کبد

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به ناوبری پرش به جستجو
فارسیespañol
کبد
Leber Schaf.jpg
کبد گوسفند: (۱) لُبّ راست، (۲) لب چپ، (۳) لب دمی، (۴) لب چهارگوش، (۵) سرخرگ کبدی و باب سیاهرگی، (۶) گره‌های لنفاوی کبدی، (۷) کیسه صفرا.
Gray1224.png
نمای قدامی از وضعیت کبد (قرمز) در شکم انسان.
جزئیات
لاتین jecur
پیش‌ساز foregut
hepatic vein, ورید باب
celiac ganglia, عصب واگ[۱]
شناسه‌ها
فهرست گری p.۱۱۸۸
سرعنوان پزشکی A03.620
واژگان آناتومی A05.8.01.001
اف‌ام‌اِی 7197
واژگان کالبدشناسی
دستگاه گوارش انسان

کَبِد (انسان) یا جِگَر سیاه (حیوان) بزرگترین غده بدن است[۲] که در فعالیت‌های سوخت‌وساز بدن مانند گوارش نقش دارد.

تمام خون دستگاه گوارش توسط سیاهرگی به نام ورید بابی جمع‌آوری شده و وارد کبد می‌شود و تمام مواد جذب شده از لوله گوارشی از کبد عبور می‌کنند. دیگر کارهای کبد به دام انداختن سموم و تصفیۀ آنها با تبدیل کردنشان به مواد بی‌ضرر است. همچنین، این کبد است که متابولیسم داروها را در بدن بر عهده دارد. شرکت در خون‌سازی (در دورۀ پیش از تولد) و مقاومت در برابر عفونت‌ها، فراهم ساختن سریع انرژی در هنگام ضرورت، ذخیره آهن و... از دیگر فعالیت‌های کبد است[۳]

سلول‌های کبدی پروتئین‌های مختلفی را به‌طور دائمی می‌سازند از جمله آلبومین، پروترومبین، فیبرینوژن، لیپو پروتئین‌ها و هپارین.[۴]

سلول‌های کبدی مواد مختلفی از جمله تری گلیسریدها، گلیکوژن و ویتامین‌ها را ذخیره می‌کنند.[۴]

کبد به عنوان یک سیستم بافری مهم برای گلوکز خون عمل می‌کند به این معنی که هنگامی که گلوکز خون بعد از صرف یک وعده غذا تا غلظت زیادی بالا می‌رود میزان ترشح انسولین نیز افزایش می‌یابد و در حدود دو سوم گلوکز جذب شده از روده بلافاصله به گلیکوژن تبدیل شده و در کبد ذخیره می‌شود. در طی ساعات بعد که غلظت گلوکز خون و نیز انسولین کاهش می‌یابد، کبد گلیکوژن را تجزیه و به گلوکز تبدیل می‌کند.

این تنظیم در بیماران با اختلالات کبدی تقریباً غیرممکن است.

کالبدشناسی[ویرایش]

کبد عضو قهوه‌ای مایل به قرمز با چهار لب نابرابر از نظر شکل و اندازه می‌باشد. وزن طبیعی کبد انسان ۱٫۶۶–۱٫۴۴ کیلوگرم (۳٫۷–۳٫۲ پوند) بوده،[۵] و اندامی صاف، صورتی-قهوه‌ای و مثلثی شکل می‌باشد. کبد بزرگترین اندام داخلی (پوست بزرگترین اندام کلی است) و بزرگترین غده در بدن انسان است. محل این اندام در یک چهارم بالایی حفره شکمی بوده، و درست زیر دیافراگم قرار دارد. کبد در سمت راست معده بوده و روی کیسه صفرا قرار دارد. دو رگ خونی به آن متصل شده است، یکی از آن‌ها شریان کبدی و دیگری سیاهرگ باب نام دارد. شریان کبدی خون آئورتی را حمل می‌کند، در حالی که سیاهرگ باب خون شامل مواد مغذی هضم شده از گوارش و همچنین طحال و لوزالمعده را حمل می‌کند. این رگ‌های خونی به مویرگ‌ها تقسیم شده، و خون را به لبها هدایت می‌کنند. هر لب از میلیون‌ها یاخته کبدی تشکیل شده که اساس یاخته‌های متابولیکی هستند. لب واحدهای عملکردی کبد هستند.

انواع سلول[ویرایش]

دو نوع عمده از سلول‌های عمومی در لبهای کبد وجود دارد؛ سلول‌های نرماکنه و سفتاکنه. ۸۰٪ حجم کبد را سلول‌های نرماکنه تشکیل داده و هپاتوسیت نامیده می‌شوند. سلول‌های سفتاکنه ۴۰٪ از تعداد کل سلول‌های کبد را تشکیل می‌دهند اما تنها ۶٫۵٪ حجم کبد را شامل می‌شوند. سلول‌های آندوتلیال سینوسی کبدی، سلول‌های کوپفر و سلول‌های ستاره‌ای کبدی تعدادی از سلول‌های سفتاکنه سینوس کبد هستند.[۶]

جریان خون[ویرایش]

کبد دارای دو جریان خون از سیاهرگ باب و شریان کبدی می‌باشد. حدود ۷۵٪ از جریان خون کبد، توسط سیاهرگ باب از خون وریدی طحال، دستگاه گوارش و اندام‌های مرتبط با آن تأمین می‌شود. شریان کبدی باقی‌مانده جریان خون کبد را تأمین می‌کند. اکسیژن از هر دو منبع تأمین می‌شود؛ تقریباً نصف اکسیژن کبد توسط سیاهرگ باب و نصف آن توسط شریان کبدی تهیه می‌شود.[۷]
خون در سینوس‌های کبدی جریان یافته و داخل ورید مرکزی هر لب تخلیه می‌شود. وریدهای مرکزی با ورید کبدی که کبد را ترک می‌کند یکی می‌شوند.

جریان صفراوی[ویرایش]

درخت صفراوی

اصطلاح درخت صفراوی از شاخه‌های بلند مجاری صفراوی گرفته شده‌است. صفرای تولید شده در کبد در کانال‌های صفراوی که با مجاری صفراوی ادغام شده، جمع می‌شوند. درون کبد، این مجاری، مجاری صفراوی داخل کبدی نامیده می‌شوند (درون کبد)، و هنگامی که خارج می‌شوند آن‌ها را خارج کبدی (بیرون از کبد) می‌نامند. مجاری داخل کبدی در نهایت به مجاری کبدی چپ و راست تخلیه می‌شوند و با ادغام خود مجرای مشترک کبدی را می‌سازند. مجرای سیستیک کیسه صفرا با مجرای مشترک کبدی متصل شده و مجرای مشترک صفرا را تشکیل می‌دهند.

