دسته‌بندی کننده نایو بیز

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو

به طور ساده روش بیز روشی برای دسته بندی پدیده‌ها، بر پایه احتمال وقوع یا عدم وقوع یک پدیده‌است.

براساس ویژگی‌های ذاتی احتمال(به ویژه اشتراک احتمال) نایو بیز (به انگلیسی: Naive Bayes classifier) با دریافت تمرین اولیه نتایج خوبی ارایه خواهد کرد. شیوه یادگیری در روش نایو بیز از نوع یادگیری با ناظر (به انگلیسی: Supervised learning) است.

برای نمونه یک میوه ممکن است پرتغال باشد. اگر نارنجی و کروی با شعاع حدود ده سانتی متر باشد. اگر این احتمالات به درستی به همدیگر وابسته باشند نایو بیز در تخشیص اینکه این میوه پرتغال است یا نه بدرستی عمل خواهد کرد.

برنامه‌های کاربردی بسیاری هستند که پارامترهای نایو بیز را تخمین می‌زنند، بنابر این افراد بدون سروکار داشتن با تئوری بیز می‌توانند از این امکان به منظور حل مسایل مورد نظر بهره ببرند. با وجود مسایل طراحی و پیش فرض‌هایی که در خصوص روش بیز وجود دارد، این روش برای طبقه بندی کردن بیشتر مسایل در جهان واقعی، مناسب است.

مزایا[ویرایش]

تحقیقاتی در سال ۲۰۰۴ دلالیل نظریه‌ای برای رفتارهای غیر منطقی بیز مطرح کرد و همچنین در سال ۲۰۰۶ مشاهدات فراگیری به منظور مقایسه این روش با سایر روش‌های طبقه بندی مانند boosted trees و random forests انجام شد که بر کارا بودن این روش صحه گذاشتند.

بزرگترین ویژگی این روش این است که حجم آموزش اندکی برای شروع کار و تخمین پارامترها نیاز دارد.

منابع[ویرایش]