سیاره

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به ناوبری پرش به جستجو
فارسیEnglish


مقایسه اندازه‌های اجسام در اندازه سیاره‌ای:
ردیف بالا: اورانوس و نپتون؛
ردیف دوم: زمین، کوتوله سفید سیریوس بی، ونوس;
ردیف پایینی (که در تصویر پایین بزرگتر شده‌اند)—بالا: مریخ و مشتری؛
پایین: ماه، سیاره‌های کوتوله پلوتون و هائومیا

سیاره یک جرم آسمانی است که در حرکتی مداری به دور یک ستاره یا بقایای ستاره‌ای می‌گردد و دارای شرایط زیر است:

سیاره واژه‌ای کهن است که با تاریخ، علم، افسانه‌شناسی و دین گره خورده‌است. در آغاز، سیارات در بسیاری از فرهنگ‌ها، به عنوان موجودیت‌هایی خدایی یا فرستادگان خدایان پنداشته می‌شدند. با پیشرفت دانش علمی، درک انسان از سیارات دگرگون گشت. در سال ۲۰۰۶ اتحادیه بین‌المللی اخترشناسی تعریف توافق‌شده‌ای برای سیاره اعلام نمود. این تعریف کمی بحث‌انگیز است زیرا بسیاری از اجسام با جرمی در حد سیاره را بر پایه داشتن یا نداشتن حرکت مداری، شامل نمی‌شود. اگر چه هشت تا از سیارات که پیش از سال ۱۹۵۰ کشف شده‌اند، همچنان در این تعریف جدید نیز سیاره محسوب می‌شوند، برخی از اجرام آسمانی همچون سرس، پالاس، جونو و پلوتون (نخستین جسم فرا نپتونی کشف‌شده) که زمانی توسط جامعه علمی به عنوان سیاره شناخته می‌شدند، دیگر سیاره محسوب نمی‌شوند.

بطلمیوس گمان می‌کرد که سیارات در حرکت‌هایی در فلک‌های حامل و تدویر به دور زمین می‌گردند. اگرچه ایده گردش سیارات به دور خورشید بارها پیشنهاد شده‌بود، اما تا قرن هفدهم طول کشید تا این نظریه توسط مشاهدات نجومی تلسکوپی انجام‌شده توسط گالیلئو گالیله تأیید شود. یوهانس کپلر با بررسی دقیق داده‌های مشاهدات، دریافت که مدار سیارات دایره‌ای نیستند، بلکه بیضوی هستند. با پیشرفت ابزارهای رصد، ستاره‌شناسان مشاهده نمودند که دیگر سیارات نیز مانند زمین دور محورهای مایلی می‌چرخند و دارای ویژگی‌هایی همچون کلاهک‌های یخی و فصول مختلف هستند. از زمان برآمدن عصر فضا، مشاهدات نزدیک توسط کاوشگرهای فضایی نشان داده‌است که زمین و سیارات دیگر در ویژگی‌هایی همچون آتشفشان‌ها، توفندها، زمین‌ساخت‌ها و حتی هیدرولوژی، مشترکند.

سیارات عموماً به دو دسته کلی تقسیم می‌شوند: غول‌های گازی پرچگالی و کم چگالی و سیاره‌های کوچکتر زمین‌سان سنگی. بنا بر تعاریف اتحادیه بین‌المللی اخترشناسی، هشت سیاره در سامانه خورشیدی (منظومه شمسی) وجود دارند. به ترتیب افزایش فاصله از خورشید، چهار سیاره سنگی تیر، ناهید (آناهیتا)، زمین و بهرام قرارگرفته‌اند و پس از آن‌ها چهار غول گازی مشتری، کیوان، اورانوس و نپتون قرار گرفته‌اند. شش سیاره از این هشت سیاره، یک یا چند قمر طبیعی دارند که به دور آن‌ها می‌گردند.

بیش از هزار سیاره در اطراف ستارگان (سیارات برون‌خورشیدی یا برون‌سیاره‌ها) دیگر در کهکشان راه شیری کشف شده‌اند: تا تاریخ اول مه ۲۰۱۴، ۱۷۸۶ سیاره برون‌خورشیدی در ۱۱۰۶ سامانه سیاره‌ای (که ۴۶۰ تا از آن‌ها سامانه‌های چند سیاره‌ای هستند) کشف شده که اندازه‌های آن‌ها از سیاراتی در اندازه زمین تا غول‌های گازی بزرگتر از مشتری متغیر است.[۳] در ۲۰ دسامبر ۲۰۱۱ تیم تلسکوپ فضایی کپلر، کشف نخستین سیاره‌های زمین‌سان (سنگی) برون‌خورشیدی را گزارش داد، کپلر-۲۰ای[۴] و کپلر-۲۰اف[۵] که به دور ستاره خورشیدسان کپلر-۲۰ می‌گردند.[۶][۷][۸] مطالعه‌ای در سال ۲۰۱۲، با بررسی ریزهمگرایی گرانشی تخمین زد که به ازای هر ستاره در کهکشان راه شیری تقریباً ۱٫۶ سیاره وجود دارند.[۹] گمان می‌رود که یکی از هر پنج ستاره خورشیدسان[b] ، سیاره زمین‌سانی[c] در ناحیه قابل سکونت[d] خود دارد