صفرا توسط مجرای مشترک صفرا مستقیماً وارد دوازدهه می‌شود، یا توسط مجرای سیستیک موقتاً در کیسه صفرا ذخیره می‌شود. مجرای مشترک صفرا و مجرای پانکراس با یکدیگر در آمپول واتر وارد بخش دوم دوازدهه می‌شوند.

کبد انسان[ویرایش]

اگر سطح جداری را مشاهده کنید، کبد انسان به‌طور معمول به دو لب تقسیم می‌شود (چپ و راست)؛ اما اگر سطح احشایی را مشاهده کنید کبد به چهار لب به علاوه لب دمی و چهارگوش تقسیم می‌شود. نشانه‌های کالبدشناسی دیگری نیز وجود دارد، از جمله لیگامان وریدی (لیگامان آرانشیو) و لیگامان دایره‌ای (لیگامان ترس) که بعداً در سمت چپ کبد به دو بخش تقسیم می‌شوند. لیگامان داسی (لیگامان فلسی فرم) در جلوی کبد (سمت قدامی) قابل مشاهده است. این لیگامان کبد را به دو لب چپ و راست تقسیم می‌کند.

بخش‌های کالبدشناسی[ویرایش]

کبد در طبقه‌بندی Couinaud کالبدشناسی کبد، به هشت بخش عملکردی مستقل تقسیم می‌شود (یا اگر بخش‌های زیرین را حساب کنید به ۹ بخش تقسیم می‌شود).[۸]

دیگر حیوانات[ویرایش]

کبد در تمام مهره‌داران وجود دارد، و به‌طور معمول بزرگترین اندام (داخلی) می‌باشد. شکل آن در گونه‌های مختلف متفاوت است، و به دلیل شکل بزرگش و ترتیب قرارگیری اندام‌های اطراف آن قابل تشخیص است. با این حال، در بیشتر گونه‌ها کبد به دو لب چپ و راست تقسیم می‌شود؛ استثنا در این قاعده کلی مارها هستند، که به دلیل ضرورت شکل بدن کبد آن‌ها به شکل سیگار برگ وجود دارد. ساختار داخلی کبد آن کاملاً شبیه همه مهره‌داران است.[۹]

این اندام گاهی اوقات به عنوان کبد مرتبط با دستگاه گوارش طنابداران اولیه مثل نیزک یافت می‌شود. هرچند، این اندام یک غده ترشحی است، نه یک اندام متابولیکی، و چگونگی هم‌ساخت‌شناسی واقعی آن با کبد مهره‌داران مشخص نیست.[۹]

فیزیولوژی[ویرایش]

عملکردهای مختلفی از کبد توسط سلول‌های کبدی یا هپاتوسیت‌ها انجام می‌شود. در حال حاضر، هیچ اندام مصنوعی یا دستگاهی که توانایی تقلید تمام عملکردهای کبد را داشته باشد وجود ندارد. در درمان تجربی نارسایی کبد بعضی از عملکردها را می‌توان با دیالیز کبد مشابه‌سازی کرد. تصور می‌شود که کبد مسئول ۵۰۰ عملکرد جداگانه در ترکیب با دیگر سیستم‌ها و اندام‌ها می‌باشد.

سنتز[ویرایش]

تفکیک[ویرایش]

سایر عملکردها[ویرایش]

  • کبد محل ذخیره بسیاری از مواد از جمله گلوکز (به شکل گلیکوژنویتامین آ (ذخیره ۲–۱ سال)، ویتامین د (ذخیره ۴–۱ ماه)، ویتامین ب ۱۲ (ذخیره ۳–۱ سال)، ویتامین کا، آهن، و مس می‌باشد.
  • کبد مسئول اثرات ایمونولوژیکی می‌باشد - سیستم فاگوسیتی تک هسته‌ای (ام پی اس) کبد شامل بسیاری از سلول‌های ایمونولوژیکی فعال است، همچنین به عنوان «غربال» برای آنتی‌ژن‌های حمل شده توسط سیستم باب عمل می‌کند.
  • کبد، آلبومین، عمده‌ترین ماده اسمولاریته پلاسمای خون را تولید می‌کند.
  • کبد آنژینوتانسینوژن را سنتز می‌کند، هورمون مسئول بالا بردن فشار خون، که توسط رنین فعال می‌شود، زمانی که کلیه احساس کند فشار خون پایین است رنین را آزاد می‌کند.
  • کبد به عنوان مخزن خون نیز عمل می‌کند، یک اندام قابل بسط می‌باشد. مقدار زیادی از خون می‌تواند در رگ‌های خونی ذخیره شود، این مقدار حجم نرمال خون در وریدهای کبدی می‌باشد و در سینوس‌های کبدی در حدود ۴۵۰ میلی لیتر می‌باشد. در طول نارسایی قلبی با احتقان محیطی، کبد گسترش می‌یابد، و گاهی اوقات ۰٫۵ تا ۱ لیتر از خون اضافی به علت فشار بالا در دهلیز راست که باعث بازگشت فشار در کبد می‌شود در وریدهای کبدی و سینوس‌ها ذخیره می‌شود.

ارتباط با پزشکی و داروشناسی[ویرایش]

ظرفیت اکسیداتیو کبد با افزایش سن کاهش می‌یابد بنابراین هر دارویی که به اکسیداسیون نیاز داشته باشد (مثلاً بنزودیازپین) احتمال زیاد دارد که به سطوح سمیت برسد. هرچند، داروهایی با نیمه‌عمر کوتاه، از جمله لورازپام و زازپام در بیشتر مواردی که بنزودیازپین در طب سالمندان مورد نیاز است، ترجیح داده می‌شوند.

