هافنیم

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به ناوبری پرش به جستجو
فارسیEnglish
لوتتیمهافنیمتانتال
Zr

Hf

Rf
ظاهر
steel grey
ویژگی‌های کلی
نام، نماد، عدد هافنیم، Hf،‏ 72
تلفظ به انگلیسی ‎/ˈhæfniəm/‎
HAF-nee-əm
نام گروهی برای عناصر مشابه فلزات واسطه
گروه، دوره، بلوک ۴، ۶، d
جرم اتمی استاندارد 178.49 گرم بر مول
آرایش الکترونی [Xe] 4f14 5d2 6s2
الکترون به لایه 2, 8, 18, 32, 10, 2
ویژگی‌های فیزیکی
حالت جامد
چگالی (نزدیک به دمای اتاق) 13.31 g·cm−۳
چگالی مایع در نقطه ذوب 12 g·cm−۳
نقطه ذوب 2506 K،‎ 2233 °C،‎ 4051 °F
نقطه جوش 4876 K،‎ 4603 °C،‎ 8317 °F
گرمای هم‌جوشی 27.2 کیلوژول بر مول
گرمای تبخیر 571 کیلوژول بر مول
ظرفیت گرمایی 25.73 کیلوژول بر مول
فشار بخار
فشار (پاسکال) ۱ ۱۰ ۱۰۰ ۱k ۱۰k ۱۰۰k
دما (کلوین) 2689 2954 3277 3679 4194 4876
ویژگی‌های اتمی
وضعیت اکسید شدن 4, 3, 2 (آمفوتر oxide)
الکترونگاتیوی 1.3 (مقیاس پاولینگ)
انرژی‌های یونش نخستین: 658.5 کیلوژول بر مول
دومین: 1440 کیلوژول بر مول
سومین: 2250 کیلوژول بر مول
شعاع اتمی 159 pm
شعاع کووالانسی 175±10 pm
متفرقه
ساختار کریستالی hexagonal
مغناطیس پارامغناطیس[۱]
مقاومت ویژه الکتریکی (20 °C) 331 nΩ·m
رسانایی گرمایی (300 K) 23.0 W·m−1·K−1
انبساط گرمایی (25 °C) 5.9 µm·m−1·K−1
سرعت صوت (سیم نازک) (20 °C) 3010 m/s
مدول یانگ 78 GPa
مدول برشی 30 GPa
مدول حجمی 110 GPa
نسبت پواسون 0.37
سختی موس 5.5
سختی ویکر 1760 MPa
سختی برینل 1700 MPa
عدد کاس 7440-58-6
پایدارترین ایزوتوپ‌ها
مقاله اصلی ایزوتوپ‌های هافنیم
ایزوتوپ NA نیمه‌عمر DM DE (MeV) DP
172Hf syn 1.87 y ε 0.350 172Lu
174Hf 0.162% 2×1015 y α 2.495 170Yb
176Hf 5.206% 176Hf ایزوتوپ پایدار است که 104 نوترون دارد
177Hf 18.606% 177Hf ایزوتوپ پایدار است که 105 نوترون دارد
178Hf 27.297% 178Hf ایزوتوپ پایدار است که 106 نوترون دارد
178m2Hf syn 31 y IT 2.446 178Hf
179Hf 13.629% 179Hf ایزوتوپ پایدار است که 107 نوترون دارد
180Hf 35.1% 180Hf ایزوتوپ پایدار است که 108 نوترون دارد
182Hf syn 9×106 y β 0.373 182Ta

هافنیوم (Hafnium) هافنیوم یک عنصر شیمیایی با علامت Hf و عدد اتمی ۷۲ است. این فلز نقطه ذوب بسیار بالایی دارد، به رنگ قهوه‌ای مایل به قرمز می‌باشد و ترکیبات آن شباهت زیادی به ترکیبات زیرکونیم دارد. البته این نکته قابل ذکر است که در بسیاری از موارد این ماده از مواد معدنی زیرکونیوم بدست می‌آید.

هافنیوم در فیبرها و الکترودها استفاده می‌شود. بعضی از سوپرآلیاژها که برای برنامه‌های خاصی به کار می‌روند حاوی ترکیبات هافنیوم، نایوبیوم، تیتانیوم و تنگستن هستند.

هافنیوم فلزی براق با کاربردهای فراوان در علوم هسته ای و آلیاژها و فراوانی متوسط 3 ppm (ppm: جزء در میلیون) در پوسته زمین، قطعاً یکی از عناصر کمیاب به حساب نمی‌آید. فراوانی این فلز در پوسته زمین از فلزاتی همچون طلا، نقره و فلزات گروه پلاتین، برخی از عناصر کمیاب و فلزاتی از جمله ژرمانیوم، تانتالوم و مولیبدن بیشتر است. البته تولید هافنیوم به عنوان یک فلز از لحاظ کمی فعلاً در سطح پایینی است (کمتر از ۷۰ تن در سال). این تولید پایین دو دلیل عمده دارد: اولاً هافنیوم که معمولاً در کاربردهای هسته ای به خصوص نیروگاه‌های هسته ای کاربرد دارد یکی از محصولات جانبی تصفیه زیرکونیوم به حساب می‌آید و ثانیاً جداسازی هافنیوم از زیرکونیوم بسیار مشکل است، ضمن آنکه این دو فلز اغلب به صورت مرکب در طبیعت یافت می‌شوند. به همین دلیل است که در حال حاضر در تمام دنیا تنها دو تولیدکننده عمده هافنیوم فعالیت می‌کنند: یکی شرکت ای تی آی واچانگ (ATI Wah Chang) که بخشی از شرکت آلگنی تکنولوژی (Allegheny Technologies) در ایالت اوریگان (Oregon) آمریکا می‌باشد و دیگری شرکت سزوس (CEZUS) در شهر جاری (Jarrie) فرانسه که بخشی از شرکت آروا (AREVA) و بزرگترین تولیدکننده نیروگاه‌های هسته ای است.

خواص فیزیکی عنصر هافنیم:

  • عدد اتمی: ۷۲
  • جرم اتمی: ۱۷۸٫۴۹
  • نقطه ذوب: C° ۲۲۲۷
  • نقطه جوش: C° ۴۶۰۳
  • شعاع اتمی: Å ۲٫۱۶
  • ظرفیت: ۴
  • رنگ: خاکستری تیره
  • حالت در شرایط استاندارد: جامد
  • نام گروه: ۴
تکه‌های هافنیوم

دستیابی به هافنیوم[ویرایش]

نظر به مشکلات جداسازی هافنیوم (از زیرکونیوم) تعجبی ندارد که این فلز از جمله آخرین عناصری باشد که کشف شده‌است. هر چند شیمی دانان قبلاً محلی را برای هافنیوم در جدول تناوبی در نظر گرفته بودند (عنصر شماره ۷۲)، اما این عنصر تا قبل از سال ۱۹۲۰ کشف نشده بود. در سال ۱۹۲۳ فیزیک‌دانی هلندی به نام دیرک کوستر (Dirk Coster) و شیمی‌دانی بلغارستانی به نام جورجی هوسی (Gyorgy Hevesy) که از قضا برنده جایزه نوبل نیز بود با همکاری یکدیگر در شهر کپنهاگن (Copenhagen) دانمارک و استفاده از روش‌های تجزیه و تحلیل به کمک اشعه ایکس توانستند وجود هافنیوم را به عنوان عنصری مجزا از زیرکونیم به اثبات برسانند. نام هافنیوم از کلمه هافنیا (Hafnia) که نام لاتین شهر کپنهاگن می‌باشد، گرفته شده‌است.

