قضیه تلگان

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو

قضیه تلگان یکی از قضایای کلی و مهم در نظریه شبکه است. اگر گراف شبکهٔ G را برای یک شبکهٔ فشردهٔ دلخواه رسم کنیم، گرافی با b شاخه حاصل خواهد شد. قضیهٔ تلگان بیان می‌کند در صورتی که ولتاژ همهٔ شاخه‌ها محدودیت‌های در نظر گرفته‌شده در قانون ولتاژ کیرشهف و جریانشان تمام محدودیت‌ها در نظر گرفته‌شده در قانون جریان کیرشهف را برآورده سازد، در این صورت:

\sum_{k=1}^{b}v_{k}i_{k}=0

این قضیه بسیار کلی است و هر شبکهٔ فشرده‌ای شامل هر تعداد اجزای خطی یا غیر خطی، پسیو یا اکتیو، تغییرپذیر با زمان یا تغییرناپذیر با زمان را شامل می‌شود.[۱]

به بیان ساده‌تر در مدارهای فشرده، مجموع حاصل‌ضرب‌های ولتاژ و جریان تمام شاخه‌ها برابر صفر است و به طبیعت شاخه‌ها بستگی ندارد.[۲]

پانویس[ویرایش]

منابع[ویرایش]