مانده (آنالیز مختلط)

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو

در آنالیز مختلط، مانده عدد مختلطی است که رفتار انتگرال منحنی‌الخط یک تابع مرومورفیک را حول نقطه تکین شرح می‌دهد. مانده‌ها به سادگی می‌توانند محاسبه شوند و با استفاده از قضیه مانده مقدار بسیاری از انتگرال‌های پیچیده را به‌دست می‌دهند.

انگیزه[ویرایش]

به عنوان یک مثال، انتگرال

را در نظر بگیرید که C یک خم ژوردان حول ۰ است. اجازه بدهید این انتگرال را بدون استفاده از قضایای استاندارد انتگرال‌گیری حل کنیم. سری تیلور ez را در تابع زیر انتگرال جایگزین می‌کنیم:

حال 1/z5 را به داخل سری می‌بریم و داریم

حال انتگرال به شکل ساده‌تری تبدیل می‌شود. با به خاطر آوردن

اکنون انتگرال حول C برای هر جمله که به شکل cz−1 نیست صفر می‌شود، و انتگرال به صورت زیر می‌شود:

مقدار 1/4! با عنوان مانده‌ی ez/z5 در z = 0 شناخته می‌شود، و به صورت زیر نشان داده می‌شود

محاسبهٔ مانده[ویرایش]

دیسک سوراخ‌دار D = {z : 0 <|zc| <R} را در صفحه مختلط و تابع هولومورفیک f (حداقل) تعریف شده بر D را در نظر بگیرید. ماندهٔ f در c ضریب a−1 از (zc)−1 در سری لوران بسط f حول c است. در یک قطب ساده، مانده به‌وسیله‌ٔ

بدست می‌آید. بر اساس فرمول انتگرال‌گیری داده شده در مقالهٔ سری لوران داریم:

که γ دایره را حول c در جهت پادساعتگرد می‌پیماید. می‌توانیم γ را یک دایره با شعاع ε حول c انتخاب کنیم که ε به اندازه دلخواه کوچک است. ماندهٔ تابع f(z)=g(z)/h(z) در قطب ساده c که gو h توابع هولومورفیک در همسایگی c با h(c) = 0 و g(c) ≠ 0 به‌وسیله‌ی

داده می‌شود. به طور کلی‌تر، مانده f حول z = c، یک قطب از مرتبه n، با فرمول

بدست می‌آید. اگر تابع f روی تمام دیسک { z : |zc| <R } هولومورفیک باشد آنگاه Res(f، c) = 0. عکس آن در حالت کلی برقرار نیست.

جستارهای وابسته[ویرایش]

منابع[ویرایش]