بیماری‌های کبد[ویرایش]

تومور لب چپ کبد

کبد تقریباً از هر اندامی در بدن حمایت می‌کند و برای بقا حیاتی است. به دلیل محل استراتژیک و عملکردهای چندبعدی خود کبد نیز مستعد بسیاری از بیماری‌ها می‌باشد.[۱۱]

عمومی‌ترین بیماری‌ها شامل: عفونت‌هایی از جمله هپاتیت‌های آ، ب، سی، دی، ای، آسیب‌های ناشی از نوشیدنی‌های الکلی، کبد چرب، سیروز، سرطان، آسیب‌های دارویی (به خصوص توسط استامینوفن (پاراستامول) و داروهای ضد سرطانی).

بسیاری از بیماری‌های کبدی با یرقان ناشی از افزایش سطح بیلی‌روبین در سیستم همراه است. بیلی‌روبین نتیجه فروپاشی هموگلوبین گلبول‌های قرمز خون می‌باشد؛ به‌طور معمول، کبد بیلی روبین را از خون خارج کرده و از طریق صفرا دفع می‌کند.

بسیاری از بیماری‌های کبدی در کودکان نیز وجود دارد، از جمله انسداد مجاری صفراوی، کمبود آلفا-۱ آنتی‌تریپسین، سندرم آلاژیل، کلستاز داخل کبدی خانوادگی پیشرونده و هیستوسیتوز سلول لانگرهانس.

بیماری‌هایی که با عملکرد کبد تداخل دارند اختلالاتی را در فرآیندهای آن ایجاد خواهند کرد. هرچند، کبد ظرفیت بالایی برای بازسازی و ذخیره‌سازی دارد. در بیشتر موارد، کبد تنها علائم را بعد از آسیب گسترده نشان می‌دهد.

بیماری‌های کبد با آزمون عملکرد کبد تشخیص داده می‌شوند، به عنوان مثال، توسط تولید پروتئین فاز حاد.

همچنین بیماری‌های دیگری نیز هستند که به‌طور مستقیم بیماری کبد شناخته نمی شوند ولی ممکن است موجب اختلال در عملکرد کبد شوند، به عنوان مثال عامل دیفتری در گلو رشد می‌کند و توکسین آن بر کبد و کلیه و اعصاب و قلب اثر میکند. همچنین یکی از علل مرگ بیماری مالاریا نارسایی کبد و کلیه است.

بازسازی و پیوند[ویرایش]

بعد از برش لب چپ کبد

کبد تنها اندام داخلی بدن انسان است که توانایی باززایی طبیعی بافت‌های از دست رفته را دارد؛ کمتر از ۲۵٪ کبد می‌تواند به تمام کبد احیا شود.[۱۲] باززایی بسیار سریع است. کبد طی یک تا دو هفته بعد از از دست دادن بیش از ۵۰٪ حجم خود به اندازه طبیعی خود باز خواهد گشت.

این عمل دلیل عمده بازگشت هپاتوسیت‌ها به چرخه یاخته‌ای است. هپاتوسیت‌ها از فاز جی صفر خاموش به فاز جی ۱ رفته و تحت میتوز قرار می‌گیرند. این فرایند توسط گیرنده پی ۷۵ فعال می‌شود.[۱۳]

سه پیوند اولیه کبد انسان توسط توماس استارزل در سال ۱۹۶۳ در ایالات متحده انجام شد.[۱۴] در سال ۱۹۶۸، روی کالن در کمبریج انگلستان اولین پیوند کبد را در بریتانیای کبیر انجام داد.[۱۵]

پیوند کبد تنها گزینه برای افرادی است که مبتلا به نارسایی غیرقابل بازگشت کبدی هستند. بیشتر پیوندهای انجام شده برای بیماری‌های مزمن باعث سیروز می‌شوند، از جمله هپاتیت سی مزمن، الکلیسم، هپاتیت‌های خودایمن و بسیاری دیگر از بیماری‌ها. پیوندهای کبد انجام شده برای نارسایی حاد کبد که در آن نارسایی در طول چند روز هفته رخ می‌دهد کمتر شایع است.

قطب‌های پیوند کبد ایران ما[ویرایش]

در این چهار شهر یعنی شیراز، کرمان و مشهد،تهران که به عنوان چهار قطب پزشکی کشور نیز مطرح هستند پیوند کبد انجام می‌پذیرد.

پیشرفت[ویرایش]

اندام‌زایی[ویرایش]

منشأ کبد قرارگیری آن در بخش شکمی اندوردم فورگات (اندودرم یکی از ۳ لایه سلولی جوانه جنینی می‌باشد) و مجاور مزانشیم دیواره ترنسورسوم می‌باشد. در رویان انسان، دایورتیکولوم کبد یک لوله اندودرمی است که از فورگات به اطراف مزانشیم گسترش یافته‌است. مزانشیم دیواره ترانسورسوم باعث تکثیر این اندودرم به شاخه شاخه شدن و شکل‌گیری اپیتلیوم غده‌ای کبد می‌شود. بخشی از دایورتیکولوم کبدی (که این منطقه نزدیک لوله گوارش است) در ادامه به عنوان مجرای زهکشی کبد عمل می‌کند، و شاخه‌ای از این مجرا کیسه صفرا را ایجاد می‌کند.[۱۶] علاوه بر این سیگنالهای مزانشیم دیواره ترانسورسوم، فاکتور رشد فیبروبلاست از تکامل قلب نیز همراه با رتینوئیک اسید ناشی از مزودرم صفحه جانبی به صلاحیت کبد کمک می‌کند. سلول‌های اندودرمی کبدی تحت یک انتقال مورفولوژیکی از ستونی به شبه لایه‌ای منجر به ضخامت اولیه جوانه کبد می‌شود. سلول‌های ستاره‌ای کبد از مزانشیم مشتق می‌شوند.[۱۷]

