ژنتیک

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو

فرینش شناسی یا ژن‌شناسی[۱] یا ژنتیک (از کلمهٔ یونانی Genno بمعنای آفرینش دادن) بخشی از دانش زیست‌شناسی است که به وراثت و تفاوتهای جانداران می‌پردازد. بوسیله قوانین و مفاهیم موجود در این علم می‌توانیم به همانندی یا ناهمانندی دو اندامگان نسبت به یکدیگر پی ببریم و بدانیم که چگونه و چرا چنین همانندی یا ناهمانندی در داخل یک جامعه گیاهی و یا جامعه جانوری، بوجود آمده‌است. دانش ژن‌شناسی، دانش جابجایی داده‌های زیستی از یک یاخته به یاخته‌ای دیگر و یا از پدر و مادر به نوزاد و نسلهای آینده می‌باشد. ژن‌شناسی با چگونگی این جابجایی‌ها که باعث نشانگانها، دگرگونی‌ها و همانندی‌ها در اندامگان‌ها می‌باشد، سر و کار دارد. دانش ژن‌شناسی به سرشت فیزیکی و شیمیایی این داده‌ها نیز می‌پردازد.

تاریخچه[ویرایش]

دانش زیست‌شناسی، هرچند از کهنترین دانش‌هایی بوده که بشر به آن توجه داشته‌است. اما از حدود یک صدهٔ پیش از این دانش زیرشاخهٔ تازه‌ای پدید آمد که آن را ژنتیک نامیدند و انقلابی در دانش زیست‌شناسی بوجود آورد. در سدهٔ هجدهم، گروهی از پژوهشگران بر آن شدند که چگونگی جابجایی برخی صفتها و ویژگیها را از نسلی به نسل دیگر بررسی کنند. از این ویژگیها به عنوان ویژگیهای ارثی یاد می‌شود. به دو دلیل مهم که یکی گزینش ویژگیهای نامناسب و دیگری نداشتن آگاهی کافی در زمینه ریاضیات بود، به نتیجه‌ای نرسیدند.

جدولی برای نمایش آزمایش مندل

نخستین کسی که توانست قانون‌های حاکم بر انتقال صفتهای ارثی را شناسایی کند، کشیشی اتریشی به نام گرگور مندل بود که در سال ۱۸۶۵ این قانون‌ها را که نتیجهٔ آزمایش‌هایش روی گیاه نخود فرنگی بود، ارائه کرد. اما متأسفانه جامعه علمی آن زمان به دیدگاه‌ها و کشفهای او اهمیت چندانی نداد و نتیجهٔ کارهای مندل به دست فراموشی سپرده شد. در سال ۱۹۰۰ میلادی کشف دوبارهٔ همان قانون‌ها، توسط درویس، شرماک و کورنز باعث شد که دیدگاه‌های مندل به گونه‌ای جدی‌تر مورد توجه و پذیرش قرار گیرد. هم اینک، مندل به عنوان «پدر دانش ژنتیک» شناخته می‌شود.

در سال ۱۹۵۳ با کشف ساختمان جایگاه ژن‌ها از سوی جیمز واتسون و فرانسیس کریک، رشته‌ای نو در دانش زیست‌شناسی بوجود آمد که زیست‌شناسی مولکولی نام گرفت. با گذشت حدود یک صده از کشفهای مندل در سالهای ۱۹۷۱ و ۱۹۷۳ در رشته زیست‌شناسی مولکولی و ژنتیک، که اولی به بررسی ساختمان و چگونگی کارکرد ژن‌ها و دومی به بررسی بیماریهای ژنتیک و پیدا کردن درمانی برای آنها می‌پرداخت، این دو رشته با هم درآمیختند و رشته‌ای به نام مهندسی ژنتیک را پدید آوردند که طی اندک زمانی توانست در رشته‌های گوناگون دیگری مانند پزشکی، صنعت، کشاورزی، و... بسیار اثرگذار باشد. پژوهش‌های ژنتیکی همچنین به سهم خود موجب شده‌است که آدمی به جهان و دنیای پیرامون خود، بصیرت به مراتب بیشتری پیدا کرده و نگاهی نو بر خویش بیندازد. تمام ویژگی‌های فیزیکی ما و تمام موجودات زنده‌ای که روی زمین زیست می‌کنند تحت نفوذ و متأثر از DNA موجود در سلول یا تغییرات ژنتیکی است که اتفاقی یا اجباری در ناحیه‌ای از ژنوم بوقوع می‌پیوندد. در این تغییرات معمولاً یک یا چند باز زنجیره اسید نوکلئیک تعویض شده و اطلاعات ژنتیکی ژنوم تغییر می‌کند و بطور پایدار به نسلهای بعدی منتقل می‌گردد. از این رو استفاده از این دانش گسترده شده است بطوریکه یکی از عرصه‌های کاربردی این علم تعیین نسبتهای خویشاوندی و شناسایی افراد و تعیین دودمان و نیای ژنتیکی انسانهاست.[۲]

