تولید اعداد تصادفی

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو

یک تولیدکننده اعداد تصادفی (به انگلیسی: Random Number Generation، به‌اختصار:RNG) وسیله‌ای فیزیکی و یا روشی محاسباتی است که برای تولید دنباله‌ای از اعداد که الگوی خاصی ندارند (یعنی بطور تصادفی ظاهر شده‌اند) به کار می‌رود.

سامانه‌های رایانه‌ای بطور گسترده برای تولید اعداد تصادفی مورد استفاده قرار می‌گیرند در حالیکه تولید کننده‌های خوبی نیستند هرچند الگوهای آنها به راحتی قابل تشخیص نیست.

از زمان‌های قدیم روش‌هایی برای تولید این اعداد وجود داشته‌است از جمله پرتاب تاس، پرتاب سکه و برهم زدن کارت‌ها که همچنان در بازی‌ها و قمارخانه‌ها مورداستفاده قرار می‌گیرند. در واقع کاربرد بسیار این اعداد موجب گوناگونی و فراوانی روش‌های تولید این اعداد (از لحاظ مدت زمانی که برای تولید این اعداد سپری می‌شود و الگوهای مورد استفاده آنها) شده‌است.

روش‌های فیزیکی[ویرایش]

برخی از پدیده‌های طبیعی الگوهای مناسبی برای تولید این اعداد هستند به عنوان مثال برخی پدیده‌های فیزیکی از جمله اختلالات حرارتی در دیودهای زنر (Zener Diodes) دارای رفتاری کاملاً تصادفی هستند و می‌توانند پایه‌ای برای تولید RNGهای فیزیکی و سخت‌افزاری باشند.

همانطور که اشاره شد، الگوهای طبیعی جالبی برای تولید اعداد تصادفی وجود دارد؛ یک روش متداول استفاده از یک تابع درهم ساز (که ورودی اش جریانی از فریم‌های ویدئوییٍ یک منبع غیر قابل پیش بینی می‌باشد) است. به عنوان مثال لاواراند (Lavarand)از تصاویر تعدادی لامپ لاوا(Lava Lamps) استفاده کرد. Lithium Technologies از تصاویر آسمان و Random.org از صداهای آشفته جوی استفاده می‌کند.

روش‌های محاسبه‌ای[ویرایش]

تولیدکننده‌های اعداد شبه تصادفی الگوریتم‌هایی با قابلیت تولید اعداد تصادفی هستند هرچند اعداد تولید شده توسط آنها به طور تناوبی تکرار می‌شود و یا آنکه حافظه زیادی را اشغال می‌کنند. یکی از متداولترین تولیدکننده‌های اعداد تصادفی، LCG Linear Congruential Generator است که رابطه‌ای بازگشتی دارد:

R_{n+1} = (a R_n + b)\, \textrm{mod}\, m

بیشترین تعداد عددی که این رابطه می‌تواند تولید کند m عدد شبه تصادفی است.

یک روش ساده که با قلم و کاغذ نیز قابل اجراست روش میانه مربع (Middle Square Method) است که توسط جان فون نیومن (John Von Neumann) ابداع شد که بسیار ساده‌است ولی اعداد تولیدی آن از لحاظ آماری کیفیت خوبی ندارند.

بسیاری از زبان‌های برنامه‌نویسی رایانه شامل توابع کتابخانه‌ای هستند که برای تولید اعداد تصادفی (یک بایت، کلمه ویا اعداداعشاری تصادفی با توزیع یکنواخت بین ۰ و ۱)طراحی شده‌اند. این توابع کتابخانه‌ای اغلب از لحاظ خصوصیات آماری ضعیف هستند و الگوهایشان پس از تنها ۱۰۰۰ رشته دوباره تکرار می‌شود، آنها اغلب با زمان واقعی رایانه به عنوان seed راه‌اندازی می‌شوند. در واقع این توابع در بعضی موارد به تعداد کافی رویداد تصادفی تولید می‌کنند (مثلاً در بازی‌های ویدئویی) ولی وقتی رویدادهای تصادفی با کیفیت بالا مورد نظر است، ناکارآمد هستند (مثلاً در رمزنگاری).