هافنیوم در فرم فلزی خود، فلزی براق و رساناست که دانسیته آن دو برابر زیرکونیوم است. البته هیچ‌گاه نمی‌توان هافنیوم را به صورت یک عنصر خالص در طبیعت یافت؛ جهت دستیابی به فرم خالص این فلز به یک پروسه طولانی و پیچیده تصفیه نیاز است. هافنیوم در طبیعت در سنگ معدن‌هایی که حاوی زیرکونیم هستند همچون زیرکن و بدلیایت (baddeleyite – اکسید زیرکونیوم یا زیرکونیا) و به صورت ترکیب شده با زیرکونیم با نسبت ۱ به ۵۰ یافت می‌شود. البته سنگ معدن‌های دیگری مانند آلویت (Alvite) و هافنون (Hafnon) نیز حاوی هافنیوم هستند، اما چندان مورد توجه نیستند. هافنیوم به‌طور عمده در زیرکن یافت می‌شود و زیرکن نیز به نوبه خود از فرآوری ماسه‌های حاوی مواد معدنی سنگین و ایلمنیت زیرکونیم دار بدست می‌آید. ایلمنیت زیرکونیم دار به دو ترکیب اکسید تیتانیوم و ماسه زیرکن (ZrSio4) تجزیه می‌شود که دومی همان‌طور که مشاهده می‌شود حاوی زیرکونیم است. البته شایان ذکر است که تمام ایلمنیت‌ها حاوی زیرکونیوم و نتیجتاً هافنیوم نیستند. استرالیا، آفریقای جنوبی و چین تولیدکنندگان اصلی ماسه زیرکن در دنیا هستند و برزیل، روسیه و اوکراین منابع خوبی از بدلیایت را در اختیار دارند.

هافنیوم عموماً در صنایع هسته ای به کار می‌رود و میزان تولید آن بستگی به میزان تولید اسفنج زیرکونیوم دارد که از ماسه زیرکونیوم بدست می‌آید. برای اینکه زیرکونیوم بتواند به خوبی در میله‌های سوخت هسته ای عمل کند باید تا حد ممکن اجازه عبور نوترون‌ها از خود را بدهد، از این رو باید کمترین میزان هافنیوم را داشته باشد چرا که مقطع جذب حرارتی نوترون‌ها در اتم هافنیوم ۶۰۰ برابر زیرکونیوم است. هر چند خاصیت جذب نوترون‌ها در هافنیوم و زیرکونیوم تفاوت فاحشی با یکدیگر دارد، اما کلیه خواص شیمیایی این دو عنصر، به غیر از دانسیته، تقریباً شبیه به هم است و به همین دلیل است که جداسازی آن‌ها از یکدیگر کار بسیار مشکلی است. در گذشته تولید هافنیوم از طریق پروسه ای صورت می‌گرفت که دو دانشمند به نام‌های ون آرکل (Van Arkel) و دبوئر (de Boer) ابداع کرده بودند و طی آن بخار تترا یدید از روی یک رشته تنگستن داغ عبور داده می‌شد. امروزه تقریباً کل هافنیوم تولید شده در دنیا از طریق پروسه کرول (Kroll) بدست می‌آید؛ در این پروسه، تترا کلرید را با استفاده از منیزیم یا سدیم احیا می‌کنند؛ سپس برای تصفیه هر چه بیشتر هافنیوم از پروسه یدی آرکل دبوئر یا ذوب به روش پرتو الکترونی استفاده می‌شود. روش اول (پروسه ون آرکل دبوئر) روشی است که شرکت ای تی آی واچانگ برای تولید شمش‌های کریستال هافنیوم با درصد بسیار پایین زیرکونیوم مورد استفاده قرار می‌دهد.

بر اساس برآوردها دو تولیدکننده عمده هافنیوم یعنی شرکت ای تی آی واچانگ و سزوس به ترتیب سالیانه حدود ۴۰ و ۳۰ تن هافنیوم تولید می‌کنند که از این میزان به ترتیب ۲۰ و ۱۰ تن آن به‌طور خالص شمش کریستال هافنیوم و مابقی عناصر دیگری همچون زیرکونیوم یا گازهایی با دانسیته بسیار پایین است که در شمش هافنیوم موجود می‌باشند؛ بنابراین همان‌طور که دیده می‌شود در عمل هافنیوم کمتری تولید می‌شود. هند تولیدکننده هافنیوم است، اما صادرکننده آن نیست. چین هم با تولید حدود ۲ تن هافنیوم در سال با درجه خلوص پایین، از جمله تولیدکنندگان این فلز به‌شمار می‌آید. با وجود آنکه با استفاده از فناوری‌های کنونی و دستگاه‌های حاضر امکان جداسازی هافنیوم و زیرکونیوم وجود دارد، اما هافنیوم بدست آمده درجه خلوص بالایی ندارد و به عنوان مثال نمی‌توان به قدری آن را تصفیه کرد که مقدار زیرکونیوم موجود در آن به ۰٫۲ تا ۰٫۵ درصد برسد. در گذشته، دو کشور وابسته به بلوک شرق یعنی روسیه و اوکراین نیز جزء تولیدکنندگان هافنیوم بودند. البته شرکت «کارخانجات جی اس سی چپتسکی» (JSC Chepetsky) در شهر گلاسوف (Glasov) روسیه همچنان هافنیوم را در فهرست اقلام تولیدی خود دارد. در اوکراین نیز «مجتمع فلزکاری-معدنکاری استان وولنوگورسک» (Volnogorsk) واقع در منطقه دینپروپتروفسک (Dnepropetrovsk) به تولید هافنیوم ادامه می‌دهد. بر اساس برآوردها، میزان تولید فعلی هافنویم در روسیه و اوکراین جمعاً حدود ۲ تن است که اوکراین سهم بیشتری از آن دارد. چنین سهمی نه از تولید کنونی اوکراین که از تولید و انباشت هافنیوم در آن طی سال‌های گذشته نشات می‌گیرد. نگاهی اجمالی به آینده نشان می‌دهد که روسیه و اوکراین به ترتیب پتانسیل تولید ۳ الی ۱۰ تن و ۵ تن هافنیوم را در سال دارند. دولت چین نیز که برنامه‌هایی برای تولید انرژی هسته ای دارد، بی شک به دنبال تولید هر چه زودتر هافنیوم با درجه خلوص بالاست. اینکه آیا چین در آینده هافنیوم مازاد بر نیاز خود را صادر می‌کند یا خیر، مسئله ای است که همچنان در پرده ابهام قرار دارد. به هر حال جدا از آنچه در فوق گفته شد، احتمال دارد بخشی از تولید هافنیوم به چشم نیاید و در برآوردهای کلی لحاظ نگردد.

قیمت هافنیوم از دو لحاظ جالب توجه است. اول اینکه قیمت این فلز به نظر بسیار ارزان می‌آید و دوم اینکه طی مدت زمانی طولانی (از سال ۱۹۷۰ تا ۲۰۰۰) به‌طور شگفت‌آوری ثبات داشته و نوسان بسیار اندکی را تجربه کرده‌است.