بعد از مهاجرت هپاتوبلاست‌ها به مزانشیم دیواره ترانسورسوم، معماری کبدی با سینوس‌های کبدی شروع به کار می‌کند و مویرگ‌های صفراوی ظاهر می‌شوند. جوانه کبد به لب‌های کبدی تقسیم می‌شود. ورید نافی چپ به مجراهای وریدی تبدیل شده و ورید ویتلاین به ورید باب تبدیل می‌شود. گسترش جوانه کبد توسط سلول‌های بنیادی خونساز انجام می‌شود. هپاتوبلاست‌های دو پتانسیلی به سلول‌های اپیتلیال صفراوی و هپاتوسیت‌ها متمایز می‌شوند. سلول‌های اپیتلیال صفراوی از هپاتوسیت‌های اطراف ورید باب متمایز می‌شوند، ابتدا یک، تک‌لایه تولید و سپس دولایه از سلول‌های مکعبی تولید می‌کنند. در صفحه داکتال، تمرکز انبساط در نقاطی از دولایه پدیدار می‌شود، توسط مزانشیم باب محصور شده، و تحت توبول‌زایی در مجراهای صفراوی درون کبدی قرار می‌گیرد. هپاتوبلاست‌ها مجاور ورید باب قرار نگرفته و در عوض به هپاتوسیت‌ها متمایز شده و در طناب‌های خطی سلول‌های اپی تلیال مزانشیم و مجراهای صفرا قرار می‌گیرند. هنگامی که هپاتوبلاست‌ها به هپاتوسیت‌ها تخصصی شده و گسترش می‌یابند، عملکردها را از یک هپاتوسیت بالغ دریافت می‌کنند، و در نهایت هپاتوسیت‌های بالغ به عنوان سلول‌های اپی‌تلیال بسیار قطبی با انباشتگی گلیکوژن فراوان ظاهر می‌شوند.

تأمین خون جنین[ویرایش]

در جنین در حال رشد، منبع اصلی خون کبد از ورید نافی است که مواد مغذی را برای جنین در حال رشد تأمین می‌کند. ورید نافی از ناف وارد شکم می‌شود، و در طول لبه آزاد لیگامان فلسی فرم کبد به سطح تحتانی کبد به طرف بالا عبور می‌کند. به شاخه چپی ورید باب متصل می‌شود. مجراهای وریدی، خون را از ورید باب چپی به ورید کبدی چپی و سپس به بزرگ‌سیاهرگ زیرین حمل می‌کنند، و اجازه می‌دهند خون جنینی در کبد دور بزند.

درجنین، کبد در طول بارداری نرمال توسعه می‌یابد، و تصفیه نرمال کبد جنین انجام نمی‌شود. کبد اجازه ندارد فرایندهای گوارشی را انجام دهد زیرا جنین وعده‌های غذایی را به‌طور مستقیم مصرف نمی‌کند، اما مواد مغذی را توسط جفت از مادر دریافت می‌کند. کبد جنین برخی از سلول‌های بنیادی خون را آزاد می‌کند که به تیموس جنین مهاجرت می‌کنند، بنابراین ابتدا لنفوسیت‌ها، که لنفوسیت تی نامیده می‌شوند از سلول‌های بنیادی کبد جنین ساخته می‌شوند. هنگامی که جنین متولد می‌شود، تشکیل سلول‌های بنیادی خون در جنین به مغز قرمز استخوان منتقل می‌شود.

بعد از تولد، ورید نافی و مجراهای وریدی طی دو تا پنج روز کاملاً محو می‌شوند.

به عنوان غذا[ویرایش]

کبد پستانداران، غازماکیان‌سانان، و ماهی معمولاً به عنوان خوراک توسط انسان‌ها خورده می‌شود. کبدهای خوک اهلی، گاو، گوسفند، گوساله، مرغ خانگی و غازها در قصابی‌ها و سوپرمارکت‌ها به‌طور گسترده قابل دسترس هستند.

کبد می‌تواند پخته، آب‌پز، کبابی، سرخ شده، در روغن تفت داده شده یا خام خورده شود (asbeh nayeh or sawda naye در غذاهای لبنانی، ساشی‌می کبد). در بسیاری از آماده‌سازی‌ها، تکه‌های کبد با تکه‌های گوشت و کلیه، مانند اشکال مختلف کباب‌های شبکه‌ای خاورمیانه‌ای ترکیب می‌شوند (به عنوان مثال meurav Yerushalmi). کبد اغلب در پخشینه درست می‌شود. مثال‌های خوب شناخته شده شامل liver pâté، جگر چرب، chopped liver، و leverpastej می‌باشند. سوسیس‌های کبدی از جمله Braunschweiger و liverwurst نیز ارزش غذایی دارند. خوراک سنتی آفریقای جنوبی، به نام Skilpadjies، از کبد گوسفند چرخ شده پیچیده در netvet (چربی غشا پوششی) تهیه شده و روی آتش کباب شده‌است.البته این نوع کباب جگر درایران در میان اقوام لر نیز مرسوم است ولی آنرا چرخ نمیکنند بلکه بصورت قطعات کوچک در چربی غشا روده قرار میدهند.

کبد حیوانات غنی از آهن و ویتامین آ می‌باشند، و روغن جگر ماهی معمولاً به عنوان مکمل غذایی استفاده می‌شود. به‌طور سنتی، کبد بعضی از ماهی‌ها مخصوصاً لقمه‌ماهی معمولی به عنوان غذا ارزش دارد. این کبد برای آماده‌سازی غذا مورد استفاده قرار می‌گیرد، از جمله در کبد اسکیت آب‌پز با تست در انگلستان، همچنین beignets de foie de raie و foie de raie en croute در آشپزی فرانسوی.[۱۸]

اشارات فرهنگی[ویرایش]

در اساطیر یونانی، پرومته به دلیل آشکار کردن آتش برای انسان توسط خدایان مجازات شد، او را در جایی که یک کرکس (یا یک عقاب) جگر او را نوک می‌زد به سنگ زنجیر کردند و جگر در طول شب دوباره ساخته می‌شد. (کبد تنها اندام داخلی انسان است که می‌تواند خودش را به میزان قابل توجهی بازسازی کند) بسیاری از مردم باستانی خاور نزدیک و مناطق مدیترانه‌ای نوعی از طالع‌بینی به نام هاروسپیسی را تمرین می‌کنند، آن‌ها سعی می‌کنند اطلاعات را با تمرین بر روی کبدهای گوسفند و دیگر حیوانات به دست بیاورند.

در افلاطون، و در فیزیولوژی‌های بعدی، کبد به عنوان مکان تاریک‌ترین احساسات تصور می‌شود (به‌طور خاص خشم، حسادت و طمع) که انسان را به واکنش وادار می‌کند.[۱۹] در تلمود (رساله براکهوت ۶۱ ب) کبد به عنوان محل خشم است که با کیسه صفرا خنثی می‌شود.

