منیزیم

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به ناوبری پرش به جستجو
فارسیEnglish

منیزیم (به انگلیسی: Magnesium) فلزی است به رنگ سفید یا نقره‌ای با نشان شیمیایی Mg، عدد اتمی ۱۲، وزن اتمی ۲۴٫۳۰۵۰ و ساختار بلور آن شش گوش یا هگزاگونال متراکم است. نام منیزیم از واژهٔ یونانی Magnesia حوضه‌ای در Thessaly یا از نام شهر قدیمی Magnesia در آسیای صغیر گرفته شده‌است. هشتمین عنصر فراوان در پوسته زمین و سومین عنصر فراوان و محلول در آب دریاست. منیزیم در گروه دو (IIA) جدول تناوبی به عنوان فلز قلیایی خاکی قرار دارد.

ویژگی‌های منیزیم[ویرایش]

منیزیم به عنوان سبک‌ترین فلز صنعتی با ویژگی‌های منحصر به فرد متالورژیکی، کاربردهای وسیعی در صنایع مختلف یافته‌است. علی‌رغم وجود محدودیت‌های ذاتی در تولید و استفاده از منیزیم به دلیل این ویژگی‌ها روز به روز به کاربرد این فلز در صنایع مختلف افزوده می‌شود.[۱] می‌توان از ویژگی‌های منحصر به فرد منیزیم موارد زیر را برشمرد:

  1. منیزیم با چگالی ۱٫۷ گرم بر سانتی‌متر مکعب، سبک‌ترین فلز با قابلیت تولید قطعات صنعتی است. چگالی منیزیم ۳۰ درصد از آلومینیوم کمتر (چگالی آلومینیوم ۲٫۷ گرم بر سانتی‌متر مکعب) و تنها ۲۰ درصد چگالی آهن است (چگالی آهن ۷٫۸ گرم بر سانتی‌متر مکعب). این ویژگی منحصر به فرد جذابیت فراوانی برای استفاده از این فلز در تولید قطعات متحرک و صنعت حمل و نقل ایجاد کرده‌است.
  2. همراه با چگالی پایین، آلیاژهای منیزیم استحکام قابل توجهی از خود نشان می‌دهند. این ویژگی سبب افزایش نسبت استحکام به وزن این فلز شده‌است. به عنوان مثال جهت تغییر جنس تیری ۱۰ کیلویی از فولاد، می‌توان بدون تغییر چقرمگی از تیری منیزیمی با وزن ۳٫۸ کیلوگرم استفاده کرد. نسبت بالای استحکام به وزن سبب شده در بسیاری از قطعات مختلف صنایع هوایی و خودروسازی از منیزیم استفاده شود. نمونه چنین قطعاتی پوسته جعبه دنده هلیکوپتر است.
  3. از ویژگی‌های دیگر آلیاژهای منیزیم می‌توان به قابلیت جذب ارتعاشات توسط این فلز اشاره کرد. این ویژگی سبب شده‌استفاده از آلیاژهای منیزیم برای مدیریت ارتعاشات مخصوصاً در صنعت خودرو بسیار مورد توجه قرار گیرد. در مقایسه با آلیاژ آلومینیوم A356 با ضریب میرایی ۱٪ در تنش ۱ مگا پاسکال، برای آلیاژ AZ91 منیزیم این ضریب ۲۵٪ است. در تنش ۱۰۰ مگا پاسکال این ضریب برای آلومینیوم A356 %4 و برای منیزیم AZ91 %54 است.
  4. علاوه بر قابلیت میرایی ارتعاشات، منیزیم سپری قوی در برابر امواج الکترو مغناطیس نیز است. دیواره‌ای ۱ میلی‌متری از منیزیم به راحتی می‌تواند امواجی با شدت‌های بالاتر از ۸۵ دسی بل را سد کند. از این ویژگی منیزیم برای تولید بدنه تلفن‌های همراه، تجهیزات الکترونیکی، نظامی و تولید سیم‌های انتقال اطلاعات پرتوان استفاده می‌شود.
  5. یکی دیگر از خصوصیات آلیاژهای منیزیم در مقایسه با آلومینیوم پایداری ابعادی در برابر تغییرات حرارتی است. در منیزیم، پارامترهای مختلف خواص حرارتی مانند رسانایی پایین‌تر و گرمای ویژه بالاتر از آلومینیوم است. از جمله فرایندهای تحت تأثیر خواص حرارتی ماشین کاری دقیق است. آلیاژهای منیزیم حین گرم و سرد شدن سریع در فرایند ماشین کاری، تغییرات ابعادی کمی دارند. این ویژگی ماشین کاری دقیق این آلیاژها را ساده‌تر می‌سازد.
  6. منیزیم در مقایسه با آلومینیوم، سیالیت بالا در ریخته‌گری، نیاز به فشار کمتر در دایکست و عدم واکنش با فولاد در بوته و قالب است. با در نظر گرفتن این مزایا می‌توان برای دایکست قطعه‌ای منیزیمی از دستگاه‌های دایکست با ظرفیت کمتر استفاده نموده و تعداد به مراتب بیشتری قطعه در قالب‌های مشابه فولادی تولید کرد.

محدودیت‌های منیزیم[ویرایش]

با وجود ویژگی‌های منحصر به فرد و جذاب آلیاژهای منیزیم، این آلیاژها محدودیت‌های ذاتی به همراه دارند که استفاده از آن‌ها را محدود ساخته‌است.[۱] دانشمندان در تلاشند که با طراحی آلیاژهای جدید و فرایندهای تولید نوآورانه بر این محدودیت‌ها فائق آیند. افزایش مصرف روزافزون آلیاژهای منیزیم نشان از موفقیت دانشمندان در توسعه کاربرد آلیاژهای منیزیم و چیره شدن مزیت‌ها بر محدودیت‌های این آلیاژها دارد. به‌طور کلی می‌توان محدودیت‌های آلیاژهای منیزیم را در سه دسته طبقه‌بندی کرد:

۱_ ناهمسانگردی خواص مکانیکی، منیزیم با ساختار هگزاگونال از تقارن پایینی در مقیاس بلوری برخوردار است. چینش خاص صفحات بلوری در ساختار هگزاگونال سبب شده در صفحاتی خاص تراکم شبکه به مراتب از صفحات دیگر بالاتر باشد. این تفاوت تأثیر مستقیمی بر قابلیت حرکت نابجایی‌ها در جهات مختلف می‌گذارد. به صورتی که در برخی صفحات و جهات (صفحات قاعده‌ای) نابجایی‌ها به راحتی و با تنش برشی پایین قابلیت حرکت پیدا می‌کنند، درحالی که در سایر صفحات (مانند صفحات منشوری و هرمی) قابلیت حرکت نابجایی‌ها به شدت محدود است. این نا یکنواختی سبب محدودیت‌هایی در تغییر شکل می‌شود. در اثر حرکت نابجایی‌ها شبکه کریستالی داخل دانه‌ها به سوی جهت اعمال نیرو چرخش می‌کند. در آلیاژهای منیزیم به دلیل حرکت اکثر نابجایی‌ها در صفحات قاعده‌ای، چرخش کریستالی اکثر دانه‌ها به سمت جهتی واحد خواهد بود (صفحه نرمال قاعده‌ها به سوی جهت اعمال نیرو می‌گردد). در نتیجه پس از تغییر شکل ماده، پلی کریستال حاوی دانه‌هایی خواهد بود که همگی با هم، هم راستا شده‌اند و ناهمسانگردی ساختار هگزاگونال داخل خود را به کل قطعه تعمیم داده‌اند. به عنوان مثال ورقی از آلیاژ منیزیم با چنین جهت‌گیری بلوری حین کشش عمیق به راحتی در راستای صفحه نابجایی‌ها حرکت کرده و تغییر شکل می‌دهد. اما تغییر شکل در ضخامت ورق که وابسته به حرکت نابجایی‌ها در صفحات منشوری و هرمی است بسیار محدود بوده و لذا تغییر شکل در این راستا ممکن نبوده و ورق به سرعت پاره می‌شود. در شکل انتهای صفحه سیستم‌های لغزش و سیستم‌های دوقلویی ساختار هگزاگونال منیزیم قابل مشاهده است. علی‌رغم چنین محدودیت ذاتی، دانشمندان روش‌های مختلفی برای کنترل این محدودیت پیشنهاد کرده‌اند. به عنوان مثال تغییر شکل در دمای بالا باعث نزدیک تر شدن تنش برشی بحرانی حرکت نابه جایی‌ها در صفحات قاعده‌ای و غیر قاعده‌ای می‌شود. همچنین استفاده از عناصر آلیاژی که باعث تغییر نسبت ارتفاع به عرض شبکه در بلور هگزاگونال منیزیم می‌شوند نیز به عنوان راهی دیگر برای افزایش شکل‌پذیری آلیاژهای منیزیم مورد توسعه قرار گرفته‌است. در روش سوم برای افزایش شکل‌پذیری منیزیم با استفاده از تغییر شکل‌های نامتقارن (مانند نورد نا متقارن ورق) از هم جهت شدن دانه‌ها جلوگیری می‌شود. با وجود ارائه راهکارهای متفاوت عموماً این روش‌ها هزینه تولید را به شدت بالا برده و توجیه اقتصادی برای تولید انبوه را برای کاربردهای معمول زیر سؤال می‌برد. این محدودیت آلیاژهای منیزیم سبب شده بیش از ۹۰٪ قطعات صنعتی ساخته شده با این آلیاژها با روش‌های ریخته‌گری تولید شود و عموماً از تغییر شکل این آلیاژها مگر در موارد خاص اجتناب شود.

۲_ برای افزایش خواص مکانیکی در کاربردهای صنعتی، منیزیم با عناصر دیگر مخلوط شده و آلیاژهای مختلف تولید می‌شود. در آلیاژهای متداول و پر کاربرد منیزیم، افزایش استحکام از طریق ایجاد رسوبات مختلف صورت می‌پذیرد. این مکانیزم افزایش استحکام برای کاربرد در دماهای پایین بسیار مؤثر است. اما با افزایش دما این رسوبات در فاز زمینه حل شده و این آلیاژها در دماهای بالا به شدت استحکام خود را از دست می‌دهند. از این رو استفاده از این آلیاژها در دماهای بالا و در شرایط تغییر شکل خزشی به چالشی برای دانشمندان تبدیل شده‌است. برای این محدودیت هم چاره‌های مختلفی اندیشیده شده‌است. از جمله این راهکارها می‌توان به تولید آلیاژهای خاص با رسوبات مقاوم به حرارت و تولید کامپوزیت‌های پایه منیزیم با ذرات تقویت شده سرامیکی اشاره کرد. در حال حاضر آلیاژهایی با مقاومت خزشی مناسب در دمای حداکثر ۴۰۰ درجه سانتی گراد ابداع شده و به صورت صنعتی مورد استفاده قرار گرفته‌است.

۳_ سومین محدودیت قابل ملاحظه منیزیم واکنش‌پذیری بالای این فلز است. منیزیم با الکترونگاتیویته۳۱/۱ تقریباً قابلیت الکترون دهندگی به همه فلزات را دارا است. از این رو در تماس با آن‌ها پیل الکترو شیمیایی تشکیل شده، منیزیم خورده شده و فلز دیگر محافظت می‌شود. این خاصیت منیزیم برای تولید آندهای فدا شونده به نحو احسن استفاده می‌شود. اما در کاربردهای صنعتی، خوردگی بالا به عنوان محدودیت در کاربرد در نظر گرفته می‌شود. برای این محدودیت نیز راهکارهای متعددی بر پایه آلیاژسازی و اصلاح ریز ساختار پیشنهاد شده‌است. لازم است ذکر شود که خوردگی سریع منیزیم در برخی کاربردها به عنوان مزیت نیز شناخته می‌شود. برای مثال از برخی از آلیاژهای منیزیم برای تولید استنت‌های زیست تخریب پذیر برای درمان رگ‌های گرفته شده قلب استفاده نمود. این نوع از استنت‌ها نیازی به جراحی مجدد برای خارج کردن نداشته و در مدتی کنترل شده به تدریج در محیط بدن حل می‌شوند.

در دماهای بالا واکنش‌پذیری بالای منیزیم به صورت احتراق در دمای پایین‌تر از دمای ذوب خود را نشان می‌دهد. این مسئله نیز در کاربرد و تولید قطعات منیزیمی موانعی ایجاد کرده‌است. به عنوان مثال تا سال ۲۰۱۵ استفاده از قطعات منیزیمی داخل کابین هواپیماهای مسافربری ممنوع بوده‌است. با این وجود، با پیشرفت تکنولوژی و معرفی آلیاژهای جدید مقاوم به احتراق، این ممنوعیت مطلق برداشته شده و به جای آن لزوم رعایت استاندارد جدید و مقاومت در آزمایش‌های سخت گیرانه جایگزین شده‌است. در فرایندهای تولیدی مانند ریخته‌گری که ایجاد مذاب منیزیم اجتناب ناپذیر است نیز روش‌های متعددی برای کنترل احتراق مورد استفاده قرار می‌گیرد. از جمله این روش‌ها می‌توان به استفاده از فلاکس‌ها (عموماً نمک‌های کلریدی و فلوریدی) و گازهای محافظ اشاره کرد

تولید منیزیم[ویرایش]

تولید منیزیم از آب دریا

در روش تولید منیزیم از آب دریا، منیزیم به صورت هیدروکسید رسوب کرده و به وسیلهٔ واکنش با اسیدکلریدریک، به کلرید منیزیم تبدیل می‌شود. کلرید منیزیم به وسیلهٔ تبخیر محلول، بازیافت شده و فلز منیزیم به وسیلهٔ الکترولیز نمک مذاب بدست می‌آید.

