شبکه منطق مارکوف

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو

شبکه منظق مارکوف(Markov logic network)[ویرایش]

یک شبکه ی منطق مارکوف یا (MLN ) منطقی احتمالاتی است که ایده‌های یک شبکه مارکوف به منطق رتبه اول را به کار می‌گیرد که استنتاج نا مطمئن را فراهم کند. شبکه‌های منطق مارکوف ، منطق رتبه اول را تعمیم می‌دهند، به این معنا که، در یک محدوده مطمئن، تمام جملات غیر رضایتمند احتمالی صفر دارند و تمام همانگو ها احتمال یک دارند.

شرح[ویرایش]

بطور خلاصه، شبکه منطق مارکوف کلکسیونی از فرمول ها از منطق رتبه اول ( به هر یک از فرمول ها عددی حقیقی تخصیص داده شده است(وزن)) می باشد. راس های گراف شبکه فرمول های اتمی هستند و یال ها رابط های منطقی استفاده شده در ساخت فرمول هستند. هر فرمول بعنوان یک کلیک فرض می‌شود و روکش مارکوف مجموعه‌ای از فرمول ها ست که درون آن‌ها اتم داده شده ظاهر می شود. یک تابع پتانسیل به هر فرمول اختصاص داده شده است و هنگامی که فرمول درست است مقدار ۱ می‌گیرد و صفر هنگامی که نادرست است . تابع پتانسیل ترکیبی از وزن بصورت اندازه‌گیری گیبز و تابع تجزیه برای گراف مارکوف است.

در تعریف بالا نکته ی ظریفی شرح داده شده است: فرمول های اتمی ارزش درستی ندارند مگر آنکه آن‌ها پایه گذاری شده باشند و تفسیری ارایه داده باشند تا هنگامی که فرمول ها اتم ها را با تفسیر هربند پایه گذاری می کنند. بنابراین شبکه منطق مارکوف می‌شود شبکه مارکوف ،فقط با توجه به پایه و تفسیر ویژه ، در نتیجه شبکه مارکوف شبکه مارکوف پایه نامیده می شود. راس های گراف شبکه مارکوف پایه، اتم های پایه هستند. بنابراین اندازه نتیجه شبکه مارکوف به شدت (بصورت نمایی) بستگی به تعداد ثابتها در ناحیه ی بحث دارد.

استنتاج[ویرایش]

هدف استنتاج در شبکه منطق مارکوف پیدا کردن توزیع ایستا ی سیستم یا نزدیک به آن است که این ممکن است دشوار باشد یا همیشه توضیحش با غنای رفتار مشاهده شده در مدل lising ممکن نباشد. همچون شبکه مارکوف، توزیع ایستا انتصابات محتمل احتمالات به راس های گراف را پیدا می کند. در این مورد راس ها اتم های پایه ی یک تفسیر هستند. توزیع احتمال درست یا نادرستی هر اتم پایه را نشان می دهد. با توجه به توزیع ایستا، می‌تواند درمفهوم سنتی آماری احتمال شرطی استنتاج انجام دهد: احتمال P(A|B) را بدست می‌دهد که فرمول A با توجه به درستی B درست است استنتاج در MLN می‌تواند با استفاده از تکنیک های استاندارد استنتاجی شبکه مارکوف بر روی زیر مجموعه حداقل از شبکه مارکوف مورد نیاز برای پاسخ به پرس و جو صورت بگیرد. این تکنیک های belief propagation یا تخمین با pseudolikelihood، شامل نمونه گیری گیبس هستند، که تأثیر گذار هستند اما ممکن است برای شبکه‌های بزرگ بیش از اندازه آهسته باشند.

Resources[ویرایش]

See also[ویرایش]

External links[ویرایش]