در زبان‌های فارسی، اردو و هندی (جگر یا जिगर یا jigar) در سخنرانی‌های تمثیلی جگر، مرجع شجاعت و احساسات قوی یا «بهترین حالت فرد» است.

افسانه جانسون کبدخوار می‌گوید که او می‌تواند کبد هرکسی را که بعد از شام کشته شده باشد، بریده و بخورد.

در فیلم رسالت، خوردن کبد حمزه بن عبدالمطلب در طول غزوه احد توسط هند دختر عتبه به تصویر کشیده شده‌است. اگرچه روایاتی وجود دارد که هند به جای خوردن کبد حمزه «طعم آن را چشید»، صحت این روایات جای سؤال دارد.

جستارهای وابسته[ویرایش]

منابع[ویرایش]

  1. Physiology at MCG 6/6ch2/s6ch2_30
  2. حسن‌زاده طاهری، محمد مهدی. ابرهیم زاده بیدسکان، علیرضا. آناتومی انسانی پایه. جهاد دانشگاهی مشهد، 1387. شابک ‎۹۶۴۳۲۴۱۸۱۵. 
  3. کبد (1)
  4. ۴٫۰ ۴٫۱ : کبد
  5. Cotran, Ramzi S. ; Kumar, Vinay; Fausto, Nelson; Nelso Fausto; Robbins, Stanley L. ; Abbas, Abul K. (2005). Robbins and Cotran pathologic basis of disease (7th ed.). St. Louis, MO: Elsevier Saunders. p. 878. ISBN 0-7216-0187-1. 
  6. Kmieć Z (2001). "Cooperation of liver cells in health and disease". Adv Anat Embryol Cell Biol. 161: III–XIII, 1–151. PMID 11729749. 
  7. Shneider, Benjamin L. ; Sherman, Philip M. (2008). Pediatric Gastrointestinal Disease. Connecticut: PMPH-USA. p. 751. ISBN 1-55009-364-9. 
  8. Smithuis, Robin. "Anatomy of the liver segments". Radiology Assistant. Retrieved 9 February 2014. 
  9. ۹٫۰ ۹٫۱ Romer, Alfred Sherwood; Parsons, Thomas S. (1977). The Vertebrate Body. Philadelphia, PA: Holt-Saunders International. pp. 354–5. ISBN 0-03-910284-X. 
  10. بیماری‌های کبد
  11. Cirrhosis Overview National Digestive Diseases Information Clearinghouse. Retrieved on 2010-01-22
  12. Dieter Häussinger, ed. (2011). Liver Regeneration. Berlin: De Gruyter. p. 1. ISBN 978-3-11-025079-4. 
  13. Suzuki K, Tanaka M, Watanabe N, Saito S, Nonaka H, Miyajima A (2008). "p75 Neurotrophin receptor is a marker for precursors of stellate cells and portal fibroblasts in mouse fetal liver". Gastroenterology. 135 (1): 270–281.e3. doi:10.1053/j.gastro.2008.03.075. PMID 18515089. 
  14. Starzl, T.E. , T.L. Marchioro, K.N. Von Kaulla, G. Hermann, R.S. Brittain, W.R. Waddell, "Homotransplantation of the liver in humans." Surg Gynecol Obstet 117: 659-676, 1963.
  15. R.Y. Calne, R. Williams, "Liver transplantation in man. I. Observations on technique and organization in five cases." Br Med 4: 535-540, 1968.
  16. Gilbert SF (2000). Developmental Biology (6th ed.). Sunderland (MA): Sinauer Associates. 
  17. Berg T, DeLanghe S, Al Alam D, Utley S, Estrada J, Wang KS (2010). "β-catenin regulates mesenchymal progenitor cell differentiation during hepatogenesis". J Surg Res. 164 (2): 276–85. doi:10.1016/j.jss.2009.10.033. PMC 2904820Freely accessible. PMID 20381814. 
  18. Calvin W. Schwabe Unmentionable Cuisine (انگلیسی)
  19. Krishna, Gopi (1970). Kundalini – the evolutionary energy in man. London: Stuart & Watkins. p. 77. SBN 7224 0115 9.  Unknown parameter |coauthors= ignored (|author= suggested) (help)
Hígado
Anatomy Abdomen Tiesworks-es.png
El hígado es visible en la región superior derecha del abdomen.
Liver 01 animation1.gif
Hígado representado en color rojo.
Latín [TA]: hepar;
jecur, iecer
TA A05.8.01.001
Sistema Digestivo
Arteria Arteria hepática
Vena Vena hepática, vena porta hepática
Nervio Ganglios celíacos, nervio vago
Enlaces externos
Gray pág.1188
MeSH liver
FMA 7197

El hígado es un importante órgano que está presente tanto en el ser humano, como en los animales vertebrados. El hígado humano tiene un peso medio de 1500 g,[1]​ está situado en la parte superior derecha del abdomen, debajo del diafragma, segrega la bilis esencial para la digestión de las grasas y cuenta con otras muchas funciones, entre ellas la síntesis de proteínas plasmáticas, almacenamiento de vitaminas y glucógeno y función desintoxicante. Es responsable de eliminar de la sangre diferentes sustancias que puedan resultar nocivas para el organismo entre ellas el alcohol, convirtiéndolas en inocuas. La ausencia de hígado o su falta de funcionamiento es incompatible con la vida.[2][3][4]

Etimología

La palabra hígado no deriva de su homónimo en latín jecur, ni del griego hepatos. Proviene de la expresión latina ficatum jecur que significa literalmente hígado cebado con higos. En la antigüedad los habitantes de Roma tenían la costumbre de alimentar a ciertas aves con higos con la finalidad de obtener una delicia gastronómica, pues el hígado de estos animales adquiría de esta forma un sabor delicioso. Con el tiempo ficatum jecur pasó a significar simplemente hígado y la expresión fue abreviándose, transformándose primero en ficatum, después en fégado y finalmente en hígado. Por lo tanto hígado e higo tienen la misma etimología en español.[5]

Anatomía hepática

Aspectos generales

Cara superior del hígado, puede observarse el ligamento falciforme que lo divide en los lóbulos derecho e izquierdo.
Cara inferior del hígado donde es visible la impresión gástrica, cólica, duodenal y renal, la vena cava inferior en color azul y la vesícula biliar en verde

El hígado tiene una forma triangular, color rojo pardo, superficie lisa y consistencia blanda y depresible. En el adulto humano mide por término medio 26 cm de ancho, 15 cm de alto y 8 cm de espesor a nivel del lóbulo derecho, su peso aproximado es 1,5 kg.