فرایند الکترولیت[ویرایش]

اولین مرحله از این فرایند فراهم کردن کلرید منیزیم-که به‌طور جزئی دهیدراته شده- یا کارنالیت دهیدراته است. تغذیه‌های سلول صنعتی شامل مخلوطی از کلرید منیزیم دهیدراته، کلرید منیزیم جزئی دهیدراته شده یا کارنالیت دهیدراته است.

کلرید منیزیم دهیدراته شده به وسیلهٔ یکی از این دو روش فراهم می‌شود: کلرید کردن اکسید منیزیم یا دهیدراته کردن آب نمک کلرید منیزیم.

سلول الکترولیتی شامل مخزن آجر کاری شده‌است که به محفظه‌های کاتد و آند تقسیم می‌شود. آند گرافیتی هوا- خنک شونده یا آب- خنک شونده و کاتد فولادی در الکترولیت متشکل از کلریدهای قلیایی با افزودنی کلرید منیزیم، غوطه ور می‌شوند. دمای کاری بین ۷۵۰–۶۸۰ درجه سانتی گراد است. کلرید منیزیم در سلول الکترولیتی مطابق واکنش زیر تجزیه می‌شود:[۲]

MgCl_2→Mg+Cl_2

منیزیم فلزی در کاتد تشکیل شده (روشن‌تر از الکترولیت است) و شناور می‌شود تا در قسمت کاتد جمع شود. کلر که محصول فرعی این فرایند است در آند جمع می‌شود.

در کشورهایی که انرژی الکتریکی ارزان است و بازار مصرف پایداری وجود دارد، تولید به روش الکترولیز به صرفه است. این مقرون به صرفه بودن زمانی بیشتر است که کلرید منیزیم مورد نیاز از منبعی مثل آب دریا تأمین شود.[۳]

فرایند احیای سیلیکوترمی[ویرایش]

منیزیم طی فرایند سیلیکوترمی در دماهای بالا با فروسیلیسیم کاهش یافته و کریستال‌های منیزیم تشکیل می‌شوند. این فرایند شامل احیای اکسید منیزیم مذاب به وسیلهٔ فروسیلیسیم تحت فشار گاز در دمای حدود ۱۴۰۰ درجه سانتی گراد است. منیزیم فلزی در این فرایند تشکیل شده، تبخیر می‌شود و سپس دور از منطقه گرم تقطیر می‌گردد. منیزیم تقطیر شده دارای خلوص ۹۹٫۸٪ است و سپس مجدداً ذوب و ریخته‌گری می‌شود.[۴]

حال در انتهای این بخش به دلیل موضوعیت این فرایند در گزارش تهیه شده و استفاده از این روش به عنوان تنها روش تولید منیزیم در کشور، لازم دیده می‌شود که این فرایند را به‌طور خلاصه شرح دهیم.

به صورت کلی این فرایند از ۴مرحله اصلی و چندین مرحله کنترلی تشکیل شده‌است که در ادامه به آن‌ها پرداخته می‌شود.

واحد کلسیناسیون[ویرایش]

در واحد کلسیناسیون ابتدا سنگ‌های دولومیت استخراج شده پس از دپوسازی به واحد کنترل منتقل شده و میزان خلوص منیزیم در آن مورد بررسی قرار می‌گیرید، پس از تأیید شدن سنگ‌های استخراجی، این سنگ‌ها را غربال کرده و از لحاظ ابعادی بهینه می‌گردند. سپس به منظور افزایش خلوص منیزیم موجود در دولومیت‌های استخراجی و آماده‌سازی برای تحویل به بخش احیا، سنگ‌ها را وارد کورهٔ دوار می‌کنند، در این بخش سنگ‌ها موجود در دما ۱۲۰۰درجه سلسیوس قرار گرفته و گاز دی‌اکسید کربن خود را همان‌طور که در معادله زیر به آن اشاره شده‌است از دست می‌دهند.

(MgCO_3.CaCO_3 (solid)+Q→MgO.CaO(solid)+2CO_2+O_2(g

پس گذر سنگ‌های مورد نظر از این بخش، سنگ‌های خاکستری اولیه به رنگ سفید درآمده و به بخش بعدی منتقل می‌گردد. لازم است ذکر شود که گاز خروجی از این کوره حاوی مقادیر قابل توجهی از آب و دی‌اکسید کربن است که بررسی چگونگی استفاده از ضایعات تولیدی خود می‌تواند مفصلاً مورد بررسی قرار گیرد.

واحد آسیا و بریکت سازی[ویرایش]

در این بخش دولومیت‌های کلسینه شده به منظور آماده‌سازی برای تحویل به بخش احیا به نسبت‌های مشخصی با فروسیلیس(۷۵درصد کربن) و فلورین مخلوط می‌گردد، این مواد مخلوط شده سپس وارد آسیا گشته و در چندین مرحله پودر می‌شوند.

پس از مراحل فوق مواد آسیا شده به منظور بهینه‌سازی شکلی و ابعادی، به شکل بریک درآورده شده و در محفظه‌هایی برای انتقال به مرحله بعد نگهداری می‌شوند.

ریتورت واحد احیاء منیزیم

واحد احیاء منیزیم[ویرایش]

در این مرحله بریکت‌ها را درون محفظه‌ای استوانه‌ای شکل که ریتورت نام دارد، شارژ می‌کنند. پس شارژ ریتورت‌ها، داخل محفظه ریتورت‌ها توسط دو پمپ خلأ در دو مرحله تخلیه می‌شود، اولین پمپ فشار داخل ریتورت را به فشاری در حدود ۱۱۰ پاسکال رسانده و دیگر این فشار را به حدود ۱۰الی ۵ پاسکال می‌رساند. ابن فرایند احیاء حدود ۱۰ ساعت به طول می‌انجامد که در طی آن منیزیم موجود در بریکت‌ها توسط فروسیلیس احیاء شده و به سمت دیگر ریتورت که کندانسور تعبیه شده و فشار کمتری دارد منتقل می‌شود. سپس منیزیم در محفظهٔ ابتدایی ریتورت که محفظه چگالش نام دارد از گاز به جامد تبدیل می‌شود که به اصطلاح آن را کرون یا تاج منیزیم می‌نامند. بقیه مواد داخل ریتورت که بریکت سوخته نام دارند نیز از ریتورت‌ها تخلیه و در به عنوان دور ریخت جمع‌آوری می‌شود. فرایند گفته شده در بالا در معادله زیر خلاصه می‌شود.

کرون‌های تولید شده در واحد احیاء

(2MgO.CaO(s)+Si(Fe)(s) →2Mg(g) +CaO.SiO_2(s) +Fe(s

واحد ریخته‌گری[ویرایش]

کرون‌ها تولید شده در مرحله قبل، به خلوص مورد نظر رسیده‌اند ولی به دلیل اشکال و اندازه غیر استاندارد و بد کرون‌های سرد شده نیاز است که این کرون‌ها در کوره‌های دوباره ذوب شده و برای بسته‌بندی و فروش به شمش تبدیل شوند.[۵]

مشخصات شیمیایی[ویرایش]

منیزیم در حالت پودری، گرم می‌شود و زمانی که در معرض هوا قرار می‌گیرد، آتش گرفته و با شعله‌ای به رنگ سفید می‌سوزد. این فلز قلیایی خاکی عمدتاً به عنوان یک عامل آلیاژ دهنده برای ساخت آلیاژهای آلومینیوم - منیزیم استفاده می‌شود. این عنصر به صورت سه ایزوتوپ یافت می‌شود: ۲۶Mg, ۲۵Mg, ۲۴Mg که همهٔ این ایزوتوپ‌ها به مقادیر زیاد یافت می‌شوند. حدود ۷۹٪ از منیزیم نوع ۲۴Mg است.

کانی‌های منیزیم[ویرایش]

اگر چه منیزیم در ۶۰ کانی یافت می‌شود اما این عنصر در ذخایر بزرگ منیزیت، دولومیت، بروسیت، کارنالیت، الیوین و سیلیکات‌های منیزیم پتانسیل اقتصادی دارند، یافت می‌شود.

کاربردهای عمده[ویرایش]

کاربردهای منیزیم در صنایع مختلف به شرح زیر است:

  • دیرگداز
  • آلیاژ
  • تولید فلز منیزیم
  • داروسازی
  • سولفور زدایی و نودولی شدن در صنعت آهن و فولاد
  • کاربردهای شیمیایی
  • اکسید منیزیم
  • کربنات منیزیم
  • بی سولفید منیزیم
  • سولفات منیزیم * کلرید منیزیم
  • هیدروکسید منیزیم
  • منیزیای پخته‌شده
  • مکمل غذای حیوانات

کاربرد آلیاژهای منیزیم[ویرایش]

برای شکل دهی به روش کشش ورق های منیزیم در دماهای پایین جهت تولید قطعات با عمق کشش کم برای تولید قاب محصولات الکترونیکی مانند موبایل و کامپیوتر از طریق روش RUB امکان پذیر است ، اما برای تولید محصولات ی با عمق کشش بالا و کشش عمیق باید از قالب های گرم کار استفاده کرد و همچنین ایجاد گرادیان دمایی در سطح ورق جهت کشش های عمییق تر بسیار حايزاهمیت میباشد که با این کار باعث بالارفتن تنش تسلیم به صورت موضعی در نوک سمبه میشویم و باعث شکل دهی های موفق تری می شود . در تست CCV متوجه شدیم که دمای بالا جهت شکل دهی منیزیم دارای یک حد نهایی میباشد و از یک دمایی بالاتر باعث پارگی در نوک سمبه میشود.

پیشنهادی که برای تحقیقات اینده ورق های منیزمی میشود مطالعه و بررسی ورق های دولایه منیزیم ای و تست های کشش عمیق منیزیم دولایه و چند لایه و همچنین ارایه راهکار جهت کنترل دقیق تر گرادیان دمایی در قالب،نوک سمبه و ورق که در نهایت باعث بالارفتن سرعت در تولید قطعات میشود. بررسی قالب های بزرگ تر نظیر سقف اتومبیل و اجزا بدنه ان به روش گرم کار ورق منیزیم جهت تولید خودرو هایی با وزن سبک تر.

آلیاژهای منیزیم به دلیل دارا بودن استحکام ویژه بالا جایگزین مناسبی برای فولاد و آلومینیوم برای استفاده در قطعات سبک در صنایع اتومبیل و الکترونیک هستند که این موضوع باعث افزایش تقاضای این آلیاژ شده‌است. البته ورق‌های منیزیمی در دمای پایین تغییر شکل بسیار کمی دارند، که باعث محدودیت شدید کاربرد آن‌ها شده‌است. این شکل‌پذیری کم ناشی از غالب بودن سیستم لغزش قاعده‌ای آن در تغییر شکل است که در قطعات کارشده این بافت قاعده‌ای بسیار شدید است. شکل‌پذیری ورق‌های منیزیم بوسیلهٔ کاهش شدت بافت قاعده‌ای می‌تواند بهبود یابد[۶][۷][۸] از این رو تلاش‌های زیادی برای کاهش این شدت به منظور بهبود شکل‌پذیری آن انجام شده‌است. ا فزودن عناصر آلیاژی مانند عناصر نادر خاکی و لیتیوم یک روش مؤثر برای تضعیف بافت قاعده‌ای است با این حال اضافه کردن این عناصر گران‌قیمت، هزینهٔ تمام شده قطعه را افزایش می‌دهد؛ بنابراین نیاز به کنترل و کاهش بافت قاعده‌ای بوسیلهٔ به کاربردن تکنیک‌های فرایندهای تولید است. در سال‌های اخیر فرایندهایی مانند نورد نامتقارن،[۹] نورد متقاطع،[۱۰] خم کاری تکراری تک جهته،[۱۱] خم کاری تکراری، نورد کانال زاویه‌ای با مقطع یکسان، شکل‌دهی غلطکی موجی، آنیل با دمای بالا قبل و بعد از نورد گرم، ترکیب نورد گرم و نورد دمای بالا[۱۲][۱۳] برای بهبود خواص ورق‌های منیزیمی بکارگرفته شده‌است. در فرایند نورد به منظور جلوگیری از شکست و ایجاد ترک، پارامترهای فرایند برای آلیاژهای Mg باید به دقت کنترل شوند، دمای بالای نورد، نورد چند مرحله‌ای با کاهش ضخامت کم و آنیل کافی بین هریک از مراحل نورد در روش سنتی نورد به کار گرفته می‌شد.[۱۴] افزایش دمای فرایند برای شکل‌پذیری بهتر آلیاژ Mg به دو دلیل مفید است؛ اول این که سیستم‌های لغزش غیر قاعده‌ای در دمای بالاتر فعال می‌شوند که این سیستم‌های لغزش مستقل امکان شرکت در تغییر شکل را دارند[۱۵] و دلیل دوم تبلور مجدد دینامیکی است که با افزایش دما، افزایش می‌یابد و باعث کاهش سختی ماده حین تغییر شکل می‌شود.[۱۶]

پزشکی[ویرایش]

یک میلهٔ منیزیمی

منیزیم معدنی برای قلب، عضله و کلیه مهم و مفید است. این ماده قسمتی از دندان و استخوان شما را می‌سازد. مهم‌تر از همه، این ماده آنزیم‌ها را فعال می‌کند، به شما انرژی می‌دهد و به کار کردن بهتر بدن کمک می‌کند. این ماده همچنین استرس، افسردگی و بیخوابی را کاهش می‌دهد. ویتامین ب۶ به جذب منیزیوم مورد نیاز کمک می‌کند و با منیزیوم در بسیاری از کارها همکاری می‌کند. منیزیم در بسیاری از غذاها قابل دسترس است. اگرچه بسیاری از مردم در ایالات متحده منیزیم کافی از رژیم غذایی شان دریافت نمی‌کنند. قرص‌های مغذی تنها می‌تواند به شما مقدار منیزیم دریافتی را نشان دهد. دانشمندان روش‌های مختلفی برای مشخص کردن میزان منیزیم غذاهای متفاوت پیدا کرده‌اند. علاوه بر این بسیاری از غذاها به‌طور کامل تجزیه نشده‌اند.