واژه‌شناسی[ویرایش]

سیاره در زبان انگلیسی Planet خوانده می‌شود که برگرفته از واژه ἀστὴρ πλανήτης (اَستِر پِلانِتِس) در یونان باستان می‌باشد. ریشه واژه ἀστὴρ(اَستِر) معادل واژه «ستاره» در فارسی است و هر دو واژه ایرانی و یونانی برگرفته از واژه h₂stḗr* در زبان نیا-هندواروپایی هستند. واژه πλανήτης(پِلانِتِس) نیز به معنی «گردان» است و در نتیجه ἀστὴρ πλανήτης به معنی ستاره گردان می‌باشد. واژه سیاره نیز واژه‌ای با ریشه عربی و به معنی «راه‌پیما» می‌باشد که توسط ستاره‌شناسان اسلامی سده نخستین به‌کارگرفته شد و به نظر می‌رسد که ترجمه‌ای برای واژه πλανήτης(پِلانِتِس) یونانی باشد. در واژه‌نامه‌های آنندراج، برهان قاطع و جهانگیری، از واژه کهن «هرپاسب» نیز به معنی سیاره یاد شده‌است.[۱۰] همچنین در متون زرتشتی کهن از واژه «اَباختَر» نیز برای اشاره به سیارات استفاده شده‌است.[۱۱]

تاریخچه[ویرایش]

نسخه چاپی یک مدل کیهان‌شناسی زمین مرکزی از «کیهان‌نگاری» ، انتورپ، ۱۵۳۹

ایده سیارات در طول تاریخ تکامل یافته‌است، از ستارگان گردان الهی در عهد باستان تا اجسام زمین‌وار عصر دانش. مفهوم آن گسترش یافته تا دنیاهایی نه تنها در منظومه خورشیدی بلکه در صدها منظومه فراخورشیدی دیگر را نیز دربرگیرد. ابهامات نهفته در تعریف سیاره، بحث‌های علمی بسیاری را برانگیخته است.

پنج سیاره سنتی قابل دیدن با چشم غیر مسلح از دوران باستان شناخته‌شده بودند و تأثیرات برجسته‌ای بر افسانه‌شناسی، کیهان‌شناسی دینی و اخترشناسی باستانی گذارده‌اند. در دوران باستان اخترشناسان متوجه شدند که برخی از نورها نسبت به دیگر نورها در پهنه آسمان حرکت می‌کنند. یونانیان باستان این نورها را «ستاره گردان» (به یونانی باستان: πλάνητες ἀστέρες(پِلانِتِس اَستِرِس)) یا به اختصار «گردان‌ها» (به یونانی باستان: πλανῆται(پِلانِتای)) نام نهادند[۱۲] که واژه معادل انگلیسی سیاره، یعنی Planet، از آن مشتق شده‌است.[۱۳][۱۴] در یونان باستان، چین باستان، بابل و در واقع همه تمدن‌های پیش-مدرن،[۱۵][۱۶] این باور مورد پذیرش عمومی قرارگرفته بود که زمین مرکز جهان است و همه سیارات به دور زمین می‌گردند. دلیل این برداشت آن بود که مشاهده می‌شد ستارگان هر روز یکبار به دور زمین می‌چرخیدند[۱۷] و ظاهراً درک عمومی بر آن بوده‌است که زمین ثابت و پایدار است و همواره در سکون می‌ماند.

تمدن بابل[ویرایش]

نخستین تمدن شناخته‌شده‌ای که نظریه‌ای کاربردی در مورد سیارات داشتند، بابلی‌ها بودند که در هزاره‌های نخست و دوم قبل از میلاد در منطقه میان‌رودان (بین‌النهرین) زندگی می‌کردند؛ کهن‌ترین متن اخترشناسی سیاره‌ای به جای مانده، لوحی بابلی به نام لوح ناهید آمی‌سادوکا است که امروزه یک کپی گرفته شده در قرن هفتم پیش از میلاد آن در موزه بریتانیا نگهداری می‌شود. این لوح شامل لیستی از مشاهدات مربوط به حرکت سیاره ناهید است که احتمالاً تاریخ آن به هزاره دوم پیش از میلاد می‌رسد.[۱۸] مول آپین (به انگلیسی: MUL.APIN) یک جفت لوح به خط میخی مربوط به قرن هفتم پیش از میلاد هستند که حرکات خورشید، ماه و سیارات را در یک دوره یک ساله ترسیم می‌کند.[۱۹] اختربین‌های بابلی نیز آنچه را که بعدها اختربینی غربی شد، پایه‌ریزی کردند.[۲۰] انیما آنو انلیل که در دوره نوآشوری در قرن هفتم پیش از میلاد[۲۱] نوشته شده‌است دربرگیرنده لیستی از طالع‌ها و روابط آن‌ها با پدیده‌های آسمانی مانند حرکت سیارات است.[۲۲][۲۳] زهره، تیر و سه سیاره بیرونی بهرام، مشتری و کیوان توسط بابلی‌ها شناخته‌شده بودند. این سیارات تا پیش از اختراع تلسکوپ در اوایل دوران مدرن تنها سیاره‌های شناخته‌شده باقی ماندند.[۲۴]