امروزه موضوع تعیین هویت ژنتیکی از حیث موضوعات قضایی نیز مورد توجه زیاد قرار گرفته است. تعیین هویت ژنتیکی با روش‌های مولکولی انگشت نگاری DNA Finger Printing) (DNA با اهداف مختلف در سراسر جهان مورد بهره‌برداری قرار می‌گیرد. در این روش می‌توان از شاخصهای مولکولی نظیر تکرارهای پشت سر هم کوتاه(STRs)، DNA میتوکندری، چندشکلی‌های تک نوکلئوتیدی(SNPs) در سطح کروموزوم Y و سایر کروموزوم‌ها استفاده کرد. از DNA میتوکندری برای ردیابی ژنتیکی نیای مادری و از مطالعه ژنتیکی کروموزوم Y هر فرد به نیای پدری دست خواهیم یافت. همچنین در بررسیهای باستانی خصوصیات ویژه‌ای همچون وجود ارتباط معنادار بین SNPs مورد بررسی قرار می‌گیرد تا بتوان یک نمونه مورد مطالعه را در گروه خاصی که هاپلوگروپ نام دارد قرار دهند. هاپلوگروپ در واقع دسته‌ای از هاپلوتایپ‌های نزدیک به یکدیگر می‌باشد که جهشهایی را از نیای مشترک خود در بر دارند. هاپلوتایپها نیز مجموعه‌ای از SNPs در یک توالی نوکلئوتیدی می‌باشند که با یکدیگر به نسل بعد انتقال می‌یابند.[۳]

از DNA میتوکندری برای شناسایی اعضای خانواده سلطنتی نیکولاس دوم نیز استفاده شده است. در سال ۱۹۹۱ چندین مجموعه از استخوانها در یک گور دسته جمعی در روسیه کشف شدند که اعتقاد بر این بود متعلق به نیکولاس دوم، همسرش (سارینا) و ۳ تن از دخترهایش می‌باشند. با وجود اینکه ۷۰ سال از عمر استخوانها می‌گذشت اما بررسی توالی tDNA میتوکندری بسیار کارآمد بود. توالی کاملاً مشابهی از ژنوم mtDNA بین سارینا، سه دخترش و پادشاه فیلیپ (پادشاه انگلستان) که در زمان بررسی در قید حیات بود و از نظر نسبی مادربزرگ مادریش خواهر سارینا بود مشاهده شد.[۴]

تقسیم‌بندی دانش ژنتیک[ویرایش]

آزمایش مورگان

ژنتیک را می‌توان به هفت گروه تقسیم‌بندی کرد:[۵]

ژنتیک مندل[ویرایش]

ژنتیک مندلی یا کروموزومی بخشی از ژنتیک امروزی است که از توارث ژنهای موجود در روی کروموزوم‌ها بحث می‌کند، اما برعکس در ژنتیک غیر مندلی که به ژنتیک غیر کروموزومی نیز معروف است، توارث مواد ژنتیکی موجود در کلروپلاست و میتوکندری، مورد تجزیه و تحلیل قرار می‌گیرد.

تغییرات نسبتهای مندلی[ویرایش]

نسبتهای فنوتیپی مندلی در مونوهیبریدها (۳:۱)، تحت تأثیر عوامل متعددی چون غالبیت ناقص، هم بارزی، ژنهای کشنده، نافذ بودن و قدرت تظاهر یک ژن و چند آللی قرار می‌گیرد که نسبتهای مندلی را تغییر می‌دهد.

احتمالات[ویرایش]

آشنایی با قوانین علم احتمالات، از نظر درک چگونگی انجام پدپده‌های ژنتیکی، پیش بینی فنوتیپی، نتایج حاصله از یک آمیزش و برآورد انطباق نسبت فنوتیپی نسل اول و دوم، با یکی از مکانیزمهای ژنتیکی دارای اهمیت فوق‌العاده‌ای می‌باشد.

پیوستگی ژنها[ویرایش]

پدیده پیوستگی ژنها (Linkage) بوسیله مورگان، در سال ۱۹۰۳، عنوان گردید. مورگان با بیان اینکه کروموزوم‌ها حامل عوامل ارثی (ژنها) هستند، روشن نمود که تعداد ژنها به مراتب بیشتر از تعداد کروموزوم‌ها بوده و بنابراین هر کروموزوم، می‌تواند حامل ژنهای متعددی باشد.[نیازمند منبع]

جهش ژنی[ویرایش]

منظور از جهش ژنی، هرگونه تغییر در ساختمان اسیدهای نوکلئیک تشکیل دهنده ماده وراثتی موجود زنده را گویند که باعث تغییرات فنوتیپی در موجود زنده می‌شود موجودی که فنوتیپ آن در نتیجه موتاسیون تغییر می‌کند را موتان می‌گویند. منظور از فنوتیپ، خصوصیت ظاهری ژن در صورت بیان شدن است. برای مثال ژن‌های کنترل کننده رنگ پوست را در نظر بگیرید، فنوتیپ آنها رنگ پوست می‌باشد. هرگونه تغییری در آنها باعث تغییر در طرز بیان آنها و در نهایت باعث تغییر در فنوتیپ آنها (رنگ پوست) می‌گردد.

جستارهای وابسته[ویرایش]

منابع[ویرایش]

  1. واژهٔ مصوب فرهنگستان زبان و ادب فارسی، دفتر نخست تا چهارم، ۱۳۷۶ تا ۸۵
  2. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nature genetics. ۱۹۹۹;۲3(2):۱۴۷-.
  3. Grzybowski T, Rogalla U. Mitochondria in Anthropology and Forensic Medicine. Advances in Mitochondrial Medicine: Springer; 2012. p. ۴۴۱–۵۳.
  4. Ivanov PL, Wadhams MJ, Roby RK, Holland MM, Weedn VW, Parsons TJ. Mitochondrial DNA sequence heteroplasmy in the Grand Duke of Russia Georgij Romanov establishes the authenticity of the remains of Tsar Nicholas II. Nature genetics. ۱۹۹۶;۱2(4):۴۱۷–۲۰.
  5. اصول ژنتیک، دانشگاه تهران
  • ژنتیک ویروسها