بیماری‌های طبی مشخصی تعادل منیزیم بدن را بهم می‌زند. برای مثال همراه با استفراغ یا اسهال می‌تواند منجر به کمبود منیزیم به‌طور موقتی شود. بیماری‌های معده و روده، دیابت. التهاب پانکراس، عملکرد بد کلیه و داروهای دیورتیک (ادرارآور) می‌تواند باعث کمبود طولانی مدت منیزیم شود. اگر مبتلا به یکی از بیماری‌های ذکر شده هستید برای منیزیم مورد نیاز مصرفی تان، با پزشک مشورت کنید.

کاربردهای پزشکی[ویرایش]

مصرف کافی منیزیم می‌تواند در موارد زیر کمک کند:

  • جلوگیری از سخت رگی (تصلب شرایین)
  • جلوگیری از حمله و سکته قلبی
  • کاهش فشار خون
  • کاهش چربی زرد (کلسترول) و تری گلیسیرین خون
  • تصحیح بی نظمی‌های ضربان قلب
  • توقف حمله حاد آسم
  • کاهش میزان نیاز به انسولین در صورت دیابتی بودن
  • جلوگیری از تشکیل سنگ کلیه
  • درمان بیماری کرون
  • درمان سر و صدای ناشی از کاهش شنوایی
  • بهبود بینایی در صورت داشتن آب سیاه
  • کاهش گرفتگی ماهیچه، زود پریشی، خستگی، افسردگی و احتباس مایع مرتبط با قاعدگی
  • جلوگیری از عوارض جدی آبستنی مانند پره اکلامپسی و اکلامپسی
  • نگهداری و تجدید سطح انرژی طبیعی بدن
  • بهبود چگونگی خواب
  • کاهش دل نگرانی و افسردگی
  • کاهش آزارها و آثارها استرس

منابع غذایی[ویرایش]

غنی‌ترین منبع منیزیم شامل (TOFU)، آجیل (بادام، پسته، گردوی سیاه) تخم کدو، بادام زمینی، برگ سبز سبزیجات، غلات، گندم، آرد سویا، تخم کتان و ملاس.

منابع خوب دیگر برای منیزیم آرد گندم، آرد جو، چغندر سبز، اسفناج، خرده گندم، حبوبات، جودوسر، موز، سیب زمینی (با پوست)، پسته. همچنین می‌توانید منیزیم را از بسیاری گیاهان گونه‌های علف‌ها و جلبک‌ها به دست آورید، برای مثال: جلبک آگار، گشنیز، شوید، دانه غلات، شاه‌پسند، خردل خشک، ریحان، پودر کاکائو، تخم رازیانه، مرزه، تخم زیره، تخم ترخون، تخم مرزنجوش و تخم خشخاش.

اشکال دیگر[ویرایش]

منیزیم به اشکال مختلف در دسترس است. بهترین فرم آن به صورت «قابل حل» عرضه می‌شود، که بدن راحتتر منیزیم این ترکیب را جذب می‌کند. این ترکیبات قابل حل به صورت کپسول ژلاتینی است. مکمل‌های توصیه شده منیزیم شامل سیترات منیزیم، گلوکونات منیزیم و لاکتات منیزیم است.

دیگر منابع هم خانواده منیزیم شامل شیر منیزیم (هیدروکسید منیزیم) که اغلب به عنوان یک ملین یا آنتی اسید استفاده می‌شود، نمک‌های «ایپوم» (سولفات منیزیم) که به عنوان یک ملین یا تقویت‌کننده استفاده می‌شود یا به وان حمام اضافه می‌شود. بعضی از اشکال منیزیم از طریق پوست قابل جذب است.

چگونگی مصرف[ویرایش]

مقدار کمی از منیزیم را در روز با یک لیوان پر از آب (تا باعث اسهال نشود) مقادیر توصیه شده روزانه به شرح زیر است:

  • مردان بزرگسال بین ۱۹ تا ۳۴ سالگی: ۴۰۰ میلی‌گرم بعد از ۳۰ سالگی: ۴۲۰ میلی‌گرم
  • زنان بزرگسال بین ۱۹ تا ۳۴ سال: ۳۱۰ میلی‌گرم بالاتر از ۳۰ سال ۳۲۰ میلی‌گرم
  • پسران در سن ۱۴ تا ۱۸ سال: ۴۱۰ میلی‌گرم
  • دختران در سن ۱۴ تا ۱۸ سال: ۳۶۰ میلی‌گرم
  • بچه‌ها در سن ۹ تا ۱۳ سال: ۲۴۰ میل گرم، بچه‌ها در سن ۴ تا ۸ سال ۱۳۰ میلی‌گرم و بچه‌های سن ۱ تا ۳ سال: ۸۰ میلی‌گرم.

موارد احتیاط[ویرایش]

اگر بیماری شدید کلیوی یا قلبی دارید بدون مشورت پزشک از مکمل‌های منیزیم استفاده نکنید.

مصرف بیش از حد شیر منیزیم (به عنوان مسهل یا آنتی اسید) یا نمک‌های ایپسوم (به عنوان مسهل یا تقویت‌کننده) باعث می‌شود که شما مقادیر زیادی منیزیم هضم کنید، به ویژه اگر مشکل کلیوی داشته باشید. مصرف زیاد منیزیم باعث ایجاد مشکلات جدی برای سلامتی و حتی مرگ می‌شود.

تداخل‌های احتمالی[ویرایش]

بعضی از غذاها، نوشیدنی‌ها و داروها، باعث از دست دادن منیزیم بدن می‌شود.

سدیم (نمک)، کافئین، الکل، فیبر، ریبوفلاوین به میزان زیاد، انسولین دیورتیک‌ها (ادرارآور) و دیجیتال‌ها است.

بعضی از غذاها، نوشیدنی‌ها و داروها، بدن را برای مصرف منیزیم مورد نیاز با مشکل و سختی روبرو می‌کند. این‌ها شامل کلسیم، آهن، منگنز، فسفر. روی و چربی است.

سوختن منیزیم[ویرایش]

در گذشته منیزیم به عنوان لامپ پرنور فلاش عکاسی استفاده می‌شد. فلز منیزیم به راحتی اکسید شده و هنگام سوختن نور قوی را ساطع می‌کند به همین دلیل نیز از این عنصر به صورت پودر شده و خالص در فلاش‌های عکاسی استفاده می‌کردند.

منیزیم ماده‌ای است که می‌تواند به عنوان گزینه‌ای مناسب برای سوخت بشر قرار گیرد. همان‌طور که گفته شد گرما ایجاد شده از سوختن هر کیلو زغال سنگ برابر ۳۰ مگاژول بوده و گرمای تولید شده از سوختن هر کیلو منیزیم برابر ۲۵ مگاژول است که اندکی از زغال سنگ کمتر است.

نکته حائز اهمیت آنجاست که ذخیره و انتقال منیزیم بر خلاف هیدروژن بسیار آسان است.[۱۷]

منیزیم سوختی برای نیروگاه‌های حرارتی[ویرایش]

سوخت‌های فسیلی اصلی‌ترین منبع تأمین انرژی نیروگاه‌های حرارتی هستند و از طرفی دیگر این نیروگاه‌ها بزرگترین تولید کنند کربن دی‌اکسید در جهان نیز است حال اگر روزی بتوانیم منیزیم را به صورت فراوان تولید کنیم آنگاه می‌شود بروی این عنصر به عنوان منبعی جایگزین برای سوخت‌های فسیلی در این نیروگاه‌ها حساب باز کرد که این کار می‌تواند به مؤثرترین روش برای کاهش دی‌اکسید کربن تبدیل گردد.

همان‌طور که می‌دانید از واکنش شیمیایی پودر منزیم و آب، هیدروژن تولید می‌شود که افزایش سرعت این واکنش رابطه مستقیمی با میزان کوچکی دانه‌های پودر منیزیم خواهد داشت. با سرعت گرفتن واکنش ذیل هیدروژن شروع به سوختن کرده به این صورت که هیدروژن خروجی با اکسیژن واکنش داده و از واکنش آن‌ها بخار آبی حاصل می‌شود که به دلیل فشار و دمای بالایش قادر به چرخاندن توربین برای تولید الکتریسیته خواهد بود.

نمونه اولیه از یک نیروگاه حرارتی در مقیاس آزمایشگاهی

Mg + H2O MgO + H2

طرحی شماتیکی از باتری منیزیم هوا

محصول نهایی این واکنش منیزیم اکسید جامد و بخار آب است که هیچ‌کدام تخریب زیست‌محیطی نخواهد داشت و منیزیم اکسید تولیدی را نیز می‌توان به وسیله چرخهٔ بازیافت منزیم توسط لیزر خورشیدی دوباره به منیزیم خالص که به عنوان سوخت رآکتور است تبدیل کرد.[۱۸]

باتری‌های منیزیم-هوا[ویرایش]

در باتری‌های معمولی در الکترود منفی از مواد فعال الکترونده (این مواد عامل تولید الکتریسیته هستند) و در الکترود مثبت از مواد فعال الکترون گیرنده استفاده می‌شود. در Air Batteryها اکسیژن موجود در هوا به عنوان ماده الکترون گیرنده در الکترود مثبت قرار می‌گیرد و در الکترود منفی نیز مواد فعال الکترون دهنده قرار می‌گیرد.[۱۹] واضح است که به دلیل این که ماده خاصی در الکترود مثبت قرار نمی‌گیرد، چگالی انرژی در این باتری‌ها نسبت به باتری‌های متعارف دیگر به مراتب بالاتر است.

در باتری منیریم- هوا، منیزیم به عنوان مادهٔ فعال در الکترود منفی قرار می‌گیرد وقتی که منیزیم در الکترود منفی با اکسیژن در الکترود مثبت واکنش می‌دهد فرایند اکسید شدن رخ می‌دهد و انرژی الکتریکی تولید می‌شود و چیزی که باقی ماند اکسید منیزیم خواهد بود.

ما در این‌جا به بررسی تفاوت‌های بین موتور الکتریکی و اتومبیل با باتری منیزیم-هوا می‌پردازیم و هر دو طبقه‌بندی را با فرض آنکه قیمت منیزیم به حدی پایین بیاید که از آن بتوان به عنوان سوختی با صرفهٔ اقتصادی یاد کرد پیش می‌بریم.

بر اساس گزارش سازمان NEDO تا سال ۲۰۲۰ میلادی میزان مسافت طی شده توسط باتری‌های یونی لیتیمی در یک دور شارژ کامل با وزنی حدود ۸۰ کیلوگرم به حدود ۲۰۰ کیلومتر خواهد رسید. حال با وزن ثابت میزان مسافت طی شده توسط باتری منیزیم- هوا، ۷ برابر خواهد شد و به‌طور معکوس با میزان مسافت طی شده برابر، وزن این باتری در مقایسه باتری‌های یونی لیتیمی به یک هفدهم تقلیل می‌یابد؛ و این حقیقتی است که در آینده باعث افزایش استفاده از این باتری‌ها خواهد شد. قضاوت در مورد فضای اشغال شده توسط باتری‌های یونی لیتیمی بر اساس وزن این باتری تصویر روشنی را به ما نمی‌دهند و این به معنی است که فضای اشغال شده توسط این باتری خارج از دسترس نخواهد بود ولی بدیهی است که باتری‌های منیزیم هوا از لحاظ سایز نیز به مراتب استاندارد تر خواهد بود.

از منظری دیگر اکثر خودروها هنگام احتراق و تولید توان گاز دی‌اکسید کربن و دیگر گازهای مضر را تولید می‌کنند ولی باتری‌های منیزیم-هوا از این نظر نیز سرآمد هستند ولی یکی از مشکلات اساسی این ماشین‌ها سوخت‌گیری و شارژر طاقت فرسا این باتری‌ها است. به یاد دارید که یکی از مشکل اساسی خودروهای الکتریکی، زیر ساخت‌های ایستگاه سوخت‌گیری و شارژ این خودروها بود به‌طوری‌که نیاز بود تا این ایستگاه‌ها در فواصل کمی نسبت به هم قرار گیرند تا بتوانند شرایط پیمودن مسیرها طولانی را فراهم سازند؛ ولی باتری‌ها منیزیم-هوا همانند خودروهای الکتریکی نیازمند زیرساخت‌های وسیعی نمی‌باشند و منیزیم را می‌توان به راحتی در فروشگاه‌های مختلف جایگزین منیزیم اکسید موجود در باتری نمود.