در حال حاضر، هر کیلوگرم هافنیوم با ۰٫۲ تا ۰٫۵ درصد ناخالصی زیرکونیوم، ۱۲۰۰ تا ۱۳۰۰ دلار قیمت دارد. اگر هافنیوم با درصد ناخالصی پایین‌تر (کمتر از ۰٫۱ درصد زیرکونیوم) تولید شود، قطعاً قیمت بالاتری هم خواهد داشت. هر کیلوگرم هافنیوم با ۰٫۵ تا ۱ درصد و ۱ تا ۳ درصد زیرکونیوم به ترتیب ۸۰۰ تا ۹۰۰ دلار و ۵۰۰ تا ۷۰۰ دلار به فروش می‌رسد. مقایسه میزان تولید و قیمت هافنیوم و عنصر دیگری به نام رنیوم ممکن است هر کسی را به تجعب وادارد: در حالی که میزان تولید سالیانه هافنیوم و رنیوم تقریباً در حد و حدود یکدیگر است (هافنیوم ۷۰ تن و رنیوم ۵۰ تن)، هر کیلوگرم رنیوم در مقایسه با هافنیوم ۴ الی ۵ هزار دلار معامله می‌شود.

Hafnium ebeam remelted.jpg

کاربرد[ویرایش]

در حال حاضر هافنیوم سه کاربرد مهم دارد که عبارتند از: ۱. تولید ابر آلیاژها (چه در صنایع هوا فضا و چه در دیگر صنایع) ۲. تولید آلیاژهای دیرگداز و ۳. کاربردهای هسته ای

الیاژها[ویرایش]

کاربرد هافنیوم با نقطه ذوب بالای ۲۲۳۳ درجه سانتیگراد (۴۰۵۱ درجه فارنهایت) در آلیاژهای مقاوم در برابر گرما و آلیاژهای حاوی نیکل پر کریستال (پلی کریستال) باعث تقویت مرز دانه‌ها (محل تلاقی دانه‌های متبلور شده) در آلیاژ شده و نتیجتاً مقاومت کششی آلیاژ و همچنین مقاومت آن در برابر تغییر شکل در دماهای بالا را به شکل قابل توجهی افزایش می‌دهد. به علاوه به دلیل تمایل بالای هافنیوم به ترکیب با کربن، نیتروژن و اکسیژن، کاربرد آن در آلیاژها باعث مقاومت بیشتر آلیاژ در مرحله پخش ذره ای می‌شود. یکی از رایج‌ترین کاربردهای هافنیوم، استفاده از آن در ابر آلیاژهایی است که در پره توربین‌ها یا قسمت انتهایی و داغ موتور جت یافت می‌شوند و قابلیت استقامت در برابر حرارت و فشار بالا را دارند. مقدار هافنیوم به کار رفته در این آلیاژها چیزی حدود ۱ الی ۲ درصد است. به عنوان مثال آلیاژ MAR-M 247 که حاوی ۵/۱ درصد هافنیوم است یکی از آلیاژهای نیکل پرکریستال می‌باشد که توسط شرکت مارتین ماریتا (Martin Marietta) تولید شده‌است و شرکت زیمنس (Siemens) از آن برای ساخت توربین‌های زمینی که در دمای ۱۰۳۸ درجه سانتیگراد کار می‌کنند، استفاده می‌کند. هافنیوم در برخی آلیاژهای دیگر نیز به کار رفته‌است که از جمله آن‌ها می‌توان به موارد زیر اشاره کرد: آلیاژ T111 تانتالوم (۸ درصد تنگستن، ۲ درصد هافنیوم و بقیه تانتالوم)، آلیاژ T222 تانتالوم تنگستن (شامل ۱۰ درصد تنگستن، ۲٫۵ درصد هافنیوم، ۰٫۰۱ درصد کربن و بقیه تانتالوم)، آلیاژ MHC مولیبدنوم که به آن کاربید مولیبدنوم هافنیوم هم گفته می‌شود (شامل ۱٫۲ درصد هافنیوم، ۰٫۱ درصد کربن و بقیه مولیبدنوم). همچنین درصد استفاده از هافنیوم در برخی از آلیاژهای نیوبیوم به ترتیب زیر است: آلیاژ C-103 (10 درصد هافنیوم، ۱ درصد تیتانیوم و ۱ درصد زیرکونیوم)، آلیاژ C-129Y (10 درصد تنگستن، ۱۰ درصد هافنیوم، ۰٫۷ درصد ایتریوم) و آلیاژ WC-3015 (30 درصد هافنیوم، ۱۵ درصد تنگستن، ۱٫۵ درصد زیرکونیوم). آلیاژهای نیوبیوم که حاوی هافنیوم هستند علاوه بر کاربردهای متعددی که دارند به عنوان روکش ابزارآلات تراشکاری نیز استفاده می‌شوند. آلیاژ C-103 و کاربید تانتالوم هافنیوم نیز در ساخت دهانه‌های رانشگر موتور موشک مورد استفاده واقع می‌شوند. عملکرد هافنیوم به عنوان یک ماده دیرگداز چه در آلیاژهای تانتالوم و مولیبدنوم و چه در ترکیبات دو تایی بسیار عالی است. کاربید هافنیوم با فرمول شیمیایی HfC با نقطه ذوب بالای ۳۸۹۰ درجه سانتیگراد یکی از دیرگدازترین ترکیبات دوتایی است که تاکنون تولید شده‌است. همچنین نیترید هافنیوم با نقطه ذوبی حدود ۳۳۱۰ درجه سانتیگراد، دیرگدازترین نیترید فلزی محسوب می‌شود. شاید هنوز هم کاربردهای ناشناخته ای برای هافنیوم چه در آلیاژها و چه در کاتالیزورها متصور باشد. سال‌ها پیش مقاله ای در نشریه «اخبار شیمی و مهندسی» به چاپ رسید که عنوان آن به صورت زیر بود: «ظهور هافنیوم: این فلز واسطه که روزگاری در پرده ابهام فرورفته بود اکنون به عنوان یک کاتالیزور فوق‌العاده توجه همگان را به خود جلب می‌کند.»

مصارف هسته ای[ویرایش]

دستیابی به هافنیوم بیشتر نتیجه تصمیم برای استفاده از زیرکونیوم در مصارف هسته ای است. همان‌طور که قبلاً اشاره شد، جهت استفاده از زیرکونیوم تصفیه شده در میله‌های سوخت اورانیوم باید تا آنجا که ممکن است هافنیوم را از آن زدود. ساختار و خواص شیمیایی مشابه زیرکونیوم و هافنیوم در یک محیط هسته ای نیز نمی‌توانند زیاد از یکدیگر متفاوت باشند. به عبارت دیگر شاید بتوان گفت علاوه بر کاربردی که هافنیوم در تولید آلیاژها دارد، یکی از مصارف عمده اش، کاربرد در صنایع هسته ای است. زیرکونیوم عملاً اجازه عبور نوترون‌ها را از خود می‌دهد در حالی که هافنیوم به شدت جاذب آنهاست؛ بنابراین هرچند که در ساخت میله‌های سوخت هسته ای غالباً از زیرکونیوم استفاده می‌شود، اما میله‌های کنترل که وظیفه‌شان جمع‌آوری نوترون‌های پراکنده و کند کردن روند شکافت هسته ای در واکنش گاه (راکتور) است، اغلب از هافنیوم ساخته می‌شوند. یکی از اولین مصارف هافنیوم در صنایع هسته ای کاربرد آن در رآکتورهای پمپاژ آب سبک تحت فشار می‌باشد که برای تأمین انرژی وسایل نقلیه دریایی همچون زیردریایی‌ها به کار می‌روند. وجود مقدار ناخواسته ای از یک فلز در فلز دیگر همیشه تأثیر یکسانی ندارد: اگر حتی تا ۴٫۵ درصد هم زیرکونیوم در میله‌های کنترل هافنیومی موجود باشد، باز هم عملکرد این میله‌ها رضایتبخش خواهد بود در حالی که وجود همین میزان هافنیوم در میله‌های سوخت زیرکونیومی به هیچ عنوان مجاز نیست. هافنیوم علاوه بر خاصیت جذب نوترون، دو خاصیت به درد بخور دیگر نیز برای صنایع هسته ای دارد که عبارتند از: دوام و مقاومت در برابر خوردگی. از دیگر کاربردهای متنوع هافنیوم می‌توان به موارد زیر اشاره کرد:

  • جوشکاری پلاسما و تراشکاری قوسی: از آنجا که هافنیوم به الکترون‌ها اجازه آزاد شدن در هوا و متعاقب آن تشکیل قوس الکتریکی را می‌دهد، نه تنها می‌تواند به عنوان الکترود و به جای تنگستن در نوک دستگاه جوشکاری پلاسما به کار رود بلکه به عنوان کاتد نیز در دستگاه تراشکاری قوس پلاسما کاربرد پیدا می‌کند.
  • ریزپردازنده‌ها: هافنیوم مخصوصاً به خاطر مقاومت حرارتی بالایی که دارد جایگزین خوبی برای سیلیکون در ریزپردازنده‌ها به‌شمار می‌آید. بسیاری از تولیدکنندگان تراشه‌های کامپیوتری از کلرید هافنیوم (HfCl4) و اکسید هافنیوم (HfO2) در ریزپردازنده‌های خود استفاده می‌کنند. به عنوان مثال تراشه‌های ۴۵ نانومتری شرکت اینتل با ثابت دی الکتریک (k) بالا از هافنیوم ساخته شده‌اند؛ شرکت اینتل از زمانی که دریافت استفاده از هافنیوم به جای سیلیکون باعث کاهش تراوش جریان الکتریکی در تراشه‌ها می‌شود و بدین ترتیب امکان تولید تراشه‌های کوچکتر، قدرتمند تر و با مصرف انرژی کمتر فراهم می‌گردد، به این فلز (هافنیوم) روی آورده‌است. دیگر شرکت‌های سازنده قطعات الکترونیکی نیز در حال بررسی استفاده از اکسید هافنیوم برای تولید حافظه (رم)های مقاوم (ReRAM) هستند.
  • روکش کاری به روش رسوب دهی فیزیکی یا شیمیایی با استفاده از بخار (CVD/PVD): هافنیوم در روکش کاری به روش‌های مذکور اغلب به عنوان لایه نازکی از روکش به کار می‌رود و در مصارفی همچون تولید دیسک گردان‌های نوری (سی دی یا دی وی دی درایو) کاربرد پیدا می‌کند.
  • لیزر: از اکسید هافنیوم در تولید دی وی دی خوان‌های لیزر آبی (بلو ری) نیز استفاده می‌شود.

کاربردهای دیگری از هافنیوم[ویرایش]

  1. در لامپ‌ها، به ویژه لامپ‌های رشته‌ای
  2. به عنوان الکترود در برش پلاسما
  3. در زیردریایی‌های هسته‌ای
  4. اکسید هافنیوم به عنوان یک عایق الکتریکی در میکروچیپ‌ها استفاده می‌شود
  5. و کاتالیزور هافنیوم نیز در واکنش‌های پلیمریزاسیون به کار می‌رود.

جستارهای وابسته[ویرایش]

منابع[ویرایش]

  1. Magnetic susceptibility of the elements and inorganic compounds, in Handbook of Chemistry and Physics 81st edition, CRC press.

1- Knapp, Brian. Francium to Polonium. Atlantic Europe Publishing Company, 2002, p. ۱۰.

2- Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110

3-Paneth, F. A. (1922). "Das periodische System (The periodic system)". Ergebnisse der Exakten Naturwissenschaften 1 (in German). p. ۳۶۲.

4-von Hevesy, Georg (1923). "Über die Auffindung des Hafniums und den gegenwärtigen Stand unserer Kenntnisse von diesem Element". Berichte der deutschen chemischen Gesellschaft (A and B Series).

5- Holleman, Arnold F. ; Wiberg, Egon; Wiberg, Nils (1985). Lehrbuch der Anorganischen Chemie (in German) (91–100 ed.). Walter de Gruyter. pp.

6-Larsen, Edwin; Fernelius W. , Conard; Quill, Laurence (1943). "Concentration of Hafnium. Preparation of Hafnium-Free Zirconia". Ind. Eng. Chem. Anal. Ed.

Hafnium, 72Hf
Hf-crystal bar.jpg
Hafnium
Pronunciation/ˈhæfniəm/ (HAF-nee-əm)
Appearancesteel gray
Standard atomic weight Ar, std(Hf)178.49(2)[1]
Hafnium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Zr

Hf

Rf
lutetiumhafniumtantalum
Atomic number (Z)72
Groupgroup 4
Periodperiod 6
Blockd-block
Element category  Transition metal
Electron configuration[Xe] 4f14 5d2 6s2
Electrons per shell2, 8, 18, 32, 10, 2
Physical properties
Phase at STPsolid
Melting point2506 K ​(2233 °C, ​4051 °F)
Boiling point4876 K ​(4603 °C, ​8317 °F)
Density (near r.t.)13.31 g/cm3
when liquid (at m.p.)12 g/cm3
Heat of fusion27.2 kJ/mol
Heat of vaporization648 kJ/mol
Molar heat capacity25.73 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 2689 2954 3277 3679 4194 4876
Atomic properties
Oxidation states−2, +1, +2, +3, +4 (an amphoteric oxide)
ElectronegativityPauling scale: 1.3
Ionization energies
  • 1st: 658.5 kJ/mol
  • 2nd: 1440 kJ/mol
  • 3rd: 2250 kJ/mol
Atomic radiusempirical: 159 pm
Covalent radius175±10 pm
Color lines in a spectral range
Spectral lines of hafnium
Other properties
Natural occurrenceprimordial
Crystal structurehexagonal close-packed (hcp)
Hexagonal close packed crystal structure for hafnium
Speed of sound thin rod3010 m/s (at 20 °C)
Thermal expansion5.9 µm/(m·K) (at 25 °C)
Thermal conductivity23.0 W/(m·K)
Electrical resistivity331 nΩ·m (at 20 °C)
Magnetic orderingparamagnetic[2]
Magnetic susceptibility+75.0·10−6 cm3/mol (at 298 K)[3]
Young's modulus78 GPa
Shear modulus30 GPa
Bulk modulus110 GPa
Poisson ratio0.37
Mohs hardness5.5
Vickers hardness1520–2060 MPa
Brinell hardness1450–2100 MPa
CAS Number7440-58-6
History
Namingafter Hafnia. Latin for: Copenhagen, where it was discovered
PredictionDmitri Mendeleev (1869)
Discovery and first isolationDirk Coster and George de Hevesy (1922)
Main isotopes of hafnium
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
172Hf syn 1.87 y ε 172Lu
174Hf 0.16% 2×1015 y α 170Yb
176Hf 5.26% stable
177Hf 18.60% stable
178Hf 27.28% stable
178m2Hf syn 31 y IT 178Hf
179Hf 13.62% stable
180Hf 35.08% stable
182Hf syn 8.9×106 y β 182Ta
| references

Hafnium is a chemical element with the symbol Hf and atomic number 72. A lustrous, silvery gray, tetravalent transition metal, hafnium chemically resembles zirconium and is found in many zirconium minerals. Its existence was predicted by Dmitri Mendeleev in 1869, though it was not identified until 1923, by Coster and Hevesy, making it the last stable element to be discovered. Hafnium is named after Hafnia, the Latin name for Copenhagen, where it was discovered.[4][5]

Hafnium is used in filaments and electrodes. Some semiconductor fabrication processes use its oxide for integrated circuits at 45 nm and smaller feature lengths. Some superalloys used for special applications contain hafnium in combination with niobium, titanium, or tungsten.