کاربردهای اعداد تصادفی[ویرایش]

  • شبیه‌سازی: وقتی یک رایانه برای شبیه‌سازی مفاهیم طبیعی مورد استفاده قرار می‌گیرد، اعداد تصادفی برای واقعی نشان دادن اجزا و رویدادها مورد نیاز هستند. شبیه‌سازی بسیاری از رشته هارا پوشش می‌دهد مثلاً فیزیک هسته‌ای
  • نمونه‌برداری: آزمودن همه حالات ممکن برای یک سامانه اغلب غیر عملی است اما وضعیت و درستی یک نمونه تصادفی می‌تواند حالت کلی سیستم را شرح دهد.
  • آنالیز عددی: روش‌های مبتکرانه‌ای برای حل مسائل عددی پیچیده ابداع شده‌است که از اعداد تصادفی استفاده می‌کنند.

کتابهای بسیاری نیز در همین مورد نوشته شده‌اند.

  • برنامه‌نویسی رایانه‌ای: مقادیر تصادفی منابع خوبی از اطلاعات برای تست کردن کارایی الگوریتم‌های کامپیوتری هستند؛ از همه مهمتر نقش آنها در اجرای الگوریتم‌های تصادفی است.
  • تصمیم‌گیری: گزارش‌هایی مبنی براینکه برخی مدیران اجرایی تصمیمات خود را برپایه پرتاب سکه و یا دارت می‌گیرند؛ در واقع بعضی وقت‌ها باید بدون غرض‌ورزی تصمیمات گرفته شوند.

تولید اعداد تصادفی در رایانه[ویرایش]

از آن‌جایی‌که رایانه‌ها ماشین‌هایی از نوع معیّن (Deterministic) هستند، با دریافت ورودی یکسان، همیشه یک خروجی بیرون می‌دهند. ازین رو تولید اعداد تصادفی در رایانه مبحثی است که در این مقاله به بررسی آن می‌پردازیم.

در زبان‌های برنامه‌نویسی گوناگون، تابعی وجود دارد که عددی تصادفی و معمولاً در بازهٔ صفر و یک تولید می‌کند. این تابع باید به گونه‌ای باشد که با چند بار تولید عدد تصادفی کاربر قادر به حدس زدن و پیدا کردن قاعده و الگویی در ایجاد این اعداد نشود.

هر بار که این تابع صدا زده می‌شود، رایانه عدد تولید شدهٔ پیشین را به عنوان ورودی جدید تابع تولید عدد تصادفی می‌فرستد. منشاء مشکل نیز در همین مرحله است.

هر بار که این تابع صدا زده شود، بر اساس ماهیت جبری ماشین و با توجه به مقدار اولیهٔ فرستاده شده به تابع تولید عدد تصادفی (seed) باید با یک دنباله از اعداد مشابه یکدیگر مواجه شویم.

مثال در دنیای واقعی[ویرایش]

در زبان برنامه‌نویسی جاوا، کلاسی وجود دارد با نام Random که دو نوع Constructor دارد. نوع اول آن ورودی دریافت نمی‌کند ولی نوع دوم آن یک عدد long به عنوان seed که همان ورودی اولیهٔ تابع تولید عدد تصادفی است، دریافت می‌کند.