همان‌طور که می‌دانید از فعالیت باتری منیزیم-هوا، اکسید منیزیم تولید می‌شود و ایده بسیار کارامدی خواهد بود اگر فرایندی را تبعیت کرد که در آن بتوان منیزیم اکسید موجود در باتری را پس از جایگزین نمودن با پک منیزیمی جدید، در چرخه بازیافت توسط لیزر-پمپ شده- خورشیدی قرار داد.[۲۰]

از این گذشته باتری‌های یونی لیتیمی، در زمینه تأمین مواد خام اولیه نیز با مشکلاتی رو به رو هستند. به‌طور معمول خودروها برای پیمودن مسافت ۵۰۰کیلومتری نیازمند توانی حدود ۱۰۰کیلووات ساعت هستند. حال به دلیل آنکه ظرفیت ویژه این عنصر برابر 3.83A.h/g بوده و لتاژ خروجی این باتری‌ها برابر ۳ ولت است در نتیجه توانی برابر ۱۱٫۵ وات ساعت را به ازای هر گرم لیتیم تولید می‌شود که برای تأمین انرژی فوق، ۸٫۷کیلوگرم لیتیم نیاز خواهد بود (البته با فرض این که ۱۰۰٪ توان تولید توسط لیتیم قابل استفاده قرارگیرد). در حال حاضر ۹۰۰ میلیون خودرو در جهان در حال استفاده است که میزان لیتیم مورد نیاز برای تجهیز این تعداد خودرو برابر ۷٫۸۰۰٫۰۰۰ خواهد بود و با توجه به این که میزان ذخایر در حال دسترس فعلی لیتیم برابر ۴میلیون تن است در نتیجه حتی اگر کل این مقدار در زمینه تولید خودرو مصرف شود با این حال این میزان از منابع کفاف تأمین این تعداد خودرو را نخواهد داشت. در حال حاضر سرانه تولید منابع لیتیم در جهان برابر ۲۵٫۰۰۰تن است ولی انتظار می‌رود که با افزایش میزان تقاضا این مقدار در آینده به سرعت رشد کند و در حال حاضر نیز رقابتی در این زمینه در جهان الخصوص بین آمریکا جنوبی و کشور چین شروع شده‌است؛ ولی گفت این نکته لازم است که اگر باتری‌های یونی لیتیمی فراگیر شوند در این صورت محدودیت ذخایری عنصر لیتیم نسبت به نفت خام بیشتر خواهد شد. همچنین گفته می‌شود که برای بازیافت لیتیم از باتری‌های یونی لیتیمی مصرف شده بیشتر از هزینه تولید آن‌ها به صورت معمول خواهد بود. آب دریا حاوی لیتیم است و تحقیقاتی در زمینه استخراج لیتیم از آب دریا در دست انجام است ولی در واقع میزان لیتیم موجود در آب دریا نسبت به میزان منیزیم بسیار ناچیز است به صورتی که در هر کیلوگرم آب دریا 1.29g منیزیم یافت می‌شود که این میزان برای لیتیم به 0.00001gدر هر کیلوگرم آب دریا تقلیل می‌یابد از طرفی در حال حاضر هزینه استخراج لیتیم از آب دریا حدود ۱۰۰ الی ۲۰۰ دلار خواهد شد و نیاز است که این هزینه برای کارآمد شدن و مطرح شدن لیتیم به عنوان سوخت کاهش یابد.

تحقیقات در مورد باتری‌های فلز-هوا در منحصر به باتری‌های منیزیم-هوا نمی‌شود بلکه از فلزاتی همچون آلومینیم، لیتیم و سرب نیز در این باتری‌ها استفاده می‌شود اگر چه که از امر این تحقیقات زمان زیاد نمی‌گذرد. لازم است ذکر شود که میزان چگالی انرژی باتری‌های لیتیم-هوا از نوع منیزیمی این باتری‌ها بیشتر است و در صورت استفاده از این لیتیم خروجی بیشتری نسبت به منیزیم خواهیم داشت؛ ولی همان‌طور که در مورد باتری‌های یونی لیتیمی گفته شد مشکل کمبود منابع در مورد این باتری‌ها نیز صادق است به صورتی که برای ساخت و تجهیز وسایل الکتریکی زیادی نیاز به لیتیم و ترکیبات مختلف آن خواهیم داشت؛ ولی می‌دانیم که سوخت باتری منیزیم-هوا رامی توان با هزینه کمی بازیافت کرد و از طرفی دیگر میزان ذخایر منیزیم نسبت به لیتیم به مراتب بیشتر است. به همین دلیل است که می‌توان منیزیم را به عنوان سوختی مطمئن تر نسبت به لیتیم یاد کرد.

بشر در آینده به سمت سوختی باید برود که از لحاظ، در دسترس بودن و فروانی منابع غنی بوده و بتواند توان کارآمدی را با چگالی انرژی بالا و با صرفه اقتصادی تولید نماید و از طرفی دیگر بتواند نیاز آلودگی‌های محیط زیستی بشر که ناشی از سوختن منابع انرژی است را رفع کند. حال من حیث مجموع چرخه انرژی پاک جدید منیزیم و لیزر-پمپ شده- خورشیدی راه حلی است که می‌تواند کلیدی برای حل این مشکل باشد زیرا همان‌طور که در بخش‌های گذشته به آن اشاره گردید این منبع ناتمام انرژی، با توجه به فراوانی و دانسیته انرژی بالا و پاک بودن چرخه تولید و استفاده می‌تواند به عنوان یکی از بهترین کاندیدها برای جایگزینی سوخت‌های فسیلی قرار گیرد.[۲۱]

کاربرد منیزیم در کشاورزی[ویرایش]

منیزم یک از عنصر غذایی ماکرو که در رشد و سلامت گیاهان ضروری است.[۲۲]

مقدار منیزیم در گیاه[ویرایش]

مقدار منیزیم بافت‌های گیاهی حدود ۰۱/۵ تا ۱ در صد وزن خشک برگ‌ها هستند. مقدار منیزیم در برگ‌ها با افزایش سن گیاه افزایش یافته بطوریکه بیشترین غلظت آن در برگ‌های پیر دیده می‌شود. مقدار منیزیم قابل استفاده در خاک (محلول و قابل تبادل) با روش استات آمونیوم یک نرمال۵۰۰ میلی‌گرم در کیلوگرم پیشنهاد می‌شود.[۲۳]

نقش منیزیم در گیاه[ویرایش]

کوفاکتور بسیاری از واکنش‌های آنزیمی و دریافت کنندهء، پروتئین بوده و در تنظیم کانال‌های غشاء (بارکر و پیلبام، ۲۰۰۷) حفظ ساختار ریبوزوم، تنفس و تشکیل قندها نقش دارد (فاگریا، ۲۰۰۹). منیریم در سنتز پروتئین، فعال سازی آنزیم‌ها، جذب و انتقال فسفات، توزیع هیدروکربن‌ها، ساخت کلروفیل و فتوسنتز، مصرف کودهای منیزیمی نیز در بهبود کمی و کیفی گل‌های زینتی ضروری است.[۲۴]

کود منیزیم[ویرایش]

کاربرد مقادیر زیاد کودهای پتاسیمی یا بالا بودن میزان پتاسیم و کلسیم در خاک می‌تواند منجر به کاهش میزان منیزیم گیاه شود تا جایی که در بسیاری از خاک‌ها جذب منیزیم بیشتر تابع حلالیت پتاسیم است تا مقدار منیزیم خاک. برخی از محققین بر این باورند که منیزیم ممکن است در مکان‌های غیرقابل دسترس در میان لایه‌های رس‌های ۲:۱ حبس شود. نسبت‌های پتاسیم به منیزیم برای رشد مناسب گیاهان متغیر است. این مقدار را برای گیاهان زراعی در خاک، پنج، برای سبزیجات و چغندر، سه، برای درختان میوه و گیاهان گلخانه ای دو پیشنهاد کرده‌اند. افزایش کودهای آمونیومی به ویژه هنگامی که نیتریفیکاسیون انجام نشده و نیتروژن به شکل آمونیوم جذب گیاه می‌شود، منجر به کاهش جذب منیزیم شده، به طوری که مصرف کودهای محتوی منیزیم از جمله سولفات مضاعف پتاسیم، منیزیم و سولفات منیزیم برای افزایش عملکرد و بهبود کیفیت گل‌ها پیشنهاد می‌شود.[۲۵]

علائم کمبود منیزیم[ویرایش]

از نشانه‌های کمبود منیزیم در گیاه، زردی بین رگبرگ هاست. ابن کمبود ابتدا در برگ‌های پیر مشاهده می‌شود و در صورت کمبود شدید، برگ‌ها شروع به ریزیش می‌کنند. در خاک منیزیم به نسبت سریع شسته شده و از دسترس گیاه خارج می‌گردد. برای رفع کمبود منیزیم از کربنات و سولفات منیزیم استفاده شود.[۲۶]در صورت کمبود شدید، کل برگ زرد کم رنگ شده و در نهایت قهوه ایی و از بین می‌رود (حسندخت، 1386)[۲۷]همچنین رشد ریشه‌ها کاهش یافته و قرمز تیره می‌شوند (فاگریا، ۲۰۰۹). به صورت یون Mg2+ جذب شده و نسبت به کلسیم تحرک بیشتری در گیاه دارد. کمبود منیزیم به‌طور فراوانی در خاک‌های ماسه ای با PH پایین یا مقادی بالای کلسیم و پتاسیم رخ می‌دهد (مرکریو، 2007).[۲۸]

نورد منیزیم[۲۹][ویرایش]

آلیاژهای منیزیم به دلیل سبک بودن هر روز با استقبال بیشتری مواجه می‌شوند اما با این وجود فرایندهای تولید آنها به دلیل خصوصیات منیزیم محدود است. فلزات به صورت ورق یکی از اشکال اساسی مورد استفاده در کاربردهای صنعتی هستند. تقریباً همه فلزاتی که برای کاربردهای سازه ای مورد استفاده قرار می‌گیرند به شکل ورق نیز موجود است اما منیزیم به دلیل دارا بودن ساختار هگزاگونال این امر مشکل می‌سازد. ساختار منیزیم مکانیزمهای فعال تغییر شکل این فلز را حداقل در مقایسه با فلزات با ساختار مکعبی محدود می‌سازد؛ بنابراین قابلیت شکل‌گیری و چقرمگی که از الزامات اولیه در فرآیندهای شکلدهی هستند نیز محدود هستند. امکان تولید ورق‌های منیزیم در دهههای قبل نشان داده شده‌است اما در حال حاضر کاربرد خاصی ندارد مطالعات جدید بر تأثیر پارامترهای فرآیندی به خصوص دما بر ممکن بودن فرآیندهای سنتی شکلدهی تأکید دارد علاوه بر آن به تازگی کشف شده که آلیاژهای حاوی عناصر آلیاژی به خصوص عناصر کمیاب خاکی در هنگام نورد تمایل به نشان دادن خواص ریزساختاری و به خصوص بافتی مختلفی دارند که تأثیر قابل توجهی در خواص ورق تولیدی دارد.

یکی از موانع اصلی پیش روی استفاده گسترده از ورقهای منیزیم اقتصادی نبودن فرایند تولید آن در مقایسه با روشهای دیگر ساخت از جمله ریخته‌گری دو غلطکه (twin-roll casting) است.

یکی از دلایلی که از ریختهگری پیوسته (Direct chill casting) برای تولید ورقهای آلیاژی منیزیم استفاده نمیشود این است که در این روش عناصر آلیاژی به مرکز ضخامت ورق پس زده می‌شوند و به همین دلیل خواص ورق را غیریکنواخت کرده و این فرایند برای تولید ورق‌های آلیاژی مناسب نیست. فرایند تولید ورق‌های منیزیم با ماده اولیه که برای نورد استفاده می‌شود آغاز می‌شود. ماده اولیه نبرد معمولاً اسلبها هستند که با فرایند دی‌سی کستینگ تولید می‌شوند. پیوسته بودن این فرایند به ما این اطمینان را میدهد که در طول ریخته‌گری دارای ساختار یکنواختی هستیم. همچنین برای استفاده‌های با تعداد کمتر همانند مقیاسهای آزمایشگاهی از ریخته‌گری با کمک جاذبه (gravity casting) استفاده میشود.

نمایی از ریخته‌گری پیوسته (غیر منیزیم)

قطعات تحت فرایند همگن سازی قرار میگیرند و سپس در صورت نیاز با ماشین کاری به اندازههای مورد نیاز در میآیند. آنیل کردن اگر در دمای مناسب آلیاژ مورد نظر انجام شود تأثیر چندانی در اندازه دانه ندارد و بیشتر به عنوان همگن سازی توزیع عناصر و حل کردن رسوبات فاز ثانویه که ناشی از فرایند ریخته‌گری اولیه برای تولید اسلب‌ها هستند مورد استفاده قرار میگیرد. مسئله اصلی در اینجا همگن بودن ریزساختار در اسلب است. دماهایی که اسلب‌ها در آن مورد عملیات آنیلینگ قرار می‌گیرند در جدول منبع[۲۹] که توسط چبی و لهنرت[۳۰] ارائه شده آورده شده‌است که دمای آنیلینگ با دمای فاز جامد آلیاژ مورد نظر مرتبط است. اسلب فلز سپس از میان دو غلتک که فاصله میان آنها از ضخامت ورق اولیه کمتر است رانده شده و بنابراین تغییر شکل پلاستیک در ماده رخ می‌دهد جدول منبع همچنین شامل تعدادی از دماهای متوسط اعمالی در حین عملیات نورد است که توسط بک[۳۱] در سال ۱۹۳۹ ارائه شده‌است. برای منیزیم و فلزات دیگر دو نوع فرایند نورد وجود دارد که شامل نورد گرم و نورد سرد است. بدین صورت که اگر دمای فرایند بالاتر از دمای تبلور مجدد آلیاژ مورد نظر باشد به فرایند نورد گرم و اگر دمای فرایند پایین‌تر از دمای تبلور مجدد باشد به آن نورد سرد گفته می‌شود.