Ubicación

Situación del hígado

El hígado se localiza en la región superior derecha del abdomen, por debajo del diafragma, ocupa el hipocondrio derecho y una parte del epigastrio. En condiciones normales no sobrepasa el límite del reborde costal. Llena el espacio de la cúpula diafragmática, donde puede alcanzar hasta la quinta costilla, y está próximo al corazón del cual se encuentra separado por el diafragma. Está recubierto por una cápsula fibrosa, la cápsula de Glisson, sobre la cual se aplica el peritoneo.[6]

Caras

El hígado se encuentra rodeado por el peritoneo visceral y presenta dos caras:

  • Cara anterosuperior convexa en contacto con el diafragma que lo separa de las bases pulmonares y la cara frénica del corazón.
  • Cara posterorinferior. También llamada cara visceral pues en ella el hígado se relaciona con estructuras situadas en el lado derecho del abdomen, muchas de las cuales dejan una impresión en la cara inferior del lóbulo derecho del hígado. Así, tenemos de atrás a delante la impresión cólica determinada por el ángulo hepático del colon, la impresión duodenal marcada por el duodeno, pegada a la fosa cística donde se aloja la vesícula biliar, la impresión renal menos marcada formada por el polo superior del riñón derecho y más adelante un profundísimo surco marcado por la vena cava inferior. En la cara inferior del lóbulo izquierdo están la impresión gástrica y la escotadura del esófago, en el borde posterior.[7][8]

En la base del hígado se encuentra la vesícula biliar y el hilio hepático, que es la zona de entrada de la vena porta, la arteria hepática y la salida del conducto hepático. La estructura del hígado va a seguir las divisiones de la vena porta hepática. Tras la división de ramos segmentarios, las ramas de la vena porta, acompañadas de las de la arteria hepática y de las divisiones de los conductos hepáticos, se encuentran juntas en el espacio porta.

Lóbulos hepáticos

El hígado se divide por el ligamento falciforme en dos lóbulos principales, derecho e izquierdo. Existen otros dos lóbulos más pequeños el lóbulo cuadrado y el lóbulo caudado que para muchos anatomistas pertenecen al lóbulo izquierdo, aunque otros textos consideran que el hígado tiene cuatro lóbulos.[6]

  • Lóbulo derecho, situado a la derecha del ligamento falciforme;
  • Lóbulo izquierdo, extendido sobre el estómago y situado a la izquierda del ligamento falciforme;
    • Lóbulo cuadrado, visible solamente en la cara inferior del hígado; se encuentra limitado por el surco umbilical a la izquierda, el lecho vesicular a la derecha y el hilio del hígado por detrás;
    • Lóbulo de Spiegel (lóbulo caudado), situado entre el borde posterior del hilio hepático por delante, la vena cava por detrás.

Existen variantes anatómicas frecuentes como el Lóbulo Hepático de Riedel [9]​ donde hay una prolongación infracostal derecha que se puede confundir con hepatomegalia (aumento del tamaño hepático).

Segmentos hepáticos

El hígado y sus segmentos.

La clasificación de Couinaud divide el hígado en ocho segmentos que son funcionalmente independientes, cada uno de estos segmentos dispone de una rama de la vena porta hepática, una rama de la arteria hepática, una rama venosa de salida que tributa a las venas hepáticas y un conducto biliar por el que la bilis llega al conducto hepático.[10]​ Los segmentos 5,6,7 y 8 corresponden al lóbulo derecho, 2,3 y 4 al lóbulo izquierdo y 1 al lóbulo caudado.

Ligamentos

El hígado está cubierto por el peritoneo visceral, tiene varias conexiones con el peritoneo parietal que se llaman ligamentos del hígado, los cuales no son en realidad auténticos ligamentos, sino tractos fibrosos que dan soporte al hígado y lo sustentan sobre las estructuras adyacentes. Estos ligamentos hepáticos son los siguientes:[11][12]

  • Ligamento redondo del hígado. Procede de la obliteración de la vena umbilical, une el hígado a la zona umbilical de la pared abdominal anterior.
  • Ligamento coronario. Une la porción posterior de la cara diafragmática del hígado con el diafragma, se prolonga a ambos lados con el ligamento triangular izquierdo y derecho que tienen la misma función.
  • Ligamento falciforme. Une la cara diafragmática del hígado al diafragma y la pared abdominal anterior. Marca la división entre el lóbulo derecho y el izquierdo.
  • Ligamento gastrohepático. Une la curvatura menor del estómago al hígado
  • Ligamento ducto venoso. Es el remanente fibrosado del ducto venoso que durante el periodo fetal conecta la vena umbilical directamente con la vena cava inferior.
  • Ligamento hepatoduodenal. Une el duodeno al hilio hepático y actúa como soporte de la vena porta, la arteria hepática y la vía biliar principal.

Circulación sanguínea del hígado

La sangre llega al hígado a través de la vena porta y la arteria hepática. El sistema porta constituye el 70-75 por ciento del flujo sanguíneo y contiene sangre poco oxigenada y rica en nutrientes proveniente del tracto gastrointestinal y del bazo. La sangre arterial llega a través de la arteria hepática, rama del tronco celíaco que contiene la sangre oxigenada. La sangre de ambas procedencias se mezcla en los sinusoides hepáticos y abandona el órgano a través de las venas hepáticas, también llamadas suprahepáticas, que finalmente drenan en la vena cava inferior.

Drenaje linfático del hígado

El drenaje linfático del hígado corre a cargo de vasos que desembocan en la vena cava inferior o en los ganglios linfáticos que siguen el recorrido inverso de la arteria hepática.

Inervación del hígado

El hígado recibe nervios del plexo celíaco, de los nervios neumogástrico izquierdo y derecho y también del frénico derecho, por medio del plexo diafragmático. El aporte nervioso también le viene del plexo celíaco que inerva al hepático, mezcla de fibras simpáticas y parasimpáticas. Estos nervios llegan al hígado junto a la arteria hepática.

Histología hepática

Microfotografía de células hepáticas.
Esquema de la estructura microscópica del hígado.