اخترشناسی یونانی-رومی[ویرایش]

هفت کره سیاره‌ای بطلمیوس
۱
ماه
☾
۲
تیر
☿
۳
زهره
♀
۴
خورشید
☉
۵
بهرام
♂
۶
مشتری
♃
۷
کیوان
♄

یونانیان باستان در ابتدا به اندازه بابلیان به سیارات ارج ننهادند. فیثاغوری‌ها در قرن ششم و پنجم پیش از میلاد نظریهٔ سیاره‌ای مجزایی برای خود داشتند، که متشکل از زمین، خورشید، ماه و سیاراتی بود که به دور یک آتش مرکزی واقع در مرکز جهان در گردش هستند. گفته می‌شود که فیثاغورث یا پارمنیدس نخستین فردی بود که دریافت ستارهٔ عصر(هسپروس) و ستارهٔ صبح(فسفروس) یکی هستند(آفرودیته که متناظری یونانی برای ونوس رومی است).[۲۵] در قرن سوم پیش از میلاد، آریستارخوس ساموسی یک سامانه خورشید مرکزی پیشنهاد نمود که مطابق آن، زمین و سایر سیارات به دور خورشید می‌گشتند، هرچند که نظریه زمین مرکزی همچنان تا قبل از انقلاب علمی، نظریه پیشتاز بود.

در قرن نخست پیش از میلاد، در دوران هلنیستی، یونانی‌ها شروع به ایجاد طرح‌های ریاضی خود برای پیش‌بینی موقعیت سیارات نمودند. این طرح‌ها بر خلاف طرح‌های محاسباتی بابلی‌ها بیشتر بر پایه هندسه بنا شده بودند در نهایت نظریات بابلی‌ها در سایه جامعیت و پیچیدگی این نظریات قرار گرفتند. این نظریات در قرن دوم عصر حاضر کتب المجسطی نوشته بطلمیوس به اوج می‌رسد. نفوذ مدل بطلمیوس به اندازه‌ای بود که جایگزین تمام نظریات پیشین شد و به مدت ۱۳ قرن به عنوان کتاب مرجع جامع اخترشناسی در دنیای غرب باقی ماند.[۱۸][۲۶] برای یونانی‌ها و رومی‌ها هفت سیاره شناخته‌شده وجود داشت که همگی بر اساس قواعد پیچیده‌ای که بطلمیوس طراحی کرده بود، به دور زمین می‌چرخیدند. این سیارات به ترتیب فاصله از زمین (ترتیب بطلمیوسی) عبارت بودند از: ماه، تیر، زهره، خورشید، بهرام، مشتری و کیوان.[۱۴][۲۶][۲۷]

هند[ویرایش]

در سال ۴۹۹ پس از میلاد، آریابهاتا یک مدل سیاره‌ای پیشنهاد نمود که صریحاً به چرخش زمین به دور محورش اشاره داشت و توضیح داد که دلیل حرکت ظاهری از شرق به غرب ستارگان، همین چرخش زمین به دور خود است. او همچنین باور داشت که مدار سیارات بیضوی هستند.[۲۸] پیروان آریابهاتا به‌طور ویژه در جنوب هند قدرت داشتند و در آنجا اصل حرکت چرخشی زمین وی به همراه سایر اصولش پیروی می‌شد و کارهای ثانویه‌ای نیز بر پایه آن به انجام رسید.[۲۹]

در سال ۱۵۰۰، نیکانتا سومایاجی از مدرسه ستاره‌شناسی و ریاضیات کرالا در رساله تنتراسامگراها مدل آریابهاتا را مورد بازبینی قرار داد.[۳۰] او در «آریابهاتیابهاسیا» که گزارشی در مورد «آریابهاتیا» ی آریابهاتا بود، مدلی پیشنهاد داد که در آن تیر، ناهید، بهرام، مشتری و کیوان به دور خورشید می‌گردند و خورشید به دور زمین می‌گردد، شبیه به مدل تیکونی که بعدها توسط تیکو براهه در اواخر قرن شانزدهم ارائه شد. بیشتر اخترشناسان مدرسه کرالا که از او پیروی می‌کردند نظریه او را پذیرفته بودند.[۳۰][۳۱]

