مثلث متساوی‌الساقین

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو
مثلث متساوی‌الساقین
Triangle.Isosceles.svg
ضلع‌ها و نقطه‌ها ۳

مثلث متساوی‌الساقین مثلثی است که حتماً دو ساق آن با هم برابر باشند. این مثلث، علاوه بر داشتن دو ضلع برابر، دو زاویهٔ برابر هم دارد و آن دو زاویه، گوشه‌هایی هستند که روبه‌روی اضلاع برابر قرار گرفته‌اند.

خواص[ویرایش]

1- در مثلث متساوی الساقین نیمساز و عمود منصف بر هم منطبق اند. (در راس بالایی)

قضایا[ویرایش]

قضیه: اگر دو ساق بایکدیگر برابر باشند، زوایای پای دو ساق با یکدیگر برابرند.

قضیه: اگر زوایای پای دو ساق برابر باشد، دو ساق با یکدیگر برابرند و مثلث متساوی‌الساقین می‌شود.

منبع[ویرایش]