Clásicamente se considera al lobulillo hepático como la unidad funcional del órgano, un hígado humano contiene entre 50 000 y 100 000 lobulillos.[13]​ Cada lobulillo tienen forma hexagonal, en el centro del hexágono se encuentra la vena centrolobulillar y en las esquinas los espacios porta. Entre las esquinas del hexágono y el centro se encuentran los sinusoides hepáticos y los hepatocitos que se disponen en forma radiada en torno a cada vena centrolobulillar. En el lobulillo hepático se mezcla la sangre arterial y venosa procedente de los espacios porta para desembocar en la vena central de cada lobulillo. Dentro del lobulillo hepático se pueden distinguir las siguientes estructuras:

  • Espacios porta o tríadas: son áreas triangulares situadas en los ángulos de los lobulillos hepáticos, constituidas por un estroma conjuntivo laxo; contienen en su interior una rama de la arteria hepática, una rama de la vena porta y un conductillo biliar; la bilis producida por los hepatocitos se vierte en una red de canalículos dentro de las láminas de hepatocitos y fluye, en forma centrípeta al lobulillo, hacia los conductillos biliares de los espacios porta.
  • Sinusoides hepáticos: son capilares que se disponen entre las láminas de hepatocitos y donde confluyen, desde la periferia de los lobulillos, las ramas de la arteria hepática y de la vena porta; la sangre fluye desde las tríadas hasta la vena central, circulando en forma centrípeta; la pared de los sinusoides está formada por una capa discontinua de células endoteliales fenestradas, que carecen de membrana basal. En los sinusoides confluyen la circulación hepática y porta. Estos drenan su contenido a la vena hepática central, de ésta a las venas hepáticas derecha e izquierda, y finalmente a la vena cava inferior.
  • Espacio de Disse: es un estrecho espacio perisinusoidal que se encuentra entre la pared de los sinusoides y las láminas de hepatocitos, ocupado por una red de fibras reticulares y plasma sanguíneo que baña libremente la superficie de los hepatocitos. En el espacio de Disse se produce el intercambio metabólico entre los hepatocitos y el plasma donde se forma la abundante linfa hepática. En este espacio también se encuentran células estrelladas hepáticas o células de Ito, de forma estrellada y su función es almacenar vitamina A.

Células hepáticas

Estructura simplificada del lobulillo hepático: A. Vena centrolobulillar; B.Rama de la vena porta; C.Rama de la arteria hepática: D.Canalículo biliar; E.Hepatocitos.
Esquema del sinusoide hepático con las principales células del hígado: A. Célula de Ito o estrellada, B. Célula endotelial fenestrada, C. Hepatocitos, D. Célula de Kupffer. En el interior del sinusoide se ven también hematies.

Las principales células que forman parte del lobulillo hepático son las siguientes:

  • Hepatocitos: constituyen alrededor del 80 % de la población celular del tejido hepático. Son células poliédricas con 1 o 2 núcleos esféricos poliploides y un nucléolo prominente. Presentan el citoplasma acidófilo con cuerpos basófilos, y son muy ricos en orgánulos. Además, en su citoplasma contienen inclusiones de glucógeno y grasa. La membrana plasmática de los hepatocitos presenta un dominio sinusoidal con microvellosidades que mira hacia el espacio de Disse y un dominio lateral que mira hacia el hepatocito vecino. Las membranas plasmáticas de dos hepatocitos contiguos delimitan un canalículo donde será secretada la bilis. La presencia de múltiples orgánulos en el hepatocito se relaciona con sus numerosas funciones: síntesis de proteínas, metabolismo de hidratos de carbono, formación de bilis, catabolismo de fármacos y tóxicos y el metabolismo de lípidos, purinas y gluconeogénesis.
  • Células de Kupffer: son macrófagos fijos pertenecientes al sistema fagocítico mononuclear que se encuentran adheridos al endotelio y que emiten sus prolongaciones hacia el espacio de Disse. Estas células eliminan de la circulación sanguínea, mediante el proceso de fagocitosis, todo tipo de partículas extrañas, innecesarias o alteradas, incluyendo eritrocitos envejecidos y bacterias. Además actúan como células presentadoras de antígeno y activan la respuesta inmune de los linfocitos T.[14]
  • Células endoteliales: Estas células tapizan la luz de los sinusoides, tienen un citoplasma fenestrado (con poros) a través del cual penetran los componentes de la sangre en dirección hacia la membrana sinusoidal de los hepatocitos.
  • Células hepáticas estrelladas o de Ito: Tienen forma estrellada y poseen la capacidad de almacenar lípidos y vitamina A, constituyendo la principal reserva de esta vitamina del organismo. Tras un daño hepático, las células hepáticas estrelladas, que son las principales responsables del proceso fibrogénico, son activadas adquiriendo propiedades contráctiles, proliferativas y profibrogénicas. Durante el proceso de cicatrización, estas células producen una gran cantidad de proteínas de la matriz extracelular, principalmente colágeno de tipo I.
  • Células de Pit: Son células linfoides residentes en el hígado similares a las células Natural killer. Tienen capacidad citotóxica.
  • Células ductales: Forma la pared de los pequeños ductos por los que circula la bilis.

Fisiología del hígado

El hígado es un órgano o víscera presente en los vertebrados y en algunos otros animales. Es la glándula más voluminosa de la anatomía y una de las más importantes en cuanto a la actividad metabólica del organismo. Desempeña funciones únicas y vitales, entre ellos la síntesis de proteínas plasmáticas, función desintoxicante y almacenamiento de vitaminas y glucógeno. Además elimina de la sangre muchas sustancias que pueden resultar nocivas para el organismo, transformándolas en otras inocuas.[15][16]​ A continuación se resumen las principales funciones del hígado.

Producción de bilis

Estructura química del ácido glicocólico

La bilis es necesaria para la digestión de los alimentos, contiene sales biliares formadas por el hígado a partir del ácido glicocólico y ácido taurocólico que a su vez derivan de la molécula de colesterol. La bilis es excretada hacia la vía biliar y se almacena en la vesícula biliar de donde se expulsa al duodeno cuando se ingieren alimentos. Gracias a la bilis es posible la absorción de las grasas contenidas en los alimentos.

Metabolismo

Las funciones metabólicas del hígado son muy numerosas.