اخترشناسی دوران اسلامی[ویرایش]

در قرن یازدهم، ابن سینا متوجه پدیده گذر ناهید شده‌بود و چنین نوشت که ناهید حداقل گاهی زیر خورشید قرار می‌گیرد.[۳۲][۳۳] در قرن دوازدهم ابن باجه دو سیاره را به شکل دو لکه تیره روی خورشید مشاهده نمود که بعدها در قرن سیزدهم، اخترشناس رصدخانه مراغه، قطب‌الدین شیرازی، متوجه شد که آن‌ها گذر تیر و گذر ناهید هستند. هرچند که ابن باجه نمی‌توانسته گذر ناهید را دیده باشد زیرا در دوران زندگی وی اتفاق نیفتاده است.[۳۴]

رنسانس اروپایی[ویرایش]

سیارات رنسانس،
حدود ۱۵۴۳ تا ۱۶۱۰ و حدود ۱۶۸۰ تا ۱۷۸۱
۱
تیر
☿
۲
ناهید
♀
۳
زمین
⊕
۴
بهرام
♂
۵
مشتری
♃
۶
کیوان
♄

پس از پیدایش انقلاب علمی، درک انسان از سیاره از چیزی که در پهنه آسمان حرکت می‌کند (نسبت به ستارگان ثابت) به جسمی که به دور زمین می‌گردد تغییر یافت، و در قرن هجدهم با قدرت گرفتن نظریه خورشید مرکزی کوپرنیک، گالیله و کپلر، این درک، به اجسامی که مستقیماً به دور خورشید می‌گردند تغییر یافت.

بنابراین زمین نیز در لیست سیارات قرارگرفت[۳۵] در حالیکه خورشید و ماه از این لیست خارج شدند. در آغاز، وقتی نخستین اقمار مشتری و کیوان در قرن هفدهم کشف شدند، واژه‌های قمر و سیاره به جای یکدیگر به‌کار می‌رفتند، اما در قرن بعدی بیشتر از واژه قمر برای این اجسام استفاده می‌شد. تا اواسط قرن نوزدهم تعداد سیارات به سرعت زیاد شد زیرا در آن زمان جامعه علمی هر جسم تازه کشف‌شده‌ای را که مستقیماً به دور خورشید بگردد به عنوان سیاره قلمداد می‌نمود.

قرن نوزدهم[ویرایش]

سیارات جدید، ۱۸۰۷–۱۸۴۵
۱
تیر
☿
۲
ناهید
♀
۳
زمین
⊕
۴
بهرام
♂
۵
وستا
⚶
۶
جونو
⚵
۷
سرس
⚳
۸
پالاس
⚴
۹
مشتری
♃
۱۰
کیوان
♄
۱۱
اورانوس
♅

در قرن نوزدهم اخترشناسان به تدریج متوجه شدند که اجسامی که به تازگی کشف شده بودند و برای تقریباً نیم قرن به عنوان سیاره طبقه‌بندی شده‌بودند (مانند سرس، پالاس و ۴ وستا)، با سیارات سنتی شناخته شده بسیار تفاوت داشتند. این اجسام همه در یک منطقه از فضا بین بهرام و مشتری(کمربند سیارک‌ها) پراکنده بودند و جرم آن‌ها نیز بسیار کمتر بود. در نتیجه آن‌ها در طبقه‌بندی جدید «سیارک‌ها» قرار گرفتند. در غیاب یک تعریف رسمی برای «سیاره»، هر جسم بزرگی که به دور خورشید می‌گشت سیاره قلمداد می‌شد. از آنجا که اختلاف اندازه سیاره و سیارک بسیار زیاد بود، و همچنین به این دلیل که نظر می‌رسید سیل اکتشافات جدید با اکتشاف نپتون در سال ۱۸۴۶ پایان یافته‌است، نیازی به یک تعریف رسمی احساس نمی‌شد.[۳۶]

قرن بیستم[ویرایش]

سیارات ۱۸۵۴–۱۹۳۰، سیارات خورشیدی ۲۰۰۶ تا کنون
۱
تیر
☿
۲
ناهید
♀
۳
زمین
⊕
۴
بهرام
♂
۵
مشتری
♃
۶
کیوان
♄
۷
اورانوس
♅
۸
نپتون
♆

در قرن بیستم پلوتون کشف شد. برپایه مشاهدات اولیه این گمان به‌وجود آمد که از زمین بزرگتر است و به همین سبب به سرعت به عنوان نهمین سیاره به رسمیت شناخته شد.[۳۷] مشاهدات بعدی نشان داد که این جسم در واقع بسیار کوچکتر از آن است که تصور می‌شد. در سال ۱۹۳۶، ریموند لیتلتون پیشنهاد نمود که ممکن است پلوتون یکی از قمرهای گریخته نپتون باشد،[۳۸] و فرد لارنس ویپل در سال ۱۹۶۴ پیشنهاد داد که ممکن است پلوتون یک دنباله‌دار باشد،[۳۹] اما با این وجود، به دلیل اینکه هنوز از هر سیارک شناخته‌شده‌ای بزرگتر بود و به نظر نمی‌رسید که عضوی از یک جمعیت بزرگتر باشد،[۴۰] وضعیت خود را به عنوان سیاره تا سال ۲۰۰۶ حفظ نمود.