رابطه میان پارامترهای فرایندی و خواص ورق

ورق منیزیم

خواص ورق برای مثال خواص مکانیکی آن می‌تواند مرتبط با برنامه نورد اعمالی باشد. دیگر جنبههای مهم کیفیت ورق به خصوصیات دیگر ماشین مورد استفاده برای این فرایند بستگی دارد. همگن بودن گیج نهایی و شکل ورق تولیدی مستقیماً با غلتکهای مورد استفاده مرتبط است. همچنین کیفیت سطحی به نوع روانکار مورد استفاده و نحوه روانکاری در طول فرایند نورد بستگی دارد. فرایند گرم در طول نورد ورقهای آلیاژهای منیزیم مستقیماً با تبلور مجدد دینامیک همراه است جایی که خواص ریز ساختاری مرتبط با شکل دهیهای پیشین به راحتی از دست میرود. در نتیجه به‌طور معمول مشاهده می‌شود که طیف ریزساختار قابل دستیابی بعد از این فرایند باریک است. برای مثال اندازه دانه و شدت بافت به‌طور مشخص تغییری نمیکند. این مسئله باعث شده که فعالیت‌های پژوهشی محدودی در زمینه تأثیر پارامترهای نورد برخی خواص محصولات مسطح منیزیوم در مقایسه با قطعات مکعبی مانند فولاد و ورق‌های آلومینیوم صورت گیرد. کنترل بافت کریستالوگرافی به عنوان کلیدی در تعیین شکل‌پذیری بهبود یافته ورق که برای توسعه تعداد کاربردهای صنعتی بسیار ضروری است معرفی شده‌است بنابراین مطالعات اخیر در زمینه درک بهتر رابطه میان ریز ساختار اولیه قبل از شروع نورد، دمای نورد، کاهش ضخامت در هر پاس، کاهش کلی ضخامت نبرد و بافت نهایی متمرکز شده‌است. دمایی که فرایند نورد در آن انجام می‌شود پارامتر تعیین‌کننده است به دلیل اینکه مکانیزمهای مشخص شکل دهی در آلیاژهای منیزیم همانند لغزش نابجایی غیر بیسال درست مانند اتفاق افتادن تبلور مجدد دینامیک با افزایش دما فعال می‌شود و تغییر شکل مورد نظر می‌تواند بدون شکست یا پارگی در ورق انجام شود. در نتیجه تعدادی دیگر از پارامترهای فرایند رامی توان برای تأثیر گذاری درخواس ورق نهایی مسئول دانست. میزان کاهش ضخامت در هر پاس از نورد از آنجایی که نرخ کرنش را همانند مقدار تغییر شکل قبل از بازیابی و تبلور مجدد قطعه تغییر شکل یافته در طول آنیل کردن متوسط تعیین میکند بر ریز ساختار و بافت نهایی تأثیر میگذارد. افزایش سرعت نبرد منجر به کاهش اندازه دانه متوسط ورقهای منیزیم میشود همان‌طور که به وسیلهٔ اسادیقی و همکاران[۳۲]برای آلیاژ AZ31 نشان داده شده‌است. علاوه بر پارامترهای فرایند دیگر جنبهها نیز برای دستیابی به خواص مطلوب ورق مهم هستند. از این عوامل می‌توان به روش نورد برای مثال نورد یک جهته یا برعکس کردن جهت ورق بعد از هر پاس نورد یا نورد ضربدری اشاره کرد. به‌طور کلی برای دستیابی به قطعات مورد نظر از جنس منیزیم به دلیل ریز ساختار این فلز تا حد امکان سعی میشود از روشهای دیگری غیر از نورد استفاده شود مگر آن که از تولید قطعه به این روش توجیه اقتصادی یا کاربردی داشته باشد.

منابع[ویرایش]

  1. ۱٫۰ ۱٫۱ A. Sadeghi et al. , Selected Topics On ADvanced Magnesium Technologies, First edit. Tehran: arvan, 1395.
  2. Pal, Uday B. ; Powell, Adam C. (2007). "The Use of Solid-Oxide-Membrane Technology for Electrometallurgy". JOM. 59 (5): 44–49. Bibcode:2007JOM....59e..44P. doi:10.1007/s11837-007-0064-x.
  3. Fulginiti, Daniele. Development of a thermal model for SPS modified for the production of bioimplants. Diss. Politecnico di Torino, 2016.
  4. Hoy-Petersen, N. ; et al. Magnesium. In Ullmann’s Encyclopedia of Industrial Chemistry, 5th ed. ; VCH: Weinheim, Germany, 1990; Vol. A15,p 559
  5. Winand, R. ; Van Gysel, M. ; Fontana, A. ; Segers, L. ; Carlier, J. C. Production of magnesium by vacuum carbothermic reduction of calcined dolomite. Trans. Inst. Min. Metall. , Sect. C: Miner. Process. Extract. Metall. 1990, 99 (May-Aug), C105-C112. See also: Li, Z. ; Dai, Y. ; Xue, H. Thermodynamic analysis and experimental test of magnesia vacuum carbothermic reduction. Youse Jinshu 2005, 57 (1), 56-59 (in Chinese)
  6. E. Yukutake, J. Kaneko, and M. Sugamata, “Anisotropy and Non-Uniformity in Plastic Behavior of AZ31 Magnesium Alloy Plates,” Mater. Trans., vol. 44, no. 4, pp. 452–457, 2003.
  7. K. Iwanaga, H. Tashiro, H. Okamoto, and K. Shimizu, “Improvement of formability from room temperature to warm temperature in AZ-31 magnesium alloy,” J. Mater. Process. Technol., vol. 155–156, no. 1–3, pp. 1313–1316, 2004.
  8. X. Huang, K. Suzuki, A. Watazu, I. Shigematsu, and N. Saito, “Improvement of formability of Mg-Al-Zn alloy sheet at low temperatures using differential speed rolling,” J. Alloys Compd., vol. 470, no. 1–2, pp. 263–268, 2009.
  9. Y. Chino et al., “Mechanical Properties and Press Formability at Room Temperature of AZ31 Mg Alloy Processed by Single Roller Drive Rolling. ,” Mater. Trans., vol. 43, no. 10, pp. 2554–2560, 2002.
  10. Y. Chino, K. Sassa, A. Kamiya, and M. Mabuchi, “Microstructure and press formability of a cross-rolled magnesium alloy sheet,” Mater. Lett., vol. 61, no. 7, pp. 1504–1506, 2007.
  11. B. Song, G. Huang, H. Li, L. Zhang, G. Huang, and F. Pan, “Texture evolution and mechanical properties of AZ31B magnesium alloy sheets processed by repeated unidirectional bending,” J. Alloys Compd., vol. 489, no. 2, pp. 475–481, 2010.
  12. X. Huang, K. Suzuki, and Y. Chino, “Influences of initial texture on microstructure and stretch formability of Mg-3Al-1Zn alloy sheet obtained by a combination of high temperature and subsequent warm rolling,” Scr. Mater., vol. 63, no. 4, pp. 395–398, 2010.
  13. Q. Miao, L. Hu, G. Wang, and E. Wang, “Fabrication of excellent mechanical properties AZ31 magnesium alloy sheets by conventional rolling and subsequent annealing,” Mater. Sci. Eng. A, vol. 528, no. 22–23, pp. 6694–6701, 2011.
  14. M. R. Ghandehari Ferdowsi, M. Mazinani, and G. R. Ebrahimi, “Effects of hot rolling and inter-stage annealing on the microstructure and texture evolution in a partially homogenized AZ91 magnesium alloy,” Mater. Sci. Eng. A, vol. 606, pp. 214–227, 2014.
  15. M. H. Yoo, “Slip, twinning, and fracture in hexagonal close-packed metals,” Metall. Trans. A, vol. 12, no. 3, pp. 409–418, 1981.
  16. S. M. Fatemi-Varzaneh, A. Zarei-Hanzaki, and H. Beladi, “Dynamic recrystallization in AZ31 magnesium alloy,” Mater. Sci. Eng. A, vol. 456, no. 1–2, pp. 52–57, 2007.
  17. T. Rampe, A. Heinzel, and B. Vogel, J. Power Sources 86, 536 (2000).
  18. T. Yabe, S. Uchida, K. Yoshida, K. Ikuta, and T.Okamoto, in Proceedings of Fourth Intl. Symposiumon Beamed Energy Propulsion AIP Conf. Proc. 803, 21(2005).
  19. Zhang, Tianran; Tao, Zhanliang; Chen, Jun (2014). "Magnesium–air batteries: from principle to application". Mater. Horiz. 1 (2): 196–206. doi:10.1039/C3MH00059A. ISSN 2051-6347 – via Royal Society of Chemistry.
  20. T. Yabe, K. Ikuta, C. Baasandash, R. Katano, S. Uchida, M. Tsuji, Y. Mori, J. Maehara, M. S. Mahmoud, and T. Toya, in Proceedings of Fourth Intl. Symposium on Beamed Energy Propulsion AIP Conf. Proc. 803, 447 (2005).
  21. C. Hisatsune and T. Hagiwara, “Effect of beryllium onmagnesium and its alloys (3rd Report) Study on the ignition emperature of magnesium and its alloys” LightMetal (in Japanese) 14, 46 (1964).
  22. «Nutrient Uptake in Plants». SMART Fertilizer Management (به انگلیسی). دریافت‌شده در ۲۰۱۸-۰۷-۱۹.
  23. طباطبایی، سید جلال (۱۳۹۳). اصول تغذیه معدنی گیاهان. انتشازات دانشگاه تبریز. شابک ۹۷۸-۶۰۰-۵۱۹۹-۹۸-۷.
  24. "Oxyfertil fertilisers for rational fertilisation". www.oxyfertil.com. Retrieved 2018-07-19.
  25. ملکوتی، محمد جعفر (۱۳۹۴). توصیه بهینه مصرف کود برای محصولات کشاورزی در ایران. خانه کشاورز: انتشارات مبلغان. صص. ۲۳۶. شابک ۹۷۸-۹۶۴-۲۶۱۴-۹۵-۰.
  26. خوشخوی، مرتضی (۱۳۸۹). اصول باغبانی. مرکز نشر دانشگاه شیراز. شابک ۹۷۸-۹۶۴-۴۶۲--۱۸۵-۷.
  27. حسندخت، محمد رضا (۱۳۸۶). مدیریت گلخانه (تکنولوژی تولید محصولات گلخانه‌ای). سلسبیل. شابک ۹۷۸۹۶۴۸۹۰۳۴۶۱.
  28. http://www.spiagri.com/تغذیه
  29. ۲۹٫۰ ۲۹٫۱ Bohlen, J. , Kurz, G. , Yi, S. and Letzig, D. (2012). Rolling of magnesium alloys. Advances in Wrought Magnesium Alloys, pp.346-375.
  30. Chabbi L and Lehnert W (2000) ‘Walzen von Magnesiumwerkstoffen’ in AluminiumZentrale Düsseldorf, Magnesium Taschenbuch, Düsseldorf, Aluminium Verlag, pp. 415–433.
  31. Beck A (1939) Magnesium und seine Legierungen, Berlin: Springer-Verlag.
  32. Essadiqi E, Galvani C, Amjad J, Shen G and Spencer K (2006) ‘Hot rolling of AZ31 magnesium alloy to sheet gauge’, Warrendale: SAE International, SAE-Paper 2006-01-0295.