Hafnium's large neutron capture cross section makes it a good material for neutron absorption in control rods in nuclear power plants, but at the same time requires that it be removed from the neutron-transparent corrosion-resistant zirconium alloys used in nuclear reactors.

Characteristics

Physical characteristics

Pieces of hafnium

Hafnium is a shiny, silvery, ductile metal that is corrosion-resistant and chemically similar to zirconium[6] (due to its having the same number of valence electrons, being in the same group, but also to relativistic effects; the expected expansion of atomic radii from period 5 to 6 is almost exactly cancelled out by the lanthanide contraction). The physical properties of hafnium metal samples are markedly affected by zirconium impurities, especially the nuclear properties, as these two elements are among the most difficult to separate because of their chemical similarity.[6]

A notable physical difference between these metals is their density, with zirconium having about one-half the density of hafnium. The most notable nuclear properties of hafnium are its high thermal neutron capture cross section and that the nuclei of several different hafnium isotopes readily absorb two or more neutrons apiece.[6] In contrast with this, zirconium is practically transparent to thermal neutrons, and it is commonly used for the metal components of nuclear reactors – especially the cladding of their nuclear fuel rods.

Chemical characteristics

Hafnium dioxide

Hafnium reacts in air to form a protective film that inhibits further corrosion. The metal is not readily attacked by acids but can be oxidized with halogens or it can be burnt in air. Like its sister metal zirconium, finely divided hafnium can ignite spontaneously in air. The metal is resistant to concentrated alkalis.

The chemistry of hafnium and zirconium is so similar that the two cannot be separated on the basis of differing chemical reactions. The melting points and boiling points of the compounds and the solubility in solvents are the major differences in the chemistry of these twin elements.[7]

Isotopes

At least 34 isotopes of hafnium have been observed, ranging in mass number from 153 to 186.[8][9] The five stable isotopes are in the range of 176 to 180. The radioactive isotopes' half-lives range from only 400 ms for 153Hf,[9] to 2.0 petayears (1015 years) for the most stable one, 174Hf.[8]

The nuclear isomer 178m2Hf was at the center of a controversy for several years regarding its potential use as a weapon.

Occurrence

Zircon crystal (2×2 cm) from Tocantins, Brazil

Hafnium is estimated to make up about 5.8 ppm of the Earth's upper crust by mass. It does not exist as a free element on Earth, but is found combined in solid solution with zirconium in natural zirconium compounds such as zircon, ZrSiO4, which usually has about 1–4% of the Zr replaced by Hf. Rarely, the Hf/Zr ratio increases during crystallization to give the isostructural mineral hafnon (Hf,Zr)SiO4, with atomic Hf > Zr.[10] An obsolete name for a variety of zircon containing unusually high Hf content is alvite.[11]

A major source of zircon (and hence hafnium) ores is heavy mineral sands ore deposits, pegmatites, particularly in Brazil and Malawi, and carbonatite intrusions, particularly the Crown Polymetallic Deposit at Mount Weld, Western Australia. A potential source of hafnium is trachyte tuffs containing rare zircon-hafnium silicates eudialyte or armstrongite, at Dubbo in New South Wales, Australia.[12]

Hafnium reserves have been infamously estimated to last under 10 years by one source if the world population increases and demand grows.[13] In reality, since hafnium occurs with zirconium, hafnium can always be a byproduct of zirconium extraction to the extent that the low demand requires.

Production

Melted tip of a hafnium consumable electrode used in an electron beam remelting furnace, a 1 cm cube, and an oxidized hafnium electron beam-remelted ingot (left to right)

The heavy mineral sands ore deposits of the titanium ores ilmenite and rutile yield most of the mined zirconium, and therefore also most of the hafnium.[14]

Zirconium is a good nuclear fuel-rod cladding metal, with the desirable properties of a very low neutron capture cross-section and good chemical stability at high temperatures. However, because of hafnium's neutron-absorbing properties, hafnium impurities in zirconium would cause it to be far less useful for nuclear-reactor applications. Thus, a nearly complete separation of zirconium and hafnium is necessary for their use in nuclear power. The production of hafnium-free zirconium is the main source for hafnium.[6]

Hafnium oxidized ingots which exhibit thin film optical effects.

The chemical properties of hafnium and zirconium are nearly identical, which makes the two difficult to separate.[15] The methods first used — fractional crystallization of ammonium fluoride salts[16] or the fractional distillation of the chloride[17] — have not proven suitable for an industrial-scale production. After zirconium was chosen as material for nuclear reactor programs in the 1940s, a separation method had to be developed. Liquid-liquid extraction processes with a wide variety of solvents were developed and are still used for the production of hafnium.[18] About half of all hafnium metal manufactured is produced as a by-product of zirconium refinement. The end product of the separation is hafnium(IV) chloride.[19] The purified hafnium(IV) chloride is converted to the metal by reduction with magnesium or sodium, as in the Kroll process.[20]

HfCl4 + 2 Mg (1100 °C) → 2 MgCl2 + Hf

Further purification is effected by a chemical transport reaction developed by Arkel and de Boer: In a closed vessel, hafnium reacts with iodine at temperatures of 500 °C, forming hafnium(IV) iodide; at a tungsten filament of 1700 °C the reverse reaction happens, and the iodine and hafnium are set free. The hafnium forms a solid coating at the tungsten filament, and the iodine can react with additional hafnium, resulting in a steady turn over.[7][21]

Hf + 2 I2 (500 °C) → HfI4
HfI4 (1700 °C) → Hf + 2 I2

Chemical compounds

Due to the lanthanide contraction, the ionic radius of hafnium(IV) (0.78 ångström) is almost the same as that of zirconium(IV) (0.79 angstroms).[22] Consequently, compounds of hafnium(IV) and zirconium(IV) have very similar chemical and physical properties.[22] Hafnium and zirconium tend to occur together in nature and the similarity of their ionic radii makes their chemical separation rather difficult. Hafnium tends to form inorganic compounds in the oxidation state of +4. Halogens react with it to form hafnium tetrahalides.[22] At higher temperatures, hafnium reacts with oxygen, nitrogen, carbon, boron, sulfur, and silicon.[22] Some compounds of hafnium in lower oxidation states are known.[23]

Hafnium(IV) chloride and hafnium(IV) iodide have some applications in the production and purification of hafnium metal. They are volatile solids with polymeric structures.[7] These tetrachlorides are precursors to various organohafnium compounds such as hafnocene dichloride and tetrabenzylhafnium.

