تفاوت میان نسخه‌های «برش‌نگاری با گسیل پوزیترون»

پرش به ناوبری پرش به جستجو
جز
v1.43b - پروژهٔ چک‌ویکی (زیربخش های دارای دونقطه)
جز (v1.43b - پروژهٔ چک‌ویکی (زیربخش های دارای دونقطه))
برچسب: WPCleaner
در عمل، پیش پردازش قابل توجهی از داده ها لازم است - اصلاح برای اتفاق‌های تصادفی، تخمین و تفریق فوتون‌های پراکنده، اصلاح [[:en:Dead_time|زمان مرده]] تشخیص (پس از تشخیص فوتون، آشکارساز باید دوباره خنک شود) و آشکارساز - اصلاح حساسیت (برای هر دو حساسیت آشکارساز ذاتی و تغییر در حساسیت به علت زاویه بروز).طرح ریزی فیلتر شده (FBP) اغلب برای بازسازی تصاویر از پیش بینی‌ها استفاده می‌شود. مزیت این الگوریتم این است که در حالیکه نیاز کم به محاسبه منابع وجود دارد ساده باشد. معایب این است که نویز شات در داده‌های خام در تصاویر بازسازی شده برجسته است، و مناطقی از جذب بالا ردیابی تمایل به تشکیل رگه‌ها در سراسر تصویر.
 
=== روش‌های آماری،رویکردهای مبتنی بر احتمال: ===
آماری، احتمال مبتنی بر<ref>{{Cite journal|last=Carson|first=Richard E.|date=1986-07|title=A Maximum Likelihood Method for Region-of-Interest Evaluation in Emission Tomography|url=http://dx.doi.org/10.1097/00004728-198607000-00021|journal=Journal of Computer Assisted Tomography|volume=10|issue=4|pages=654–663|doi=10.1097/00004728-198607000-00021|issn=0363-8715}}</ref> <ref>{{Cite journal|last=Vardi|first=Y.|last2=Shepp|first2=L. A.|last3=Kaufman|first3=L.|date=1985-03|title=A Statistical Model for Positron Emission Tomography|url=http://dx.doi.org/10.1080/01621459.1985.10477119|journal=Journal of the American Statistical Association|volume=80|issue=389|pages=8–20|doi=10.1080/01621459.1985.10477119|issn=0162-1459}}</ref> الگوریتم‌های تکرار انتظار-حداکثر سازی مانند الگوریتم Shepp-Vardi در حال حاضر روش ترجیحی بازسازی است. این الگوریتم ها برآورد توزیع احتمالی حوادث نابودی را محاسبه می‌کنند که به داده‌های اندازه‌گیری شده بر اساس اصول آماری منجر می‌شود. مزیت پروفیل نویز بهتر و مقاومت در برابر مصنوعات رگه ای است که با FBP معمول است، اما ضرورت این است که نیازهای منابع کامپیوتر بالا باشد. یک مزیت دیگر از تکنیک‌های بازسازی تصویر آماری این است که اثرات فیزیکی که باید قبل از اصلاح برای استفاده از الگوریتم بازنگری تحلیلی مانند فوتون‌های پراکنده، اتفاق‌های تصادفی، انقباض و آشکارساز زمان ماندگار، به احتمال زیاد مدل مورد استفاده در بازسازی، اجازه می‌دهد برای کاهش سر و صدای اضافی. نشان داده شده است که بازسازی واقعی، منجر به پیشرفت در حل و فصل تصاویر بازسازی شده می‌شود، از آنجا که مدل‌های پیچیده‌تر فیزیک اسکنر می‌تواند در مدل احتمال بیشتر از آنچه که توسط روش‌های بازسازی تحلیلی استفاده می‌شود، امکان سنجی بهبود یافته توزیع رادیواکتیویته را افزایش دهد.<ref>{{Cite journal|last=Qi|first=Jinyi|last2=Leahy|first2=Richard M|date=2006-07-12|title=Iterative reconstruction techniques in emission computed tomography|url=http://dx.doi.org/10.1088/0031-9155/51/15/r01|journal=Physics in Medicine and Biology|volume=51|issue=15|pages=R541–R578|doi=10.1088/0031-9155/51/15/r01|issn=0031-9155}}</ref>
 