سیارات (خورشیدی) ۱۹۳۰–۲۰۰۶
۱
تیر
☿
۲
ناهید
♀
۳
زمین
⊕
۴
بهرام
♂
۵
مشتری
♃
۶
کیوان
♄
۷
اورانوس
♅
۸
نپتون
♆
۹
پلوتون
♇

در سال ۱۹۹۲، اخترشناسان، الکساندر والشتان و دیل فریل کشف چند سیاره در اطراف یک تپ‌اختر به نام پی‌اس‌آر بی۱۲۵۷+۱۲ را اعلام نمودند.[۴۱] این اکتشاف عموماً به عنوان نخستین سامانه سیاره‌ای کشف شده در اطراف یک ستاره دیگر شناخته‌می‌شود. پس از آن در ۶ اکتبر ۱۹۹۵، میشل مایر و دیدیه کیلوز از دانشگاه ژنو، نخستین برون‌سیاره در حال گردش به دور یک ستاره معمولی رشته اصلی(۵۱ پگاسوس) را کشف نمودند.[۴۲] کشف سیارات فراخورشیدی به ابهام دیگری در تعریف سیاره انجامید: نقطه‌ای که در آن سیاره تبدیل به ستاره می‌شود. بسیاری از سیارات فراخورشیدی شناخته‌شده جرمی چندین برابر مشتری دارند که نزدیک به جرم برخی از اجسام ستاره‌ای به نام کوتوله‌های قهوه‌ای است.[۴۳] کوتوله‌های قهوه‌ای عمومات به عنوان ستاره تلقی می‌شوند زیرا توانایی همجوشی دوتریم، که ایزوتوپ سنگین‌تر هیدروژن است، را دارا هستند. اگرچه اجرام آسمانی باید حداقل ۷۵ بار از مشتری سنگین‌تر باشند تا توانایی همجوشی هیدروژن را داشته‌باشند، اجسامی که تنها ۱۳ برابر از مشتری سنگین‌تر قادر به همجوشی دوتریم خواهند بود. هرچند که دوتریم بسیار نادر است و بیشتر کوتوله‌های قهوه‌ای فرایند همجوشی‌شان مدت‌ها پیش از کشف آنها، متوقف شده‌است و این در عمل آن‌ها را از سیارات بسیار بزرگ نامتمایز می‌سازد.[۴۴]

قرن بیست و یکم[ویرایش]

با کشف اجسام بیشتر در منظومه شمسی و اجسام بزرگ در اطراف ستارگان دیگر که در خلال نیمهٔ دوم قرن بیستم رخ داد، بحث‌هایی دربارهٔ این که چه چیزی را باید سیاره دانست، آغاز شد. اختلاف نظرهای در مورد این که آیا جسمی را که بخشی از یک جمعیت متمایز مانند یک کمربند سیارکی باشد، یا جسمی که آنقدر بزرگ باشد که از روش همجوشی گرمایی هسته‌ای دوتریم تولید انرژی کند، را می‌توان سیاره دانست، وجود داشت.

شمار رو به افزایشی از اخترشناسان بر این باورند که می‌بایست پلوتون را از لیست سیاره‌ها خارج نمود، زیرا بسیاری از اجسام مشابه با اندازه‌های نزدیک به آن در همان منطقه از منظومه شمسی (کمربند کویپر) در خلال دهه‌های ۱۹۹۰ و ۲۰۰۰ یافت شده‌است. مشخص گشت که پلوتون تنها جسم کوچکی در میان جمعیتی از هزاران جسم دیگر است.

رسانه‌ها در مورد برخی از این اجسام همچون کواوار، سدنا و اریس بشارت کشف سیاره دهم را می‌دادند، هرچند که هرگز مورد پذیرش گسترده جامعه علمی قرار نگرفتند. اعلام کشف اریس در سال ۲۰۰۵ به عنوان جسمی با جرم ۲۷٪ بیش از پلوتون، ضرورت و تمایل عمومی را برای ایجاد یک تعریف رسمی برای سیاره، ایجاد کرد.