Magnesium, 12Mg
CSIRO ScienceImage 2893 Crystalised magnesium.jpg
Magnesium
Pronunciation/mæɡˈnziəm/ (mag-NEE-zee-əm)
Appearanceshiny grey solid
Standard atomic weight Ar, std(Mg)[24.30424.307] conventional: 24.305
Magnesium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Be

Mg

Ca
sodiummagnesiumaluminium
Atomic number (Z)12
Groupgroup 2 (alkaline earth metals)
Periodperiod 3
Blocks-block
Element category  Alkaline earth metal
Electron configuration[Ne] 3s2
Electrons per shell2, 8, 2
Physical properties
Phase at STPsolid
Melting point923 K ​(650 °C, ​1202 °F)
Boiling point1363 K ​(1091 °C, ​1994 °F)
Density (near r.t.)1.738 g/cm3
when liquid (at m.p.)1.584 g/cm3
Heat of fusion8.48 kJ/mol
Heat of vaporization128 kJ/mol
Molar heat capacity24.869[1] J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 701 773 861 971 1132 1361
Atomic properties
Oxidation states+1,[2] +2 (a strongly basic oxide)
ElectronegativityPauling scale: 1.31
Ionization energies
  • 1st: 737.7 kJ/mol
  • 2nd: 1450.7 kJ/mol
  • 3rd: 7732.7 kJ/mol
  • (more)
Atomic radiusempirical: 160 pm
Covalent radius141±7 pm
Van der Waals radius173 pm
Color lines in a spectral range
Spectral lines of magnesium
Other properties
Natural occurrenceprimordial
Crystal structurehexagonal close-packed (hcp)
Hexagonal close packed crystal structure for magnesium
Speed of sound thin rod4940 m/s (at r.t.) (annealed)
Thermal expansion24.8[3] µm/(m·K) (at 25 °C)
Thermal conductivity156[4] W/(m·K)
Electrical resistivity43.9[5] nΩ·m (at 20 °C)
Magnetic orderingparamagnetic
Magnetic susceptibility+13.1·10−6 cm3/mol (298 K)[6]
Young's modulus45 GPa
Shear modulus17 GPa
Bulk modulus35.4[7] GPa
Poisson ratio0.290
Mohs hardness1–2.5
Brinell hardness44–260 MPa
CAS Number7439-95-4
History
Namingafter Magnesia, Greece[8]
DiscoveryJoseph Black (1755[8])
First isolationHumphry Davy (1808[8])
Main isotopes of magnesium
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
24Mg 79.0% stable
25Mg 10.0% stable
26Mg 11.0% stable
| references

Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray solid which bears a close physical resemblance to the other five elements in the second column (group 2, or alkaline earth metals) of the periodic table: all group 2 elements have the same electron configuration in the outer electron shell and a similar crystal structure.

Magnesium is the ninth most abundant element in the universe.[9][10] It is produced in large, aging stars from the sequential addition of three helium nuclei to a carbon nucleus. When such stars explode as supernovas, much of the magnesium is expelled into the interstellar medium where it may recycle into new star systems. Magnesium is the eighth most abundant element in the Earth's crust[11] and the fourth most common element in the Earth (after iron, oxygen and silicon), making up 13% of the planet's mass and a large fraction of the planet's mantle. It is the third most abundant element dissolved in seawater, after sodium and chlorine.[12]

Magnesium occurs naturally only in combination with other elements, where it invariably has a +2 oxidation state. The free element (metal) can be produced artificially, and is highly reactive (though in the atmosphere, it is soon coated in a thin layer of oxide that partly inhibits reactivity – see passivation). The free metal burns with a characteristic brilliant-white light. The metal is now obtained mainly by electrolysis of magnesium salts obtained from brine, and is used primarily as a component in aluminium-magnesium alloys, sometimes called magnalium or magnelium. Magnesium is less dense than aluminium, and the alloy is prized for its combination of lightness and strength.

Magnesium is the eleventh most abundant element by mass in the human body and is essential to all cells and some 300 enzymes.[13] Magnesium ions interact with polyphosphate compounds such as ATP, DNA, and RNA. Hundreds of enzymes require magnesium ions to function. Magnesium compounds are used medicinally as common laxatives, antacids (e.g., milk of magnesia), and to stabilize abnormal nerve excitation or blood vessel spasm in such conditions as eclampsia.[13]

Characteristics

Physical properties

Elemental magnesium is a gray-white lightweight metal, two-thirds the density of aluminium. Magnesium has the lowest melting (923 K (1,202 °F)) and the lowest boiling point 1,363 K (1,994 °F) of all the alkaline earth metals.

Pure polycrystalline magnesium is brittle and easily fractures along shear bands. It becomes much more ductile when alloyed with small amount of other metals, such as 1% aluminium.[14] Ductility of polycrystalline magnesium can also be significantly improved by reducing its grain size to ca. 1 micron or less.[15]

Chemical properties

General chemistry

It tarnishes slightly when exposed to air, although, unlike the heavier alkaline earth metals, an oxygen-free environment is unnecessary for storage because magnesium is protected by a thin layer of oxide that is fairly impermeable and difficult to remove.

Magnesium reacts with water at room temperature, though it reacts much more slowly than calcium, a similar group 2 metal. When submerged in water, hydrogen bubbles form slowly on the surface of the metal – though, if powdered, it reacts much more rapidly. The reaction occurs faster with higher temperatures (see safety precautions). Magnesium's reversible reaction with water can be harnessed to store energy and run a magnesium-based engine. Magnesium also reacts exothermically with most acids such as hydrochloric acid (HCl), producing the metal chloride and hydrogen gas, similar to the HCl reaction with aluminium, zinc, and many other metals.

Flammability

Magnesium is highly flammable, especially when powdered or shaved into thin strips, though it is difficult to ignite in mass or bulk. Flame temperatures of magnesium and magnesium alloys can reach 3,100 °C (5,610 °F),[16] although flame height above the burning metal is usually less than 300 mm (12 in).[17] Once ignited, such fires are difficult to extinguish, because combustion continues in nitrogen (forming magnesium nitride), carbon dioxide (forming magnesium oxide and carbon), and water (forming magnesium oxide and hydrogen, which also combusts due to heat in the presence of additional oxygen). This property was used in incendiary weapons during the firebombing of cities in World War II, where the only practical civil defense was to smother a burning flare under dry sand to exclude atmosphere from the combustion.

Magnesium may also be used as an igniter for thermite, a mixture of aluminium and iron oxide powder that ignites only at a very high temperature.

Organic chemistry

Organomagnesium compounds are widespread in organic chemistry. They are commonly found as Grignard reagents. Magnesium can react with haloalkanes to give Grignard reagents. Examples of Grignard reagents are phenylmagnesium bromide and ethylmagnesium bromide. The Grignard reagents function as a common nucleophile, attacking the electrophilic group such as the carbon atom that is present within the polar bond of a carbonyl group.

A prominent organomagnesium reagent beyond Grignard reagents is magnesium anthracene with magnesium forming a 1,4-bridge over the central ring. It is used as a source of highly active magnesium. The related butadiene-magnesium adduct serves as a source for the butadiene dianion.

Source of light

When burning in air, magnesium produces a brilliant-white light that includes strong ultraviolet wavelengths. Magnesium powder (flash powder) was used for subject illumination in the early days of photography.[18][19] Later, magnesium filament was used in electrically ignited single-use photography flashbulbs. Magnesium powder is used in fireworks and marine flares where a brilliant white light is required. It was also used for various theatrical effects,[20] such as lightning,[21] pistol flashes,[22] and supernatural appearances.[23]

Occurrence

Magnesium is the eighth-most-abundant element in the Earth's crust by mass and tied in seventh place with iron in molarity.[11] It is found in large deposits of magnesite, dolomite, and other minerals, and in mineral waters, where magnesium ion is soluble.

Although magnesium is found in more than 60 minerals, only dolomite, magnesite, brucite, carnallite, talc, and olivine are of commercial importance.

The Mg2+
cation is the second-most-abundant cation in seawater (about ⅛ the mass of sodium ions in a given sample), which makes seawater and sea salt attractive commercial sources for Mg. To extract the magnesium, calcium hydroxide is added to seawater to form magnesium hydroxide precipitate.

MgCl
2
+ Ca(OH)
2
Mg(OH)
2
+ CaCl
2

Magnesium hydroxide (brucite) is insoluble in water and can be filtered out and reacted with hydrochloric acid to produced concentrated magnesium chloride.

Mg(OH)
2
+ 2 HCl → MgCl
2
+ 2 H
2
O

From magnesium chloride, electrolysis produces magnesium.

Forms

Alloys

Magnesium is brittle, and fractures along shear bands when its thickness is reduced by only 10% by cold rolling (top). However, after alloying Mg with 1% Al and 0.1% Ca, its thickness could be reduced by 54% using the same process (bottom).

As of 2013, magnesium alloys consumption was less than one million tonnes per year, compared with 50 million tonnes of aluminum alloys. Their use has been historically limited by the tendency of Mg alloys to corrode, creep at high temperatures, and combust.[24]

Corrosion

The presence of iron, nickel, copper, and cobalt strongly activates corrosion. Greater than a very small percentage, these metals precipitate as intermetallic compounds, and the precipitate locales function as active cathodic sites that reduce water, causing the loss of magnesium.[24] Controlling the quantity of these metals improves corrosion resistance. Sufficient manganese overcomes the corrosive effects of iron. This requires precise control over composition, increasing costs.[24] Adding a cathodic poison captures atomic hydrogen within the structure of a metal. This prevents the formation of free hydrogen gas, an essential factor of corrosive chemical processes. The addition of about one in three hundred parts arsenic reduces its corrosion rate in a salt solution by a factor of nearly ten.[24][25]

High-temperature creep and flammability

Research showed that magnesium's tendency to creep at high temperatures is eliminated by the addition of scandium and gadolinium. Flammability is greatly reduced by a small amount of calcium in the alloy.[24]

Compounds

Magnesium forms a variety of compounds important to industry and biology, including magnesium carbonate, magnesium chloride, magnesium citrate, magnesium hydroxide (milk of magnesia), magnesium oxide, magnesium sulfate, and magnesium sulfate heptahydrate (Epsom salts).

Isotopes

Magnesium has three stable isotopes: 24
Mg
, 25
Mg
and 26
Mg
. All are present in significant amounts (see table of isotopes above). About 79% of Mg is 24
Mg
. The isotope 28
Mg
is radioactive and in the 1950s to 1970s was produced by several nuclear power plants for use in scientific experiments. This isotope has a relatively short half-life (21 hours) and its use was limited by shipping times.

The nuclide 26
Mg
has found application in isotopic geology, similar to that of aluminium. 26
Mg
is a radiogenic daughter product of 26
Al
, which has a half-life of 717,000 years. Excessive quantities of stable 26
Mg
have been observed in the Ca-Al-rich inclusions of some carbonaceous chondrite meteorites. This anomalous abundance is attributed to the decay of its parent 26
Al
in the inclusions, and researchers conclude that such meteorites were formed in the solar nebula before the 26
Al
had decayed. These are among the oldest objects in the solar system and contain preserved information about its early history.

It is conventional to plot 26
Mg
/24
Mg
against an Al/Mg ratio. In an isochron dating plot, the Al/Mg ratio plotted is27
Al
/24
Mg
. The slope of the isochron has no age significance, but indicates the initial 26
Al
/27
Al
ratio in the sample at the time when the systems were separated from a common reservoir.

Production

Magnesium sheets and ingots

World production was approximately 1,100 kt in 2017, with the bulk being produced in China (930 kt) and Russia (60 kt).[26] China is almost completely reliant on the silicothermic Pidgeon process (the reduction of the oxide at high temperatures with silicon, often provided by a ferrosilicon alloy in which the iron is but a spectator in the reactions) to obtain the metal.[27] The process can also be carried out with carbon at approx 2300 °C:

2MgO
(s)
+ Si
(s)
+ 2CaO
(s)
2Mg
(g)
+ Ca
2
SiO
4(s)
MgO
(s)
+ C
(s)
Mg
(g)
+ CO
(g)

In the United States, magnesium is obtained principally with the Dow process, by electrolysis of fused magnesium chloride from brine and sea water. A saline solution containing Mg2+
ions is first treated with lime (calcium oxide) and the precipitated magnesium hydroxide is collected:

Mg2+
(aq)
+ CaO
(s)
+ H
2
O
Ca2+
(aq)
+ Mg(OH)
2(s)

The hydroxide is then converted to a partial hydrate of magnesium chloride by treating the hydroxide with hydrochloric acid and heating of the product:

Mg(OH)
2(s)
+ 2 HCl → MgCl
2(aq)
+ 2H
2
O
(l)

The salt is then electrolyzed in the molten state. At the cathode, the Mg2+
ion is reduced by two electrons to magnesium metal:

Mg2+
+ 2
e
→ Mg

At the anode, each pair of Cl
ions is oxidized to chlorine gas, releasing two electrons to complete the circuit:

2 Cl
Cl
2
(g) + 2
e

A new process, solid oxide membrane technology, involves the electrolytic reduction of MgO. At the cathode, Mg2+
ion is reduced by two electrons to magnesium metal. The electrolyte is yttria-stabilized zirconia (YSZ). The anode is a liquid metal. At the YSZ/liquid metal anode O2−
is oxidized. A layer of graphite borders the liquid metal anode, and at this interface carbon and oxygen react to form carbon monoxide. When silver is used as the liquid metal anode, there is no reductant carbon or hydrogen needed, and only oxygen gas is evolved at the anode.[28] It has been reported that this method provides a 40% reduction in cost per pound over the electrolytic reduction method.[29] This method is more environmentally sound than others because there is much less carbon dioxide emitted.

The United States has traditionally been the major world supplier of this metal, supplying 45% of world production even as recently as 1995. Today, the US market share is at 7%, with a single domestic producer left, US Magnesium, a Renco Group company in Utah born from now-defunct Magcorp.[30]

History

The name magnesium originates from the Greek word for a district in Thessaly called Magnesia.[31] It is related to magnetite and manganese, which also originated from this area, and required differentiation as separate substances. See manganese for this history.

In 1618, a farmer at Epsom in England attempted to give his cows water from a well there. The cows refused to drink because of the water's bitter taste, but the farmer noticed that the water seemed to heal scratches and rashes. The substance became known as Epsom salts and its fame spread.[32] It was eventually recognized as hydrated magnesium sulfate, MgSO
4
·7 H
2
O
.