=== تصحیح تضعیف: ===
تصویربرداریPET  نیاز به اصلاح ضخامت دارد<ref>{{Cite journal|last=Huang|first=Sung-Cheng|last2=Hoffman|first2=Edward J.|last3=Phelps|first3=Michael E.|last4=Kuhl|first4=David E.|date=1979-12|title=Quantitation in Positron Emission Computed Tomography|url=http://dx.doi.org/10.1097/00004728-197912000-00018|journal=Journal of Computer Assisted Tomography|volume=3|issue=6|pages=804–814|doi=10.1097/00004728-197912000-00018|issn=0363-8715}}</ref> در این سیستم تصحیح تضعیف براساس اسکن انتقال با استفاده از منبع میله چرخش 68Ge است<ref>{{Cite journal|last=Navalpakkam|first=Bharath K.|last2=Braun|first2=Harald|last3=Kuwert|first3=Torsten|last4=Quick|first4=Harald H.|date=2013-05|title=Magnetic Resonance–Based Attenuation Correction for PET/MR Hybrid Imaging Using Continuous Valued Attenuation Maps|url=http://dx.doi.org/10.1097/rli.0b013e318283292f|journal=Investigative Radiology|volume=48|issue=5|pages=323–332|doi=10.1097/rli.0b013e318283292f|issn=0020-9996}}</ref>
 
در حالی که تصاوير تصحيح شده با ضخامت عمدتا بازنمايی وفادارتر است، فرآيند تصحيح خود را حساس به مصنوعات برجسته می‌کند. در نتیجه، هر دو تصحیح و اصلاح نشده تصاویر همیشه بازسازی و خواندن با هم.
 
=== بازسازی 2D / 3D: ===
اسکنرهای اولیه PET تنها یک حلقه ی آشکارساز داشتند، از این رو کسب اطلاعات و بازسازی بعدی به یک صفحه ی عرضی محدود شده بود. امروزه اسکنرهای مدرن شامل حلقه های متعدد هستند که اساسا یک سیلندر آشکارساز را تشکیل می‌دهند.دو روش برای بازسازی داده‌ها از یک اسکنر وجود دارد:
 
2) اجازه می دهد که همزمان بین حلقه ها و همچنین حلقه ها اتفاق بیفتد، سپس کل حجم را با هم بازسازی می کنیم (3D).تکنیک های 3D حساسیت بیشتری دارند (به این دلیل که بیشتر سازگاری ها شناسایی و مورد استفاده قرار می‌گیرند) و به همین دلیل سر و صدای کمتر، اما بیشتر به اثرات پراکنده و تصادفی سازگاری حساس هستند، و هم‌چنین نیاز به منابع کامپیوتر به طور مساوی بیشتر. ظهور آشکارسازهای حل و فصل زمان‌های نیمه نانو، امکان رد تصادفی بهتر را فراهم می‌کند، بنابراین برای بازسازی تصویر 3D ترجیح می‌دهد.
 
=== زمان پرواز TOF) PET): ===
برای سیستم‌های مدرن با وضوح زمانی بالاتر (تقریبا 3 نانو ثانیه) یک تکنیک به نام "زمان پرواز" برای بهبود عملکرد کلی استفاده می‌شود. PET پرواز زمان استفاده از آشکارسازهای اشعه گاما بسیار سریع و سیستم پردازش داده‌ها است که دقیق‌تر می‌تواند تفاوت بین زمان تشخیص دو فوتون را تعیین کند. اگر چه از لحاظ فنی غیرممکن است که نقطه منشاء حوادث نابودی را دقیقا (در حال حاضر در حدود 10 سانتیمتر) قرار دهیم بنابراین بازسازی تصویر هنوز مورد نیاز است، تکنیک TOF به طور قابل توجهی بهبود کیفیت تصویر، به ویژه نسبت سیگنال به نویز.
[[پرونده:Viewer medecine nucleaire keosys.JPG|بندانگشتی|تصویر PET-CT از بدن کامل]]

منوی ناوبری