The white hafnium oxide (HfO2), with a melting point of 2812 °C and a boiling point of roughly 5100 °C, is very similar to zirconia, but slightly more basic.[7] Hafnium carbide is the most refractory binary compound known, with a melting point over 3890 °C, and hafnium nitride is the most refractory of all known metal nitrides, with a melting point of 3310 °C.[22] This has led to proposals that hafnium or its carbides might be useful as construction materials that are subjected to very high temperatures. The mixed carbide tantalum hafnium carbide (Ta
4
HfC
5
) possesses the highest melting point of any currently known compound, 4215 K (3942 °C, 7128 °F).[24] Recent supercomputer simulations suggest a hafnium alloy with a melting point of 4400 K.[25]

History

Photographic recording of the characteristic X-ray emission lines of some elements

In his report on The Periodic Law of the Chemical Elements, in 1869, Dmitri Mendeleev had implicitly predicted the existence of a heavier analog of titanium and zirconium. At the time of his formulation in 1871, Mendeleev believed that the elements were ordered by their atomic masses and placed lanthanum (element 57) in the spot below zirconium. The exact placement of the elements and the location of missing elements was done by determining the specific weight of the elements and comparing the chemical and physical properties.[26]

The X-ray spectroscopy done by Henry Moseley in 1914 showed a direct dependency between spectral line and effective nuclear charge. This led to the nuclear charge, or atomic number of an element, being used to ascertain its place within the periodic table. With this method, Moseley determined the number of lanthanides and showed the gaps in the atomic number sequence at numbers 43, 61, 72, and 75.[27]

The discovery of the gaps led to an extensive search for the missing elements. In 1914, several people claimed the discovery after Henry Moseley predicted the gap in the periodic table for the then-undiscovered element 72.[28] Georges Urbain asserted that he found element 72 in the rare earth elements in 1907 and published his results on celtium in 1911.[29] Neither the spectra nor the chemical behavior he claimed matched with the element found later, and therefore his claim was turned down after a long-standing controversy.[30] The controversy was partly because the chemists favored the chemical techniques which led to the discovery of celtium, while the physicists relied on the use of the new X-ray spectroscopy method that proved that the substances discovered by Urbain did not contain element 72.[30] By early 1923, several physicists and chemists such as Niels Bohr[31] and Charles R. Bury[32] suggested that element 72 should resemble zirconium and therefore was not part of the rare earth elements group. These suggestions were based on Bohr's theories of the atom, the X-ray spectroscopy of Moseley, and the chemical arguments of Friedrich Paneth.[33][34]

Encouraged by these suggestions and by the reappearance in 1922 of Urbain's claims that element 72 was a rare earth element discovered in 1911, Dirk Coster and Georg von Hevesy were motivated to search for the new element in zirconium ores.[35] Hafnium was discovered by the two in 1923 in Copenhagen, Denmark, validating the original 1869 prediction of Mendeleev.[36][37] It was ultimately found in zircon in Norway through X-ray spectroscopy analysis.[38] The place where the discovery took place led to the element being named for the Latin name for "Copenhagen", Hafnia, the home town of Niels Bohr.[39] Today, the Faculty of Science of the University of Copenhagen uses in its seal a stylized image of the hafnium atom.[40]

Hafnium was separated from zirconium through repeated recrystallization of the double ammonium or potassium fluorides by Valdemar Thal Jantzen and von Hevesey.[16] Anton Eduard van Arkel and Jan Hendrik de Boer were the first to prepare metallic hafnium by passing hafnium tetraiodide vapor over a heated tungsten filament in 1924.[17][21] This process for differential purification of zirconium and hafnium is still in use today.[6]

In 1923, four predicted elements were still missing from the periodic table: 43 (technetium) and 61 (promethium) are radioactive elements and are only present in trace amounts in the environment,[41] thus making elements 75 (rhenium) and 72 (hafnium) the last two unknown non-radioactive elements. Since rhenium was discovered in 1908, hafnium was the last element with stable isotopes to be discovered.

Applications

Most of the hafnium produced is used in the manufacture of control rods for nuclear reactors.[18]

Several details contribute to the fact that there are only a few technical uses for hafnium: First, the close similarity between hafnium and zirconium makes it possible to use zirconium for most of the applications; second, hafnium was first available as pure metal after the use in the nuclear industry for hafnium-free zirconium in the late 1950s. Furthermore, the low abundance and difficult separation techniques necessary make it a scarce commodity.[6] When the demand for zirconium dropped following the Fukushima disaster, the price of hafnium increased sharply from around $500–600/kg in 2014 to around $1000/kg in 2015.[42]

Nuclear reactors

The nuclei of several hafnium isotopes can each absorb multiple neutrons. This makes hafnium a good material for use in the control rods for nuclear reactors. Its neutron-capture cross-section is about 600 times that of zirconium. (Other elements that are good neutron-absorbers for control rods are cadmium and boron.) Excellent mechanical properties and exceptional corrosion-resistance properties allow its use in the harsh environment of pressurized water reactors.[18] The German research reactor FRM II uses hafnium as a neutron absorber.[43] It is also common in military reactors, particularly in US naval reactors,[44] but seldom found in civilian ones, the first core of the Shippingport Atomic Power Station (a conversion of a naval reactor) being a notable exception.[45]

Alloys

Hafnium-containing rocket nozzle of the Apollo Lunar Module in the lower right corner

Hafnium is used in alloys with iron, titanium, niobium, tantalum, and other metals. An alloy used for liquid rocket thruster nozzles, for example the main engine of the Apollo Lunar Modules, is C103 which consists of 89% niobium, 10% hafnium and 1% titanium.[46]

Small additions of hafnium increase the adherence of protective oxide scales on nickel-based alloys. It improves thereby the corrosion resistance especially under cyclic temperature conditions that tend to break oxide scales by inducing thermal stresses between the bulk material and the oxide layer.[47][48][49]

Microprocessors

Hafnium-based compounds are employed in gate insulators in the 45 nm generation of integrated circuits from Intel, IBM and others.[50][51] Hafnium oxide-based compounds are practical high-k dielectrics, allowing reduction of the gate leakage current which improves performance at such scales.[52][53]

Isotope geochemistry

Isotopes of hafnium and lutetium (along with ytterbium) are also used in isotope geochemistry and geochronological applications, in lutetium-hafnium dating. It is often used as a tracer of isotopic evolution of Earth's mantle through time.[54] This is because 176Lu decays to 176Hf with a half-life of approximately 37 billion years.[55][56][57]

In most geologic materials, zircon is the dominant host of hafnium (>10,000 ppm) and is often the focus of hafnium studies in geology.[58] Hafnium is readily substituted into the zircon crystal lattice, and is therefore very resistant to hafnium mobility and contamination. Zircon also has an extremely low Lu/Hf ratio, making any correction for initial lutetium minimal. Although the Lu/Hf system can be used to calculate a "model age", i.e. the time at which it was derived from a given isotopic reservoir such as the depleted mantle, these "ages" do not carry the same geologic significance as do other geochronological techniques as the results often yield isotopic mixtures and thus provide an average age of the material from which it was derived.

Garnet is another mineral that contains appreciable amounts of hafnium to act as a geochronometer. The high and variable Lu/Hf ratios found in garnet make it useful for dating metamorphic events.[59]

Other uses

Due to its heat resistance and its affinity to oxygen and nitrogen, hafnium is a good scavenger for oxygen and nitrogen in gas-filled and incandescent lamps. Hafnium is also used as the electrode in plasma cutting because of its ability to shed electrons into air.[60]

The high energy content of 178m2Hf was the concern of a DARPA-funded program in the US. This program determined that the possibility of using a nuclear isomer of hafnium (the above-mentioned 178m2Hf) to construct high-yield weapons with X-ray triggering mechanisms—an application of induced gamma emission—was infeasible because of its expense. See Hafnium controversy.

