هماهنگ‌های کروی

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به ناوبری پرش به جستجو

در ریاضیات، هماهنگ‌های کروی بخش زاویه‌ای مجموعه‌ای از جواب‌های متعامد برای معادله لاپلاس هستند که در دستگاه مختصات کروی بیان شده است. هماهنگ‌های کروی کاربردهای نظری و عملی زیادی دارند، به ویژه در محاسبهٔ ترازهای الکترونی اتم‌ها، نمایش میدان‌های گرانشی، میدان مغناطیسی سیارات و تابش زمینه کیهانی. در گرافیک رایانه‌ای سه‌بعدی، هماهنگ‌های کروی نقش خاصی را در مسائل گوناگونی بازی می‌کنند، مانند نورپردازی غیرمستقیم و تشخیص اشیای سه‌بعدی.

مقدمه[ویرایش]

هماهنگ‌های کروی حقیقی، Ylm، برای l=0 تا l=4 (بالا به پایین) و m=0 تا m=4 (چپ به راست).

معادله لاپلاس در مختصات کروی به شکل زیر است:

با تبدیل ‎f(r,θ,φ)=R(r)Θ(θ)Φ(φ)‎ ، بخش زاویه‌ای معادلهٔ لاپلاس در شرط زیر صدق می‌کند:

با به‌کاربردن روش جداسازی متغیرها به دو معادله دیفرانسیل زیر می‌رسیم:

برای هر m و l. بنابراین می‌توان نشان داد که بخش زاویه‌ای جواب، حاصل‌ضرب توابع مثلثاتی و توابع وابسته لژاندر هستند:

که در آن هماهنگ کروی درجهٔ و مرتبهٔ m خوانده می‌شود و تابع وابسته لژاندر است، N ثابت بهنجارش است و θ و φ به ترتیب زاویه با محور z (متمم عرض جغرافیایی) و زاویهٔ قطبی (طول جغرافیایی) هستند.

منابع[ویرایش]

  • E.W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, (1955) Chelsea Pub. Co., ISBN: 978-0-8284-0104-3.

پیوند به بیرون[ویرایش]