با پذیرش مشکل، اتحادیه بین‌المللی اخترشناسی عزم ایجاد تعریفی برای سیاره نمود و یکی در سال ۲۰۰۶ ارائه داد. شمار سیارات به هشت سیارهای کاهش یافت که اجسامی با بزرگی قابل توجه هستند و مدارشان را پاکسازی کرده‌اند، و رده جدیدی نیز به نام «سیاره‌های کوتوله» به وجود آمد که در ابتدا شامل سه جسم بود(سرس، پلوتون و اریس).[۴۵]

تعریف سیاره فراخورشیدی[ویرایش]

در سال ۲۰۰۳، گروه کاری سیارات فراخورشیدی اتحادیه بین‌المللی اخترشناسی (IAU) یک بیانیه جایگاه در مورد تعریف سیاره ارائه دادند که تعریف ناتمام زیر را در بر می‌گرفت و عمدتاً بر روی مرز میان سیارات و کوتوله‌های قهوه‌ای تمرکز داشت:[۲]

  1. اجسامی با جرم واقعی کمتر از حد جرمی برای همجوشی گرمایی هسته‌ای دوتریم (که در حال حاضر برای اجسامی با فراوانی ایزوتوپی همانند خورشید، این حد ۱۳ برابر جرم مشتری محاسبه شده‌است[۴۶]) که حرکت مداری به دور ستارگان یا بقایای ستاره‌ای دارند، سیاره هستند (مستقل از اینکه چگونه ایجاد شده باشند). حداقل جرم مورد نیاز برای سیاره بودن یک جسم فراخورشیدی همان مقداری است که در مورد منظومه شمسی در نظر گرفته می‌شود.
  2. اجسام نیمه‌ستاره‌ای با جرم واقعی فراتر از حد جرمی برای همجوشی گرمایی هسته‌ای دوتریم، «کوتوله قهوه‌ای» محسوب می‌شوند و اینکه چگونه ایجاد شده‌اند یا کجا قرار گرفته‌اند تفاوتی ایجاد نمی‌کند.
  3. اجسام شناور آزاد در خوشه‌های ستاره‌ای جوان با جرمی پایینتر از حد جرمی برای همجوشی گرمایی هسته‌ای دوتریم سیاره نیستند، بلکه کوتوله‌های نیمه‌قهوه‌ای هستند (و یا هر نام دیگری که مناسب‌تر باشد)

این تعریف از آن زمان به بعد، در هنگام انتشار کشفیات برون‌سیاره‌ها در ژورنال‌های علمی به گستردگی مورد استفاده اخترشناسان قرارگرفته‌است.[۴۷] اگرچه موقتی است، اما تا پذیرفتن یک تعریف پایدارتر به عنوان تعریفی ناتمام اما مؤثر باقی می‌ماند. اگرچه بحثی در مورد حد پایین جرم نمی‌کند[۴۸] و بدین‌ترتیب از اختلاف نظرها دربارهٔ اجسام داخل منظومه شمسی دوری می‌گزیند. این تعریف همچنین توضیحی در مورد اجسامی مانند ۲ام۱۲۰۷بی که دور کوتوله‌های قهوه‌ای می‌گردند، نمی‌دهد.

یک راه تعریف کوتوله نیمه‌قهوه‌ای عبارت است از جسمی با جرم سیاره‌ای که به جای برافزایش از روش فروریزی ابر به وجود آمده‌اند. این تمایز در چگونگی شکل‌گیری بین کوتوله نیمه-قهوه‌ای و سیاره مورد توافق جهانی قرار نگرفته‌است. اخترشناسان بر پایه پذیرش یا عدم پذیرش اینکه فرایند شکل‌گیری یک سیاره در رده‌بندی آن دخالت داده شود، به دو دسته تقسیم می‌شوند.[۴۹] یکی از دلایل مخالفت این است که اغلب تعیین فرایند شکل‌گیری امکان‌پذیر نمی‌باشد. مثلاً سیاره‌ای که از روش برافزایش شکل‌گرفته‌است، ممکن است از منظومه به بیرون پرتاب شده و به شکل غوطه‌ور آزاد درآید، و به همین ترتیب یک کوتول نیمه قهوه‌ای که خودش از روش فروریزی ابر به وجود آمده، ممکن است در مداری به دور یک ستاره به دام بیفتد.