Hafnium metallocene compounds can be prepared from hafnium tetrachloride and various cyclopentadiene-type ligand species. Perhaps the simplest hafnium metallocene is halfnocene dichloride. Hafnium metallocenes are part of a large collection of Group 4 transition metal metallocene catalysts [61] that are used worldwide in the production of polyolefin resins like polyethylene and polypropylene.

Precautions

Care needs to be taken when machining hafnium because it is pyrophoric—fine particles can spontaneously combust when exposed to air. Compounds that contain this metal are rarely encountered by most people. The pure metal is not considered toxic, but hafnium compounds should be handled as if they were toxic because the ionic forms of metals are normally at greatest risk for toxicity, and limited animal testing has been done for hafnium compounds.[62]

People can be exposed to hafnium in the workplace by breathing it in, swallowing it, skin contact, and eye contact. The Occupational Safety and Health Administration (OSHA) has set the legal limit (Permissible exposure limit) for exposure to hafnium and hafnium compounds in the workplace as TWA 0.5 mg/m3 over an 8-hour workday. The National Institute for Occupational Safety and Health (NIOSH) has set the same recommended exposure limit (REL). At levels of 50 mg/m3, hafnium is immediately dangerous to life and health.[63]

See also

References

  1. ^ Meija, Juris; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry. 88 (3): 265–91. doi:10.1515/pac-2015-0305.
  2. ^ Lide, D. R., ed. (2005). "Magnetic susceptibility of the elements and inorganic compounds". CRC Handbook of Chemistry and Physics (PDF) (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.
  3. ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.
  4. ^ André Authier (1 August 2013). Early Days of X-ray Crystallography. OUP Oxford. p. 153. ISBN 978-0-19-163501-4.
  5. ^ Knapp, Brian. Francium to Polonium. Atlantic Europe Publishing Company, 2002, p. 10.
  6. ^ a b c d e f Schemel, J. H. (1977). ASTM Manual on Zirconium and Hafnium. ASTM International. pp. 1–5. ISBN 978-0-8031-0505-8.
  7. ^ a b c d Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1985). Lehrbuch der Anorganischen Chemie (in German) (91–100 ed.). Walter de Gruyter. pp. 1056–1057. ISBN 978-3-11-007511-3.
  8. ^ a b EnvironmentalChemistry.com. "Hafnium Nuclides / Isotopes". Periodic Table of Elements. J.K. Barbalace. Retrieved 2008-09-10.
  9. ^ a b Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  10. ^ Deer, William Alexander; Howie, R.A.; Zussmann, J. (1982). The Rock-Forming Minerals, volume 1A: Orthosilicates. Longman Group Limited. pp. 418–442. ISBN 978-0-582-46526-8.
  11. ^ Lee, O. Ivan (1928). "The Mineralogy of Hafnium". Chemical Reviews. 5: 17–37. doi:10.1021/cr60017a002.
  12. ^ "Dubbo Zirconia Project Fact Sheet" (PDF). Alkane Resources Limited. June 2007. Archived from the original (PDF) on 2008-02-28. Retrieved 2008-09-10.
  13. ^ "New Scientist diagram How Long Will It Last". Archived from the original on 2012-01-19.CS1 maint: BOT: original-url status unknown (link)
  14. ^ Gambogi, Joseph. "Yearbook 2008: Zirconium and Hafnium" (PDF). United States Geological Survey. Retrieved 2008-10-27.
  15. ^ Larsen, Edwin; Fernelius W., Conard; Quill, Laurence (1943). "Concentration of Hafnium. Preparation of Hafnium-Free Zirconia". Ind. Eng. Chem. Anal. Ed. 15 (8): 512–515. doi:10.1021/i560120a015.
  16. ^ a b van Arkel, A. E.; de Boer, J. H. (1924). "Die Trennung von Zirkonium und Hafnium durch Kristallisation ihrer Ammoniumdoppelfluoride (The separation of zirconium and hafnium by crystallization of the double ammonium fluorides)". Zeitschrift für Anorganische und Allgemeine Chemie (in German). 141: 284–288. doi:10.1002/zaac.19241410117.
  17. ^ a b van Arkel, A. E.; de Boer, J. H. (1924). "Die Trennung des Zirkoniums von anderen Metallen, einschließlich Hafnium, durch fraktionierte Distillation (The separation of zirconium and hafnium by fractionated distillation)". Zeitschrift für Anorganische und Allgemeine Chemie (in German). 141: 289–296. doi:10.1002/zaac.19241410118.
  18. ^ a b c Hedrick, James B. "Hafnium" (PDF). United States Geological Survey. Retrieved 2008-09-10.
  19. ^ Griffith, Robert F. (1952). "Zirconium and hafnium". Minerals yearbook metals and minerals (except fuels). The first production plants Bureau of Mines. pp. 1162–1171.
  20. ^ Gilbert, H. L.; Barr, M. M. (1955). "Preliminary Investigation of Hafnium Metal by the Kroll Process". Journal of the Electrochemical Society. 102 (5): 243. doi:10.1149/1.2430037.
  21. ^ a b van Arkel, A. E.; de Boer, J. H. (1925). "Darstellung von reinem Titanium-, Zirkonium-, Hafnium- und Thoriummetall (Production of pure titanium, zirconium, hafnium and Thorium metal)". Zeitschrift für Anorganische und Allgemeine Chemie (in German). 148: 345–350. doi:10.1002/zaac.19251480133.
  22. ^ a b c d e "Los Alamos National Laboratory – Hafnium". Retrieved 2008-09-10.
  23. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. pp. 971–975. ISBN 978-0-08-037941-8.
  24. ^ Agte, C. & Alterthum, H. (1930). "Researches on Systems with Carbides at High Melting Point and Contributions to the Problem of Carbon Fusion". Z. Tech. Phys. 11: 182–191.
  25. ^ Hong, Qi-Jun; van de Walle, Axel (2015). "Prediction of the material with highest known melting point from ab initio molecular dynamics calculations". Phys. Rev. B. 92 (2): 020104. Bibcode:2015PhRvB..92b0104H. doi:10.1103/PhysRevB.92.020104.
  26. ^ Kaji, Masanori (2002). "D. I. Mendeleev's concept of chemical elements and The Principles of Chemistry" (PDF). Bulletin for the History of Chemistry. 27: 4. Archived from the original (PDF) on 2008-12-17. Retrieved 2008-08-20.
  27. ^ Heilbron, John L. (1966). "The Work of H. G. J. Moseley". Isis. 57 (3): 336. doi:10.1086/350143.
  28. ^ Heimann, P. M. (1967). "Moseley and celtium: The search for a missing element". Annals of Science. 23 (4): 249–260. doi:10.1080/00033796700203306.
  29. ^ Urbain, M. G. (1911). "Sur un nouvel élément qui accompagne le lutécium et le scandium dans les terres de la gadolinite: le celtium (On a new element that accompanies lutetium and scandium in gadolinite: celtium)". Comptes Rendus (in French): 141. Retrieved 2008-09-10.
