اصل توازی اقلیدس: تفاوت میان نسخه‌ها

از ویکی‌پدیا، دانشنامهٔ آزاد
بدون خلاصۀ ویرایش
جز محمد علی مقدم زاوه صفحهٔ اصل توازی اقلیدسی را به اصل توازی اقلیدس منتقل کرد: تصحیح نام
(بدون تفاوت)

نسخهٔ ‏۳۰ ژانویهٔ ۲۰۱۷، ساعت ۰۷:۵۹

اگر دو خط به وسیلهٔ خط موربی چنان قطع شوند که مجموع اندازهٔ درجه‌های دو زاویهٔ درونی (α و β) واقع در یک طرف مورب، کمتر از ۱۸۰ درجه باشد، آنگاه این دو خط یک‌دیگر را در همان طرف مورب، تلاقی می‌کنند.

اصل توازی اقلیدسی که به اصل پنجم اقلیدس نیز معروف است (چون پنجمین اصل از اصول اقلیدس در هندسه است) این‌گونه‌است: اگر دو خط راست به‌وسیلهٔ یک خط سوم قطع شوند، در همان طرفی از خط سوم که زوایای داخلی، مجموع کوچک‌تر از دوقائمه تشکیل می‌دهند یک‌دیگر را قطع می‌کنند.

این اصل در شکل امروزی آن اینگونه بیان می‌شود: اگر دو خط به وسیلهٔ موربی چنان قطع شوند که مجموع اندازهٔ درجه‌های دو زاویهٔ درونی واقع در یک طرف مورب کمتر از ۱۸۰ درجه باشد، آنگاه این دو خط یک‌دیگر را در همان طرف مورب تلاقی می‌کنند. شکل مشهورتر این اصل چنین است: به ازای هر خط l و نقطهٔ p غیر واقع بر آن تنها یک خط مانند m وجود دارد چنانکه از p می‌گذرد و با l موازی است. این اصل را به این شکل نخستین بار جیرولامو ساکری طرح کرد.

صورت‌بندی جدیدی از اصل توازی اقلیدسی، اصل هم‌ارزی نامیده می‌شود. در این صورت‌بندی اصل توازی اقلیدسی به این شکل بیان می‌شود که: از یک نقطه خارج یک خط و فقط یک خط به موازات آن می‌توان کشید. از آن‌جا که نخستین بار جان پلی‌فیر این اصل پنجم را به این شکل صورت‌بندی کرد به اصل پلی‌فیر هم مشهور است.

جانشین‌های پیشنهادی

چند جانشین دیگر برای این اصل پیشنهاد شده‌است:

  • حداقل یک مثلث وجود دارد که مجموع سه زاویهٔ آن برابر با ۱۸۰ درجه‌است.
  • دو مثلث متشابه غیر متساوی وجود دارند.
  • دو خط مستقیم وجود دارند که همه جا از هم به یک فاصله‌اند.
  • بر هر سه نقطهٔ غیر واقع بر یک خط می‌توان دایره‌ای گذراند.
  • بر هر نقطهٔ داخل زاویه‌ای کمتر از ۶۰ درجه می‌توان خط مستقیمی کشید که هر دو ضلع زاویه را قطع کند.

هندسه‌های دیگر

این اصل مناقشه برانگیزترین اصل از اصول پنج‌گانهٔ هندسهٔ اقلیدسی است. کنکاش برای طرح این اصل به عنوان قضیه و اثبات آن با توجه به چهار اصل ماقبلش منجر به ابداع اصل توازی جدیدی شد. اصل توازی هذلولوی و اصل توازی ریمانی در سده‌های اخیر هندسه‌های جدیدی را به وجود آوردند که به هندسهٔ هذلولوی یا هندسهٔ لباچفسکئی و هندسهٔ ریمانی یا هندسهٔ بیضوی مشهورند.

منابع

  • پرویز شهریاری، هندسه در گذشته و حال، انتشارات سیمرغ
  • گرینبرگ، ماروین جی (۱۳۶۳هندسه‌های اقلیدسی و نااقلیدسی، ترجمهٔ م.ه. شفیعیها (ویراست ویراستهٔ احمد بیرشک، حمید کاظمی، همایون معین)، تهران: مرکز نشر دانشگاهی پارامتر |چاپ= اضافه است (کمک)
  • هاورد و. ایوز، آشنایی با تاریخ ریاضیات (جلد دوم)، ترجمهٔ محمدقاسم وحیدی‌اصل، مرکز نشر دانشگاهی.

جستارهای وابسته