشپذیر نیست چه برسد به n )

در زیر فهرستی از اعداد اول کوچکتر از ۱۰۰۰ را می‌بینیم:

۱, ۴, ۸, ۹, ۱۶, ۲۵, ۲۷, ۳۲, ۳۶, ۴۹, ۶۴, ۷۲, ۸۱, ۱۰۰, ۱۰۸, ۱۲۱, ۱۲۵, ۱۲۸, ۱۴۴, ۱۶۹, ۱۹۶, ۲۰۰, ۲۱۶, ۲۲۵, ۲۴۳, ۲۵۶, ۲۸۸, ۲۸۹, ۳۲۴, ۳۴۳, ۳۶۱, ۳۹۲, ۴۰۰, ۴۳۲, ۴۴۱, ۴۸۴, ۵۰۰, ۵۱۲, ۵۲۹, ۵۷۶, ۶۲۵, ۶۴۸, ۶۷۵, ۶۷۶, ۷۲۹, ۷۸۴, ۸۰۰, ۸۴۱, ۸۶۴, ۹۰۰, ۹۶۱, ۹۶۸, ۹۷۲، و ۱۰۰۰.

همچنین جفت‌های متوالی از اعداد قدرتمند وجود دارد:

(۸٬۹), (۲۸۸٬۲۸۹), (۶۷۵٬۶۷۶), (۹۸۰۰٬۹۸۰۱), (۱۲۱۶۷٬۱۲۱۶۸), (۲۳۵۲۲۴٬۲۳۵۲۲۵), (۳۳۲۹۲۸٬۳۳۲۹۲۹) و (۴۶۵۱۲۴٬۴۶۵۱۲۵).

اردوش در سال ۱۹۷۵ حدس زد که هیچ سه عدد قدرتمند متوالی وجود ندارد، همچنین گولومب در سال ۱۹۷۰، مولین و والاش به طور جداگانه در سال ۱۹۸۶ این فرض را حدس زدند و اخیراً نشان داده شده‌است که ۳ حکم زیر معادلند (قضیه مولین و والاش):

  1. سه عدد قدرتمند متوالی وجود دارند.
  2. عدد قدرتمند زوج p و عدد قدرتمند فرد q به صورت p^2-q=1 وجود دارند.
  3. عدد طبیعی m که مربع کامل نیست وجود دارد که m \equiv 7 \pmod{7}
و {(T_1+U_1\sqrt{m})}^k=T_k+U_k\sqrt{m} و k عدد طبیعی فردی است که T_k kامین عدد زوج قدرتمند است و U_k kامین عدد فرد با خاصیت زیر است.
  • گولومب نشان داد که هیچ زوج عدد قدرتمند به صورت (4k-1,4k+1) وجود ندارد و همچنین فهمید در صورت وجود ۳ عدد متوالی قدرتمند این ۳ عدد باید بصورت (4k-1,4k.4k+1) باشند.
  • گرنویل نشان داد که اگر قضیه مولین و والاش درست باشد انگاه بی‌نهایت عدد اول p وجود دارد که p^2 مضربی از 2^p-2 نباشد.

منابع[ویرایش]

پیوند به بیرون[ویرایش]