شبکه بی‌مقیاس

از ویکی‌پدیا، دانشنامهٔ آزاد

شبکه بی‌مقیاس یا شبکه مقیاس ناوردا یا شبکه مستقل از مقیاس (انگلیسی: Scale-free network‎) شبکه‌ای است که توزیع درجه آن تحت تبدیل مقیاس، ناوردا (بدون تغییر) باقی‌بماند. به عبارت دیگر، اگر با چند برابر کردن متغیر توزیع درجه، شکل توزیع تغییری نکند، گفته می‌شود که شبکه بی‌مقیاس است. بی‌مقیاس بودن در این گونه شبکه‌ها به این معناست که اگر از فواصل مختلف به شکل توزیع آن نگاه کنیم، تغییری متوجه نشویم. در میان توزیع‌های مختلف، توزیع توانی، دارای این ویژگی است.[۱] برای همین حتی اگر توزیع درجه‌ی شبکه‌ای به صورت مجانبی هم به یک توزیع توانی نزدیک شود، گفته می‌شود که آن شبکه، یک شبکه بی‌مقیاس است.[۲] شبکه‌های دنیای واقعی، مانند شبکه‌ اینترنت، شبکه‌های اجتماعی، شبکه تنظیم ژن تقریبا شبکه‌های بی‌مقیاسی هستند.[۳]

اتصال ترجیحی می‌تواند منجر به یک ساختار بی‌مقایس شود. مدل باراباشی-آلبرت نمونه‌ای از ساز و کارهای پیشنهادی برای ایجاد شبکه‌های بی‌مقیاس است. این مدل منجر به یک شبکه جهان‌کوچک با توزیع درجه توانی می‌شود. مدل دیگری که بر اساس اتصال ترجیحی منجر به یک شبکه جهان‌کوچک با توزیع درجه توانی می‌شود، مدل هُلم-کیم[۴] است که بیشتر به شبکه‌های واقعی نزدیک است چرا که بر خلاف مدل باراباشی-آلبرت، مدل هلم-کیم شبکه‌هایی با ضریب‌خوشگی بالاتری تولید می‌کنند.

تعریف ریاضی بی‌مقیاسی[ویرایش]

اگر توزیع درجه شبکه‌ای را با ‌ نمایش دهیم، آن‌گاه اگر با تبدیل به شکل توزیع تغییر نکند، یعنی توزیع را بی‌مقیاس گوییم. شبکه‌های قانون توانی دارای شکلی به صورت هستند، که ثابت بهنجارش و نمای توزیع، ، یک عدد ثابت است. این توزیع‌ها تحت تبدیل مقیاس شکلشان تغییری نمی‌کند و اصطلاحا شکل-ناوردا باقی‌ می‌مانند؛[۵]

اگر :

آن‌گاه:

پس:

منابع[ویرایش]

  1. Newman, M. E. J. (2005-09-01). "Power laws, Pareto distributions and Zipf's law". Contemporary Physics. 46 (5): 323–351. doi:10.1080/00107510500052444. ISSN 0010-7514.
  2. Barabási, Albert-László; Albert, Réka (1999-10-15). "Emergence of Scaling in Random Networks". Science. 286 (5439): 509–512. doi:10.1126/science.286.5439.509. ISSN 0036-8075. PMID 10521342.
  3. Holme, Petter (2019-03-04). "Rare and everywhere: Perspectives on scale-free networks". Nature Communications. 10 (1): 1016. doi:10.1038/s41467-019-09038-8. ISSN 2041-1723.
  4. Holme, Petter; Kim, Beom Jun (2002-01-11). "Growing scale-free networks with tunable clustering". Physical Review E. 65 (2): 026107. doi:10.1103/PhysRevE.65.026107.
  5. Newman, M. E. J. (2003-01). "The Structure and Function of Complex Networks". SIAM Review. 45 (2): 167–256. doi:10.1137/S003614450342480. ISSN 0036-1445. Check date values in: |date= (help)