مقدار حدی ۱۳ برابر جرم مشتری، بیشتر یک قانون مبتنی بر تجربه است تا یک قانون دقیق فیزیکی. پرسشی که برمی‌اید این است که منظور از سوزاندن دوتریوم چیست؟ این پرسش از آنجا برمی‌آید که اجسام بزرگ بیشتر دوتریم خود را می‌سوزانند و اجسام کوچک‌تر تنها اندکی از آن را می‌سوزانند و مقدار ۱۳ MJup (جرم مشتری) بین این دو دسته قرار می‌گیرد. مقدار دوتریوم سوزانده شده نه تنها به جرم، بلکه به ترکیب سیاره، یعنی مقدار هلیم و دوتریوم موجود نیز بستگی دارد.[۵۰] دانشنامه سیارات فراخورشیدی که شامل اجسامی با جرمی تا ۲۵ برابر جرم مشتری است، این‌گونه بیان می‌کند که «این حقیقت که هیچ ویژگی خاصی در مورد مقدار ۱۳ MJup طیف جرمی مشاهده شده وجود نداشته و ما را وادار می‌سازد که این حد جرم را فراموش کنیم»[۵۱] مرورگر داده‌های برون‌سیارات شامل اجسامی تا ۲۴ برابر جرم مشتری می‌باشد و این‌گونه توصیه می‌کند که «حد جرمی ۱۳ برابر جرم مشتری وضع شده توسط اتحادیه بین‌المللی اخترشناسی در مورد سیاراتی با هسته‌های سنگی از نظر فیزیکی بی‌معنی می‌گردد.»[۵۲] بایگانی برون سیارات ناسا شامل اجسامی با جرم (یا حداقل جرم) کوچکتر یا مساوی ۳۰ برابر جرم مشتری است.[۵۳]

معیار دیگری که به جز سوزاندن دوتریم، فرایند شکل‌گیری و مکان، برای جدا کردن سیاره‌ها و کوتوله‌های قهوه‌ای وجود دارد این است که فشار هسته ناشی از فشار کولنی است یا فشار تباهیدگی الکترون.[۵۴][۵۵]

تعریف ۲۰۰۶[ویرایش]

موضوع حد پایین در جلسه مجمع عمومی اتحادیه بین‌المللی اخترشناسی مورد بحث قرارگرفت. پس از بحث بسیار و یک پیشنهاد مردود، مجمع رأی به وضع تعریفی به شکل زیر برای سیارات منظومه شمسی داد:[۵۶]

هر جسم آسمانی که (الف) در مداری به دور خورشید بگردد، (ب) جرم کافی داشته باشد تا نیروی خودگرانشی‌اش بر نیروهای پیوستگی جسم صلب غلبه‌کند به گونه‌ای که شکل آن در تعادل هیدرواستاتیکی (تقریباً گرد) باشد، (پ) همسایگی اطراف مدارش را پاکسازی نموده‌باشد.

طبق این تعریف، منظومه شمسی هشت سیاره دارد، اجسامی که شرط اول و دوم را دارا هستند اما در شرط سوم صدق نمی‌کنند (مانند سرس، پلوتون و اریس) به عنوان سیاره‌های کوتوله طبقه‌بندی می‌شوند، البته با این شرط که خود قمر سیاره دیگری نباشند. در آغاز IAU تعریفی را پیشنهاد داده بود که اجسام بسیاری را در بر می‌گرفت، زیرا شرط سوم در آن غایب بود.[۵۷] پس از بحث فراوان از طریق رای‌گیری تصمیم گرفته شد که این اجسام را به جای سیاره در رده سیاره‌های کوتوله طبقه‌بندی شوند.[۵۸]

این تعریف بر پایه نظریات شکل‌گیری سیارات بنا شده که طبق این نظریات رویانهای سیاره‌ای در ابتدا همسایگی مداری خود را از اجسام کوچک دیگر پاکسازی می‌کنند. استیون سوتر اخترشناس این‌گونه توصیه می‌کند که

محصول پایانی یک برافزایش قرصی ثانویه، شمار اندکی از اجسام بزرگ (سیارات) در مدارهای نامتقاطع یا مدارهای طنین‌داری ایست که از بروز برخورد بین آن‌ها جلوگیری می‌کنند. سیاره‌های خرد و دنباله‌دارها، از جمله اجسام کمربند کوئیپر، از این نظر متفاوت‌اند که امکان برخورد با یکدیگر و با سیارات را دارند.

پلوتون، با توجه به وضعیت سیاره بودنش و کشف آن در سال ۱۹۳۰، در ورای جامعه علمی، دارای اهمیت فرهنگی قابل توجهی برای عموم بود. کشف اریس در رسانه‌ها به گستردگی به عنوان سیاره دهم اعلام می‌شد و از این رو طبقه‌بندی دوباره هر سه جسم به عنوان سیاره کوتوله، توجه رسانه‌ها و عموم را نیز به خود جلب نمود.[۵۹]

اجسامی که پیشتر سیاره پنداشته می‌شدند[ویرایش]

جدول زیر شامل اجسامی از سامانه خورشیدی است که زمانی سیاره قلمداد می‌شدند.