  30. ^ a b Mel'nikov, V. P. (1982). "Some Details in the Prehistory of the Discovery of Element 72". Centaurus. 26 (3): 317–322. Bibcode:1982Cent...26..317M. doi:10.1111/j.1600-0498.1982.tb00667.x.
  31. ^ Bohr, Niels. The Theory of Spectra and Atomic Constitution: Three Essays. p. 114. ISBN 978-1-4365-0368-6.
  32. ^ Bury, Charles R. (1921). "Langmuir's Theory of the Arrangement of Electrons in Atoms and Molecules" (PDF). J. Am. Chem. Soc. 43 (7): 1602–1609. doi:10.1021/ja01440a023.
  33. ^ Paneth, F. A. (1922). "Das periodische System (The periodic system)". Ergebnisse der Exakten Naturwissenschaften 1 (in German). p. 362.
  34. ^ Fernelius, W. C. (1982). "Hafnium" (PDF). Journal of Chemical Education. 59 (3): 242. Bibcode:1982JChEd..59..242F. doi:10.1021/ed059p242.
  35. ^ Urbain, M. G. (1922). "Sur les séries L du lutécium et de l'ytterbium et sur l'identification d'un celtium avec l'élément de nombre atomique 72" [The L series from lutetium to ytterbium and the identification of element 72 celtium]. Comptes Rendus (in French). 174: 1347. Retrieved 2008-10-30.
  36. ^ Coster, D.; Hevesy, G. (1923). "On the Missing Element of Atomic Number 72". Nature. 111 (2777): 79. Bibcode:1923Natur.111...79C. doi:10.1038/111079a0.
  37. ^ Hevesy, G. (1925). "The Discovery and Properties of Hafnium". Chemical Reviews. 2: 1–41. doi:10.1021/cr60005a001.
  38. ^ von Hevesy, Georg (1923). "Über die Auffindung des Hafniums und den gegenwärtigen Stand unserer Kenntnisse von diesem Element". Berichte der Deutschen Chemischen Gesellschaft (A and B Series). 56 (7): 1503–1516. doi:10.1002/cber.19230560702.
  39. ^ Scerri, Eric R. (1994). "Prediction of the nature of hafnium from chemistry, Bohr's theory and quantum theory". Annals of Science. 51 (2): 137–150. doi:10.1080/00033799400200161.
  40. ^ "University Life 2005" (pdf). University of Copenghagen. p. 43. Retrieved 2016-11-19.
  41. ^ Curtis, David; Fabryka-Martin, June; Dixon, Pauland; Cramer, Jan (1999). "Nature's uncommon elements: plutonium and technetium". Geochimica et Cosmochimica Acta. 63 (2): 275–285. Bibcode:1999GeCoA..63..275C. doi:10.1016/S0016-7037(98)00282-8.
  42. ^ Albrecht, Bodo (2015-03-11). "Weak Zirconium Demand Depleting Hafnium Stock Piles". Tech Metals Insider. KITCO. Retrieved 4 March 2018.
  43. ^ "Forschungsreaktor München II (FRM-II): Standort und Sicherheitskonzept" (PDF). Strahlenschutzkommission. 1996-02-07. Archived from the original (PDF) on October 20, 2007. Retrieved 2008-09-22.
  44. ^ J. H. Schemel (1977). ASTM Manual on Zirconium and Hafnium. ASTM International. p. 21. ISBN 978-0-8031-0505-8.
  45. ^ C.W. Forsberg; K. Takase & N. Nakatsuka (2011). "Water Reactor". In Xing L. Yan & Ryutaro Hino (eds.). Nuclear Hydrogen Production Handbook. CRC Press. p. 192. ISBN 978-1-4398-1084-2.
  46. ^ Hebda, John (2001). "Niobium alloys and high Temperature Applications" (PDF). CBMM. Archived from the original (PDF) on 2008-12-17. Retrieved 2008-09-04.
  47. ^ Maslenkov, S. B.; Burova, N. N.; Khangulov, V. V. (1980). "Effect of hafnium on the structure and properties of nickel alloys". Metal Science and Heat Treatment. 22 (4): 283–285. Bibcode:1980MSHT...22..283M. doi:10.1007/BF00779883.
  48. ^ Beglov, V. M.; Pisarev, B. K.; Reznikova, G. G. (1992). "Effect of boron and hafnium on the corrosion resistance of high-temperature nickel alloys". Metal Science and Heat Treatment. 34 (4): 251–254. Bibcode:1992MSHT...34..251B. doi:10.1007/BF00702544.
  49. ^ Voitovich, R. F.; Golovko, É. I. (1975). "Oxidation of hafnium alloys with nickel". Metal Science and Heat Treatment. 17 (3): 207–209. Bibcode:1975MSHT...17..207V. doi:10.1007/BF00663680.
  50. ^ US 6013553 
  51. ^ Markoff, John (2007-01-27). "Intel Says Chips Will Run Faster, Using Less Power". New York Times. Retrieved 2008-09-10.
  52. ^ Fulton, III, Scott M. (January 27, 2007). "Intel Reinvents the Transistor". BetaNews. Retrieved 2007-01-27.
  53. ^ Robertson, Jordan (January 27, 2007). "Intel, IBM reveal transistor overhaul". The Associated Press. Retrieved 2008-09-10.
  54. ^ Patchett, P. Jonathan (January 1983). "Importance of the Lu-Hf isotopic system in studies of planetary chronology and chemical evolution". Geochimica et Cosmochimica Acta. 47 (1): 81–91. Bibcode:1983GeCoA..47...81P. doi:10.1016/0016-7037(83)90092-3.
  55. ^ Söderlund, Ulf; Patchett, P. Jonathan; Vervoort, Jeffrey D.; Isachsen, Clark E. (March 2004). "The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions". Earth and Planetary Science Letters. 219 (3–4): 311–324. Bibcode:2004E&PSL.219..311S. doi:10.1016/S0012-821X(04)00012-3.
  56. ^ Blichert-Toft, Janne; Albarède, Francis (April 1997). "The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system". Earth and Planetary Science Letters. 148 (1–2): 243–258. Bibcode:1997E&PSL.148..243B. doi:10.1016/S0012-821X(97)00040-X.
  57. ^ Patchett, P. J.; Tatsumoto, M. (11 December 1980). "Lu–Hf total-rock isochron for the eucrite meteorites". Nature. 288 (5791): 571–574. Bibcode:1980Natur.288..571P. doi:10.1038/288571a0.
  58. ^ Kinny, P. D. (1 January 2003). "Lu-Hf and Sm-Nd isotope systems in zircon". Reviews in Mineralogy and Geochemistry. 53 (1): 327–341. Bibcode:2003RvMG...53..327K. doi:10.2113/0530327.
  59. ^ Albarède, F.; Duchêne, S.; Blichert-Toft, J.; Luais, B.; Télouk, P.; Lardeaux, J.-M. (5 June 1997). "The Lu–Hf dating of garnets and the ages of the Alpine high-pressure metamorphism". Nature. 387 (6633): 586–589. Bibcode:1997Natur.387..586D. doi:10.1038/42446.
  60. ^ Ramakrishnany, S.; Rogozinski, M. W. (1997). "Properties of electric arc plasma for metal cutting" (PDF). Journal of Physics D: Applied Physics. 30 (4): 636–644. Bibcode:1997JPhD...30..636R. doi:10.1088/0022-3727/30/4/019.
  61. ^ "Fluorenyl complexes of zirconium and hafnium as catalysts for olefin polymerization". Chem. Soc. Rev. 27: 323–329. 1998.
  62. ^ "Occupational Safety & Health Administration: Hafnium". U.S. Department of Labor. Archived from the original on 2008-03-13. Retrieved 2008-09-10.
  63. ^ "CDC - NIOSH Pocket Guide to Chemical Hazards - Hafnium". www.cdc.gov. Retrieved 2015-11-03.

External links