The metal itself was first isolated by Sir Humphry Davy in England in 1808. He used electrolysis on a mixture of magnesia and mercuric oxide.[33] Antoine Bussy prepared it in coherent form in 1831. Davy's first suggestion for a name was magnium,[33] but the name magnesium is now used.

Uses as a metal

An unusual application of magnesium as an illumination source while wakeskating in 1931

Magnesium is the third-most-commonly-used structural metal, following iron and aluminium.[34] The main applications of magnesium are, in order: aluminium alloys, die-casting (alloyed with zinc),[35] removing sulfur in the production of iron and steel, and the production of titanium in the Kroll process.[36] Magnesium is used in super-strong, lightweight materials and alloys. For example, when infused with silicon carbide nanoparticles, it has extremely high specific strength.[37]

Historically, magnesium was one of the main aerospace construction metals and was used for German military aircraft as early as World War I and extensively for German aircraft in World War II. The Germans coined the name "Elektron" for magnesium alloy, a term which is still used today. In the commercial aerospace industry, magnesium was generally restricted to engine-related components, due to fire and corrosion hazards. Currently, magnesium alloy use in aerospace is increasing, driven by the importance of fuel economy.[38] Development and testing of new magnesium alloys continues, notably Elektron 21, which (in test) has proved suitable for aerospace engine, internal, and airframe components.[39] The European Community runs three R&D magnesium projects in the Aerospace priority of Six Framework Program.

In the form of thin ribbons, magnesium is used to purify solvents; for example, preparing super-dry ethanol.

Aircraft

Automotive

Mg alloy motorcycle engine blocks

Both AJ62A and AE44 are recent developments in high-temperature low-creep magnesium alloys. The general strategy for such alloys is to form intermetallic precipitates at the grain boundaries, for example by adding mischmetal or calcium.[43] New alloy development and lower costs that make magnesium competitive with aluminium will increase the number of automotive applications.

Electronics

Because of low weight and good mechanical and electrical properties, magnesium is widely used for manufacturing of mobile phones, laptop and tablet computers, cameras, and other electronic components.

Products made of magnesium: firestarter and shavings, sharpener, magnesium ribbon

Other

Magnesium, being readily available and relatively nontoxic, has a variety of uses:

  • Magnesium is flammable, burning at a temperature of approximately 3,100 °C (3,370 K; 5,610 °F),[16] and the autoignition temperature of magnesium ribbon is approximately 473 °C (746 K; 883 °F).[44] It produces intense, bright, white light when it burns. Magnesium's high combustion temperature makes it a useful tool for starting emergency fires. Other uses include flash photography, flares, pyrotechnics, and fireworks sparklers. Magnesium is also often used to ignite thermite or other materials that require a high ignition temperature.
    Magnesium firestarter (in left hand), used with a pocket knife and flint to create sparks that ignite the shavings
  • In the form of turnings or ribbons, to prepare Grignard reagents, which are useful in organic synthesis.
  • As an additive agent in conventional propellants and the production of nodular graphite in cast iron.
  • As a reducing agent to separate uranium and other metals from their salts.
  • As a sacrificial (galvanic) anode to protect boats, underground tanks, pipelines, buried structures, and water heaters.
  • Alloyed with zinc to produce the zinc sheet used in photoengraving plates in the printing industry, dry-cell battery walls, and roofing.[35]
  • As a metal, this element's principal use is as an alloying additive to aluminium with these aluminium-magnesium alloys being used mainly for beverage cans, sports equipment such as golf clubs, fishing reels, and archery bows and arrows.
  • Specialty, high-grade car wheels of magnesium alloy are called "mag wheels", although the term is often misapplied to aluminium wheels. Many car and aircraft manufacturers have made engine and body parts from magnesium.
  • Magnesium batteries have been commercialized as primary batteries, and are an active topic of research for rechargeable secondary batteries.

Safety precautions

Magnesium block heated with blowtorch to self-combustion, emitting intense white light
Magnesium
Hazards
GHS pictograms GHS02: Flammable
GHS Signal word Danger
H228, H251, H261
P210, P231, P235, P410, P422[45]
NFPA 704 (fire diamond)
Flammability code 0: Will not burn. E.g. waterHealth code 0: Exposure under fire conditions would offer no hazard beyond that of ordinary combustible material. E.g. sodium chlorideReactivity code 2: Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. E.g. white phosphorusSpecial hazards (white): no codeNFPA 704 four-colored diamond
0
0
2

Magnesium metal and its alloys can be explosive hazards; they are highly flammable in their pure form when molten or in powder or ribbon form. Burning or molten magnesium reacts violently with water. When working with powdered magnesium, safety glasses with eye protection and UV filters (such as welders use) are employed because burning magnesium produces ultraviolet light that can permanently damage the retina of a human eye.[46]

Magnesium is capable of reducing water and releasing highly flammable hydrogen gas:[47]

Mg (s) + 2 H
2
O
(l) → Mg(OH)
2
(s) + H
2
(g)

Therefore, water cannot extinguish magnesium fires. The hydrogen gas produced intensifies the fire. Dry sand is an effective smothering agent, but only on relatively level and flat surfaces.

Magnesium reacts with carbon dioxide exothermically to form magnesium oxide and carbon:[48]

2 Mg + CO
2
→ 2 MgO + C (s)

Hence, carbon dioxide fuels rather than extinguishes magnesium fires.

Burning magnesium can be quenched by using a Class D dry chemical fire extinguisher, or by covering the fire with sand or magnesium foundry flux to remove its air source.[49]

Useful compounds

Magnesium compounds, primarily magnesium oxide (MgO), are used as a refractory material in furnace linings for producing iron, steel, nonferrous metals, glass, and cement. Magnesium oxide and other magnesium compounds are also used in the agricultural, chemical, and construction industries. Magnesium oxide from calcination is used as an electrical insulator in fire-resistant cables.[50]

Magnesium reacted with an alkyl halide gives a Grignard reagent, which is a very useful tool for preparing alcohols.

Magnesium salts are included in various foods, fertilizers (magnesium is a component of chlorophyll), and microbe culture media.

Magnesium sulfite is used in the manufacture of paper (sulfite process).

Magnesium phosphate is used to fireproof wood used in construction.

Magnesium hexafluorosilicate is used for moth-proofing textiles.

Biological roles

Mechanism of action

The important interaction between phosphate and magnesium ions makes magnesium essential to the basic nucleic acid chemistry of all cells of all known living organisms. More than 300 enzymes require magnesium ions for their catalytic action, including all enzymes using or synthesizing ATP and those that use other nucleotides to synthesize DNA and RNA. The ATP molecule is normally found in a chelate with a magnesium ion.[51]

Nutrition

Diet

refer to caption; follow link for complete description
Examples of food sources of magnesium (clockwise from top left): bran muffins, pumpkin seeds, barley, buckwheat flour, low-fat vanilla yogurt, trail mix, halibut steaks, garbanzo beans, lima beans, soybeans, and spinach

Spices, nuts, cereals, cocoa and vegetables are rich sources of magnesium.[13] Green leafy vegetables such as spinach are also rich in magnesium.[52]

Dietary recommendations

In the UK, the recommended daily values for magnesium are 300 mg for men and 270 mg for women.[53] In the U.S. the Recommended Dietary Allowances (RDAs) are 400 mg for men ages 19–30 and 420 mg for older; for women 310 mg for ages 19–30 and 320 mg for older.[54]

Supplementation

Numerous pharmaceutical preparations of magnesium and dietary supplements are available. In two human trials magnesium oxide, one of the most common forms in magnesium dietary supplements because of its high magnesium content per weight, was less bioavailable than magnesium citrate, chloride, lactate or aspartate.[55][56]

Metabolism

An adult has 22–26 grams of magnesium,[13][57] with 60% in the skeleton, 39% intracellular (20% in skeletal muscle), and 1% extracellular.[13] Serum levels are typically 0.7–1.0 mmol/L or 1.8–2.4 mEq/L. Serum magnesium levels may be normal even when intracellular magnesium is deficient. The mechanisms for maintaining the magnesium level in the serum are varying gastrointestinal absorption and renal excretion. Intracellular magnesium is correlated with intracellular potassium. Increased magnesium lowers calcium[58] and can either prevent hypercalcemia or cause hypocalcemia depending on the initial level.[58] Both low and high protein intake conditions inhibit magnesium absorption, as does the amount of phosphate, phytate, and fat in the gut. Unabsorbed dietary magnesium is excreted in feces; absorbed magnesium is excreted in urine and sweat.[59]

Detection in serum and plasma

Magnesium status may be assessed by measuring serum and erythrocyte magnesium concentrations coupled with urinary and fecal magnesium content, but intravenous magnesium loading tests are more accurate and practical.[60] A retention of 20% or more of the injected amount indicates deficiency.[61] No biomarker has been established for magnesium.[62]

Magnesium concentrations in plasma or serum may be monitored for efficacy and safety in those receiving the drug therapeutically, to confirm the diagnosis in potential poisoning victims, or to assist in the forensic investigation in a case of fatal overdose. The newborn children of mothers who received parenteral magnesium sulfate during labor may exhibit toxicity with normal serum magnesium levels.[63]

Deficiency

Low plasma magnesium (hypomagnesemia) is common: it is found in 2.5–15% of the general population.[64] From 2005 to 2006, 48 percent of the United States population consumed less magnesium than recommended in the Dietary Reference Intake.[65] Other causes are increased renal or gastrointestinal loss, an increased intracellular shift, and proton-pump inhibitor antacid therapy. Most are asymptomatic, but symptoms referable to neuromuscular, cardiovascular, and metabolic dysfunction may occur.[64] Alcoholism is often associated with magnesium deficiency. Chronically low serum magnesium levels are associated with metabolic syndrome, diabetes mellitus type 2, fasciculation, and hypertension.[66]

Therapy

  • Intravenous magnesium is recommended by the ACC/AHA/ESC 2006 Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death for patients with ventricular arrhythmia associated with torsades de pointes who present with long QT syndrome; and for the treatment of patients with digoxin induced arrhythmias.[67]
  • Magnesium sulfate – intravenous – is used for the management of pre-eclampsia and eclampsia.[68][69]
  • Hypomagnesemia, including that caused by alcoholism, is reversible by oral or parenteral magnesium administration depending on the degree of deficiency.[70]
  • There is limited evidence that magnesium supplementation may play a role in the prevention and treatment of migraine.[71]

Sorted by type of magnesium salt, other therapeutic applications include:

Overdose

Overdose from dietary sources alone is unlikely because excess magnesium in the blood is promptly filtered by the kidneys,[64] and overdose is more likely in the presence of impaired renal function. In spite of this, megadose therapy has caused death in a young child,[73] and severe hypermagnesemia in a woman[74] and a young girl[75] who had healthy kidneys. The most common symptoms of overdose are nausea, vomiting, and diarrhea; other symptoms include hypotension, confusion, slowed heart and respiratory rates, deficiencies of other minerals, coma, cardiac arrhythmia, and death from cardiac arrest.[58]

Function in plants

Plants require magnesium to synthesize chlorophyll, essential for photosynthesis. Magnesium in the center of the porphyrin ring in chlorophyll functions in a manner similar to the iron in the center of the porphyrin ring in heme. Magnesium deficiency in plants causes late-season yellowing between leaf veins, especially in older leaves, and can be corrected by either applying epsom salts (which is rapidly leached), or crushed dolomitic limestone, to the soil.