Función inmunológica

  • En los sinusoides hepáticos existen gran número de células de Kupffer, que son macrófagos residentes en el hígado que fagocitan bacterias, virus y macromoléculas extrañas al organismo.[17][18]
  • El hígado es el órgano que produce la mayor parte de las proteínas que forman el sistema del complemento, el cual está formado por unas 18 glucoproteínas que se encuentran en el suero y se activan de forma secuencial en cascada. Este sistema juega un importante papel en la respuesta inmune.
  • El hígado produce la proteína C reactiva, reactante de fase aguda cuya síntesis aumenta considerablemente en los procesos inflamatorios.[19]

Desintoxicación de la sangre

Molécula de etanol, sustancia tóxica metabolizada por el hígado gracias a la enzima alcohol-deshidrogenasa
  • Metabolización del etanol gracias a la enzima alcohol-deshidrogenasa. Esta enzima se localiza principalmente en hígado aunque también está presente en otros tejidos.[20]
  • Neutralización de numerosas toxinas.
  • Metabolización de la mayor parte de los fármacos. Por ejemplo el paracetamol se metaboliza por el hígado uniéndose con el ácido glucurónico eliminándose de esta forma a través de la orina.
  • Transformación del amonio en urea. Este es un importante proceso desintoxicante, ya que la urea es menos tóxica que el amoníaco y se elimina fácilmente a través de la orina.
  • Metabolización de la bilirrubina. La bilirrubina es una sustancia tóxica que procede de la degradación de la hemoglobina. El hígado la elimina a través de la bilis tras conjugarla con ácido glucurónico.[17]

Almacenamiento de sustancias

La ferritina es la principal molécula de almacenamiento de hierro

Hematopoyesis

  • En las primeras 12 semanas de vida intrauterina, el hígado es el principal órgano de producción de glóbulos rojos en el feto. A partir de la semana 12 de la gestación, la médula ósea asume esta función.

Enfermedades del hígado

Un hígado normal y otro afecto de cirrosis hepática.

Algunas de las enfermedades del hígado son:

El hígado en los animales

Hígado de una oveja: 1. Lóbulo izquierdo, 2 Lóbulo derecho, 3 Lóbulo caudado, 4 Lóbulo cuadrado, 5 Arteria hepática y vena porta, 6 Nódulos linfáticos, 7 Vesícula biliar.

Perros y gatos

El hígado en los animales mamíferos tiene una estructura y función muy similar a la del hombre, sin embargo no puede metabolizar las mismas sustancias. En perros y gatos determinados medicamentos como el paracetamol no pueden ser metabolizados fácilmente por el hígado, por lo que resultan tóxicos con dosis muy pequeñas.[23]​ Por otra parte los gatos pueden presentar una enfermedad específica del hígado que no existe en otros animales, la lipidosis hepática felina.[24]

Véase también

Referencias

  1. VV.AA: Órganos Abdominales: Peso del hígado, bazo y riñones en relación a sexo, grupo étnico, edad e índice de masa corporal en individuos chilenos. Int. J. Morphol. vol.32 no.4 Temuco dic. 2014
  2. Testut, L.: Tratado de Anatomía Humana IV Tomo
  3. Abdel-Misih, Sherif R. Z.; Bloomston, Mark (2010). «Liver Anatomy». Surgical Clinics of North America 90 (4): 643-53. PMC 4038911. PMID 20637938. doi:10.1016/j.suc.2010.04.017. 
  4. «Anatomy and physiology of the liver – Canadian Cancer Society». Cancer.ca. Consultado el 11 de noviembre de 2016. 
  5. «¿Cual es origen de la palabra hígado?» Muy Interesante. Consultado el 6 de enero de 2017.
  6. a b Tortora-Derrickson: Principios de anatomía y fisiología, 11ª edición. Consultado el 5 de enero de 2017.
  7. Luis Santos: Síntesis de anatomía humana. Ediciones Universidad Salamanca. Consultado el 8 de enero de 2017
  8. Keith L. Moore,Arthur F. Dalley: Anatomía con orientación clínica. Consultado el 8 de enero de 2017.
  9. Lóbulo Hepático de Riedel o falsa hepatomegalia.
  10. Couinaud classification. Radiology Reference Article, consultado el 5 de enero de 2017
  11. Anatomía y fisiología hepática. Consultado el 3 de enero de 2017
  12. A rare variation of the round ligament of the liver. International Journal of Anatomical Variations (2009) 2: 62–64. Consultado el 3 de enero de 2017.
  13. El hígado. Evaluación de la insidiosa evolución de la enfermedad hepática. Informe de PKID sobre la hepatitis pediátrica. Consultado el 8 de enero de 2017.
  14. La célula de Kupffer. Gastroenterología y hepatología, 2004, 27 (4), 264-273. Consultado el 15 de enero de 2017
  15. Hoja informativa HCSP. Introducción sobre el hígado. Hepatitis C Support Project. Consultado el 10 de enero de 2017
  16. Hoja informativa HCSP. EL VHC y el hígado. Hepatitis C Support Project, 2012. Consultado el 8 de enero de 2017.
  17. a b Farreras-Rozman: Medicina Interna, 17ª edición, consultado el 10 de enero de 2017
  18. J. Clàriaa, E. Titosa: La célula de Kupffer. Gastroenterol Hepatol 2004; 27:264-73. Consultado el 10 de enero de 2017
  19. Juan A Gómez Gerique: Proteína C ractiva como marcador de inflamación. Asociación Española de Farmacéuticos Analistas, ISBN 978-84-613-7844-9, Consultado el 14 de enero de 2017
  20. Mercedes Pérez Carreras, Gregorio Castellano: Hígado y alcohol. Servicio de Aparato Digestivo. Hospital Universitario 12 de Octubre, Madrid. Consultado el 9 de enero de 2017.
  21. Lorena Castro S.: Hígado graso no alcohólico. (enlace roto disponible en Internet Archive; véase el historial y la última versión). Consultado el 26 de diciembre de 2016.
  22. VV:AA: Trombosis venosa portal. Rev. esp. enferm. dig. vol.104 no.6 Madrid jun. 2012. Consultado el 31 de enero de 2017.
  23. Intoxicaciones más frecuentes en pequeños animales. Rev. AVEPA, 24(4) 231-239, 2004. Consultado el 7 de enero de 2017.
  24. El hígado un órgano vital. Vitandpet, nº 19, 2011-2012, consultado el 7 de enero de 2017

Enlaces externos