یک شیٔ از این کلاس برای تولید دنباله‌ای از اعداد شبهتصادفی به کار می‌رود. این کلاس از جاوا دارای متدهایی مانند next که برای دریافت عدد شبه تصادفی بعدی است، است. اگر seed یا مقدار اولیهٔ فرستاده شده به Constructor یکسان باشد. ما با گرفتن اعداد بعدی از دو شیٔ با دنباله‌ای کاملاً یکسان از اعداد مواجه می‌شویم. در زیر قسمتی از تابع next در کلاس Random را مشاهده می‌کنید.

 synchronized protected int next(int bits) {
       seed = (seed * 0x5DEECE66DL + 0xBL) & ((1L <<48) - 1);
       return (int)(seed>>> (48 - bits));
 }

این تابع و در واقع روش پیش‌روی و به دست آوردن seed و یا مقدار اولیهٔ بعدی در جاوا، برگرفته از روش پیشنهادی دونالد کنوت در کتاب هنر برنامه‌نویسی رایانه می‌باشد.

چگونه مقدار اولیه مناسب را پیدا کنیم؟[ویرایش]

در برنامه‌نویسی به عنوان مثال برای نوشتن یک بازی راه‌حل‌های گوناگونی مانند قرار دادن مقدار اولیه برابر با تعداد بازی‌های انجام شده بر روی رایانه و یا ذخیرهٔ خروجی آخرین seed از برنامهٔ قبلی در حال اجرا است. با اینحال کماکان مشکل مقدار دهی اولین seed پابرجاست.

اولین مقدار اولیه[ویرایش]

راحت‌ترین راه حل این مسأله در دنیای کامپیوتر استفاده از زمان فعلی دستگاه است. کامپیوترهای امروزی زمان را با دقت میلی‌ثانیه در دسترس دارند. برنامه‌ها می‌توانند زمان اولین اجرای خود را به عنوان seed به اولین باری که تابع تولید اعداد تصادفی صدا زده می‌شود، بفرستند. ولی اگر باز هم دونفر به طور کاملاً هم‌زمان برنامه را اجرا کنند خروجی یکسان دریافت خواهند کرد. این مشکل هم با افزودن معیارهای دیگری به seed مانند زمان آخرین کلیک موشی (Mouse Click)، مدت زمان بالا بودن سیستم‌عامل و مواردی مشابه، به مقدار زیادی کاهش داد. با افزودن این معیارها و معیارهای مشابه دیگر به برنامه احتمال ایجاد تشابه را به سمت صفر کاهش می‌دهیم.

در همان زبان برنامه‌نویسی جاوا که به عنوان نمونه آورده شد، ورودی Constructor یک عدد از نوع اولیهٔ long به عنوان ورودی می‌گیرد. این عدد long یک عدد ۶۴ بیتی در جاوا است که خود باعث محدود شدن seed و امکان به وجود آمدن اعداد تصادفی برابر را فراهم می‌سازد. بنابر این مشکل کاملاً حل نشده‌است.

اعداد شبه تصادفی[ویرایش]

همانطور که دیدیم اعداد تصادفی تولید شده توسط رایانه و محاسبات ریاضی اعداد کاملاً تصادفی نبوده و از اینرو این اعداد را اعداد شبه تصادفی می‌نامند.

روش‌های فیزیکی و سخت‌افزاری تولید اعداد تصادفی[ویرایش]

امروزه تلاشهای بسیاری برای استفاده از علم مکانیک کوانتوم به عنوان استاندارد طلایی تصادفی بودن در حال انجام است. به عنوان مثال:

  1. استفاده از صداهای جوی دریافت شده توسط رادیوی متصل به رایانه.
  2. تابش حاصل از شکافت هسته‌ای که توسط یک Geiger counter متصل به رایانه دریافت می‌شود.

جستارهای وابسته[ویرایش]

منابع[ویرایش]

  • مشارکت‌کنندگان ویکی‌پدیا، «Random number generation»، ویکی‌پدیای انگلیسی، دانشنامهٔ آزاد (بازیابی در ۳ می۲۰۱۱).

بخش رایانه:

پانویس[ویرایش]

پیوند به بیرون[ویرایش]

  1. پروژه‌ای تحقیقاتی برای randomSeed