See also

References

  1. ^ Rumble, p. 4.61
  2. ^ Bernath, P. F.; Black, J. H. & Brault, J. W. (1985). "The spectrum of magnesium hydride" (PDF). Astrophysical Journal. 298: 375. Bibcode:1985ApJ...298..375B. doi:10.1086/163620.
  3. ^ Rumble, p. 12.135
  4. ^ Rumble, p. 12.137
  5. ^ Rumble, p. 12.28
  6. ^ Rumble, p. 4.70
  7. ^ Gschneider, K. A. (1964). Physical Properties and Interrelationships of Metallic and Semimetallic Elements. Solid State Physics. 16. p. 308. doi:10.1016/S0081-1947(08)60518-4. ISBN 9780126077162.
  8. ^ a b c Rumble, p. 4.19
  9. ^ Housecroft, C. E.; Sharpe, A. G. (2008). Inorganic Chemistry (3rd ed.). Prentice Hall. pp. 305–06. ISBN 978-0-13-175553-6.
  10. ^ Ash, Russell (2005). The Top 10 of Everything 2006: The Ultimate Book of Lists. Dk Pub. ISBN 978-0-7566-1321-1. Archived from the original on 5 October 2006.
  11. ^ a b "Abundance and form of the most abundant elements in Earth's continental crust" (PDF). Retrieved 15 February 2008. Cite journal requires |journal= (help)
  12. ^ Anthoni, J Floor (2006). "The chemical composition of seawater". seafriends.org.nz.
  13. ^ a b c d e "Dietary Supplement Fact Sheet: Magnesium". Office of Dietary Supplements, US National Institutes of Health. 11 February 2016. Retrieved 13 October 2016.
  14. ^ Sandlöbes, S.; Friák, M.; Korte-Kerzel, S.; Pei, Z.; Neugebauer, J.; Raabe, D. (2017). "A rare-earth free magnesium alloy with improved intrinsic ductility". Scientific Reports. 7 (1): 10458. Bibcode:2017NatSR...710458S. doi:10.1038/s41598-017-10384-0. PMC 5585333. PMID 28874798.
  15. ^ Zeng, Zhuoran; Nie, Jian-Feng; Xu, Shi-Wei; h. j. Davies, Chris; Birbilis, Nick (2017). "Super-formable pure magnesium at room temperature". Nature Communications. 8 (1): 972. Bibcode:2017NatCo...8..972Z. doi:10.1038/s41467-017-01330-9. PMC 5715137. PMID 29042555.
  16. ^ a b Dreizin, Edward L.; Berman, Charles H. & Vicenzi, Edward P. (2000). "Condensed-phase modifications in magnesium particle combustion in air". Scripta Materialia. 122 (1–2): 30–42. CiteSeerX 10.1.1.488.2456. doi:10.1016/S0010-2180(00)00101-2.
  17. ^ DOE Handbook – Primer on Spontaneous Heating and Pyrophoricity. U.S. Department of Energy. December 1994. p. 20. DOE-HDBK-1081-94. Archived from the original on 15 April 2012. Retrieved 21 December 2011.
  18. ^ Hannavy, John (2013). Encyclopedia of Nineteenth-Century Photography. Routledge. p. 84. ISBN 978-1135873271.
  19. ^ Scientific American: Supplement. 48. Munn and Company. 1899. p. 20035.
  20. ^ Billboard. Nielsen Business Media, Inc. 1974. p. 20.
  21. ^ Altman, Rick (2007). Silent Film Sound. Columbia University Press. p. 41. ISBN 978-0231116633.
  22. ^ Lindsay, David (2005). Madness in the Making: The Triumphant Rise & Untimely Fall of America's Show Inventors. iUniverse. p. 210. ISBN 978-0595347667.
  23. ^ McCormick, John; Pratasik, Bennie (2005). Popular Puppet Theatre in Europe, 1800–1914. Cambridge University Press. p. 106. ISBN 978-0521616157.
  24. ^ a b c d e Dodson, Brian (29 August 2013). "Stainless magnesium breakthrough bodes well for manufacturing industries". Gizmag.com. Retrieved 29 August 2013.
  25. ^ Birbilis, N.; Williams, G.; Gusieva, K.; Samaniego, A.; Gibson, M. A.; McMurray, H. N. (2013). "Poisoning the corrosion of magnesium". Electrochemistry Communications. 34: 295–298. doi:10.1016/j.elecom.2013.07.021.
  26. ^ Bray, E. Lee (February 2019) Magnesium Metal. Mineral Commodity Summaries, U.S. Geological Survey
  27. ^ "Magnesium Overview". China magnesium Corporation. Retrieved 8 May 2013.
  28. ^ Pal, Uday B.; Powell, Adam C. (2007). "The Use of Solid-Oxide-Membrane Technology for Electrometallurgy". JOM. 59 (5): 44–49. Bibcode:2007JOM....59e..44P. doi:10.1007/s11837-007-0064-x.
  29. ^ Derezinski, Steve (12 May 2011). "Solid Oxide Membrane (SOM) Electrolysis of Magnesium: Scale-Up Research and Engineering for Light-Weight Vehicles" (PDF). MOxST. Retrieved 27 May 2013.
  30. ^ Vardi, Nathan (22 February 2007). "Man With Many Enemies". Forbes. Retrieved 26 June 2006.
  31. ^ "Magnesium: historical information". webelements.com. Retrieved 9 October 2014.
  32. ^ Ainsworth, Steve (1 June 2013). "Epsom's deep bath". Nurse Prescribing. 11 (6): 269. doi:10.12968/npre.2013.11.6.269.
  33. ^ a b Davy, H. (1808). "Electro-chemical researches on the decomposition of the earths; with observations on the metals obtained from the alkaline earths, and on the amalgam procured from ammonia". Philosophical Transactions of the Royal Society of London. 98: 333–370. Bibcode:1808RSPT...98..333D. doi:10.1098/rstl.1808.0023. JSTOR 107302.
  34. ^ Segal, David (2017). Materials for the 21st Century. Oxford University Press. ISBN 978-0192526090.
  35. ^ a b Baker, Hugh D. R.; Avedesian, Michael (1999). Magnesium and magnesium alloys. Materials Park, OH: Materials Information Society. p. 4. ISBN 978-0871706577.
  36. ^ Ketil Amundsen; Terje Kr. Aune; Per Bakke; Hans R. Eklund; Johanna Ö. Haagensen; Carlos Nicolas; et al. (2002). "Magnesium". Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH. doi:10.1002/14356007.a15_559. ISBN 978-3527306732.
  37. ^ "UCLA researchers create super-strong magnesium metal". ucla.edu.
  38. ^ Aghion, E.; Bronfin, B. (2000). "Magnesium Alloys Development towards the 21st Century". Materials Science Forum. 350–351: 19–30. doi:10.4028/www.scientific.net/MSF.350-351.19.
  39. ^ Bronfin, B.; et al. (2007). "Elektron 21 specification". In Kainer, Karl (ed.). Magnesium: Proceedings of the 7th International Conference on Magnesium Alloys and Their Applications. Weinheim, Germany: Wiley. p. 23. ISBN 978-3527317646.
  40. ^ Dreizin, Edward L.; Berman, Charles H.; Vicenzi, Edward P. (2000). "Condensed-phase modifications in magnesium particle combustion in air". Scripta Materialia. 122 (1–2): 30–42. CiteSeerX 10.1.1.488.2456. doi:10.1016/S0010-2180(00)00101-2.
  41. ^ Dorr, Robert F. (15 September 2012). Mission to Tokyo: The American Airmen Who Took the War to the Heart of Japan. pp. 40–41. ISBN 978-1610586634.
  42. ^ AAHS Journal. 44–45. American Aviation Historical Society. 1999.
  43. ^ Luo, Alan A. & Powell, Bob R. (2001). "Tensile and Compressive Creep of Magnesium-Aluminum-Calcium Based Alloys" (PDF). Materials & Processes Laboratory, General Motors Research & Development Center. Archived from the original (PDF) on 28 September 2007. Retrieved 21 August 2007. Cite journal requires |journal= (help)
  44. ^ "Magnesium (Powder)". International Programme on Chemical Safety (IPCS). IPCS INCHEM. April 2000. Retrieved 21 December 2011.
  45. ^ Magnesium. Sigma Aldrich
  46. ^ "Science Safety: Chapter 8". Government of Manitoba. Retrieved 21 August 2007.
  47. ^ "Chemistry : Periodic Table : magnesium : chemical reaction data". webelements.com. Retrieved 26 June 2006.
  48. ^ "The Reaction Between Magnesium and CO2". Purdue University. Retrieved 15 June 2016.
  49. ^ Cote, Arthur E. (2003). Operation of Fire Protection Systems. Jones & Bartlett Learning. p. 667. ISBN 978-0877655848.
  50. ^ Linsley, Trevor (2011). "Properties of conductors and insulators". Basic Electrical Installation Work. p. 362. ISBN 978-0080966281.
  51. ^ Romani, Andrea, M.P. (2013). "Chapter 3. Magnesium in Health and Disease". In Astrid Sigel; Helmut Sigel; Roland K. O. Sigel (eds.). Interrelations between Essential Metal Ions and Human Diseases. Metal Ions in Life Sciences. 13. Springer. pp. 49–79. doi:10.1007/978-94-007-7500-8_3. ISBN 978-94-007-7499-5. PMID 24470089.
  52. ^ "Magnesium in diet". MedlinePlus, U.S. National Library of Medicine, National Institutes of Health. 2 February 2016. Retrieved 13 October 2016.
  53. ^ "Vitamins and minerals – Others – NHS Choices". Nhs.uk. 26 November 2012. Retrieved 19 September 2013.
  54. ^ "Magnesium", pp. 190–249 in "Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride". National Academy Press. 1997.
  55. ^ Firoz M; Graber M (2001). "Bioavailability of US commercial magnesium preparations". Magnes Res. 14 (4): 257–262. PMID 11794633.
  56. ^ Lindberg JS; Zobitz MM; Poindexter JR; Pak CY (1990). "Magnesium bioavailability from magnesium citrate and magnesium oxide". J Am Coll Nutr. 9 (1): 48–55. doi:10.1080/07315724.1990.10720349. PMID 2407766.
  57. ^ Saris NE, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A (April 2000). "Magnesium. An update on physiological, clinical and analytical aspects". Clin Chim Acta. 294 (1–2): 1–26. doi:10.1016/S0009-8981(99)00258-2. PMID 10727669.
  58. ^ a b c "Magnesium". Umm.edu. University of Maryland Medical Center. 7 May 2013. Retrieved 19 September 2013.
  59. ^ Wester PO (1987). "Magnesium". Am. J. Clin. Nutr. 45 (5 Suppl): 1305–1312. doi:10.1093/ajcn/45.5.1305. PMID 3578120.
  60. ^ Arnaud MJ (2008). "Update on the assessment of magnesium status". Br. J. Nutr. 99 Suppl 3: S24–S36. doi:10.1017/S000711450800682X. PMID 18598586.
  61. ^ Rob PM; Dick K; Bley N; Seyfert T; Brinckmann C; Höllriegel V; et al. (1999). "Can one really measure magnesium deficiency using the short-term magnesium loading test?". J. Intern. Med. 246 (4): 373–378. doi:10.1046/j.1365-2796.1999.00580.x. PMID 10583708.
  62. ^ Franz KB (2004). "A functional biological marker is needed for diagnosing magnesium deficiency". J Am Coll Nutr. 23 (6): 738S–741S. doi:10.1080/07315724.2004.10719418. PMID 15637224.
  63. ^ Baselt, R. (2008). Disposition of Toxic Drugs and Chemicals in Man (8th ed.). Biomedical Publications. pp. 875–877. ISBN 978-0962652370.
  64. ^ a b c Ayuk J.; Gittoes N.J. (March 2014). "Contemporary view of the clinical relevance of magnesium homeostasis". Annals of Clinical Biochemistry. 51 (2): 179–188. doi:10.1177/0004563213517628. PMID 24402002.
  65. ^ Rosanoff, Andrea; Weaver, Connie M; Rude, Robert K (March 2012). "Suboptimal magnesium status in the United States: are the health consequences underestimated?" (PDF). Nutrition Reviews. 70 (3): 153–164. doi:10.1111/j.1753-4887.2011.00465.x. PMID 22364157.
  66. ^ Geiger H; Wanner C (2012). "Magnesium in disease" (PDF). Clin Kidney J. 5 (Suppl 1): i25–i38. doi:10.1093/ndtplus/sfr165. PMC 4455821. PMID 26069818.
  67. ^ Zipes DP; Camm AJ; Borggrefe M; et al. (2012). "ACC/AHA/ESC 2006 Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: a report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines (writing committee to develop Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society". Circulation. 114 (10): e385–e484. doi:10.1161/CIRCULATIONAHA.106.178233. PMID 16935995.
  68. ^ James MF (2010). "Magnesium in obstetrics". Best Pract Res Clin Obstet Gynaecol. 24 (3): 327–337. doi:10.1016/j.bpobgyn.2009.11.004. PMID 20005782.
  69. ^ Euser, A. G.; Cipolla, M. J. (2009). "Magnesium Sulfate for the Treatment of Eclampsia: A Brief Review". Stroke. 40 (4): 1169–1175. doi:10.1161/STROKEAHA.108.527788. PMC 2663594. PMID 19211496.
  70. ^ Giannini, A. J. (1997). Drugs of Abuse (Second ed.). Los Angeles: Physicians Management Information Co. ISBN 978-0874894998.
  71. ^ Teigen L, Boes CJ (2014). "An evidence-based review of oral magnesium supplementation in the preventive treatment of migraine". Cephalalgia (Review). 35 (10): 912–922. doi:10.1177/0333102414564891. PMID 25533715. There is a strong body of evidence demonstrating a relationship between magnesium status and migraine. Magnesium likely plays a role in migraine development at a biochemical level, but the role of oral magnesium supplementation in migraine prophylaxis and treatment remains to be fully elucidated. The strength of evidence supporting oral magnesium supplementation is limited at this time.
  72. ^ Gowariker, Vasant; Krishnamurthy, V. P.; Gowariker, Sudha; Dhanorkar, Manik; Paranjape, Kalyani (8 April 2009). The Fertilizer Encyclopedia. p. 224. ISBN 978-0470431764.
  73. ^ McGuire, John; Kulkarni, Mona Shah; Baden, Harris (February 2000). "Fatal Hypermagnesemia in a Child Treated With Megavitamin/Megamineral Therapy". Pediatrics. 105 (2): E18. doi:10.1542/peds.105.2.e18. PMID 10654978. Retrieved 1 February 2017.
  74. ^ Kontani M; Hara A; Ohta S; Ikeda T (2005). "Hypermagnesemia induced by massive cathartic ingestion in an elderly woman without pre-existing renal dysfunction". Intern. Med. 44 (5): 448–452. doi:10.2169/internalmedicine.44.448. PMID 15942092.
  75. ^ Kutsal, Ebru; Aydemir, Cumhur; Eldes, Nilufer; Demirel, Fatma; Polat, Recep; Taspınar, Ozan; Kulah, Eyup (February 2000). "Severe Hypermagnesemia as a Result of Excessive Cathartic Ingestion in a Child Without Renal Failure". Pediatrics. 205 (2): 570–572. doi:10.1097/PEC.0b013e31812eef1c. PMID 17726419.

Cited sources

External links