جسم طبقه‌بندی کنونی توضیحات
خورشید، ماه ستاره، قمر در دوران باستان سیاره پنداشته می‌شدند، طبق نظریه اکنون رد شده زمین مرکزی.
آیو، اروپا، گانمید، و کالیستو قمر چهار قمر بزرگ نخستین مشتری، که به نام کاشف آن گالیله، قمرهای گالیله‌ای خوانده می‌شوند. او به احترام قیم‌هایش، خاندان مدیچی از این قمرها با نام «سیارات مدیچی» یاد می‌کند.
تیتان،[e] یاپتوس،[f] رئا، تتیس،[g] و دیونه[g] قمر پنج قمر بزرگتر کیوان توسط کریستین هویگنس و جووانی دومنیکو کاسینی کشف شدند.
سرس سیاره کوتوله و سیارک از زمان کشفشان در بین سال‌های ۱۸۰۱ تا ۱۸۰۷ سیاره پنداشته می‌شدند، تا دهه ۱۸۵۰ که به عنوان سیارک طبقه‌بندی شدند.[۶۱]

سرس متعاقباً در سال ۲۰۰۶ به عنوان سیاره کوتوله طبقه‌بندی شد.

پالاس، جونو، و ۴ وستا سیارک
آسترئا، هبه۶، آیریس، گیاگان، متیس، هایجیا، پارتنوپ، ویکتوریا، ایجیریه، آیرین، یونومیا سیارک سیارک‌های بیشتری بین سال‌های ۱۸۴۵ تا ۱۸۵۱ کشف شدند. لیست به سرعت در حال گسترش اجسام میان بهرام و مشتری طبقه‌بندی مجدد آن‌ها به عنوان سیارک را برانگیخت، که در سال ۱۸۵۴ مورد پذیرش گسترده قرار گرفت.[۶۲]
پلوتون سیاره کوتوله و جسم کمربند کویپر نخستین جسم فرانپتونی شناخته‌شده (یعنی ریزسیاره‌ای با یک نیم‌قطر بزرگ فراتر از نپتون). از زمان کشف آن در سال ۱۹۳۰ تا زمان طبقه‌بندی دوباره آن به عنوان سیاره کوتوله در سال ۲۰۰۶، سیاره محسوب می‌شد.
اریس سیاره کوتوله و جسم دیسک پراکنده این جسم فرانپتونی که در سال ۲۰۰۳ کشف شد، در سال ۲۰۰۵ به عنوان سیاره شناخته شد. لیست به سرعت در حال گسترش پلوتوئیدها، طبقه‌بندی مجدد آن به سیاره کوتوله در سال ۲۰۰۶ را برانگیخت.

شمار اندکی از اخترشناسان سیاره‌های کوتوله و برخی از قمرها را سیاره محسوب می‌کنند.

افسانه‌شناسی و نام‌گذاری[ویرایش]

چرا سیارات از مدار خود بیرون نمی‌افتند[ویرایش]

آداب و رسوم مردم با سیارات[ویرایش]

خدایان المپ، که نام سیاره‌های منظومه شمسی برگرفته از آن‌هاست

نام‌های سیارات در دنیای غرب برگرفته از آداب رومی‌هاست که خود برآمده از آداب یونانی‌ها و بابلیان است. در یونان باستان دو روشنی‌بخش بزرگ، خورشید و ماه را هلیوس و سلنه می‌خواندند؛ دورترین سیاره (کیوان) فاینون به معنی «درخشنده» نام داشت که پس از آن فائتون (مشتری) به معنی «روشن» قرارداشت. سیاره سرخ (مریخ) با نام پیروئیس به معنی «آتشین» شناخته می‌شد. روشن‌ترین سیاره (ناهید)، فسفروس (نور آور) و سیاره گذارای آخری (تیر) با نام استیلبون (سوسو زن) شناخته می‌شدند. یونانی‌ها همچنین هر سیاره‌ای را به یکی از خدایان خود، یعنی دوازده ایزد المپ‌نشین نسبت می‌دادند: هلیوس و سلنه هم نام خدایان بودند و هم سیارات. فاینون به کرونوس، تیتانی که پدر المپ‌نشینان بود، تعلق داشت. فائتون نشان زئوس، پسر کرونوس که او را از پادشاهی خلع کرد، پیروئیس به آرس، پسر زئوس داده شده بود که خدای جنگ بود، و فسفروس توسط آفرودیت حکمرانی می‌شد که خدابانوی عشق بود. هرمس که پیام‌رسان خدایان و خدای آموزش و شعور بود، بر استیلبون حکم می‌راند.[۱۸]

این رسم یونانی‌ها در بخشیدن نام خدایان خود به سیارات با احتمال نزدیک به یقین از بابلیان گرفته شده‌است. بابلی‌ها فسفروس را به نام خدابانوی عشق خود، ایشتار؛ پیروئیس را به نام خدای جنگ خود، نرگال؛ استیلبون را به نام خدای دانایی، نابو؛ و فائتون را به نام خدای اصلی، مردوخ نامیده بودند.[۶۳] هماهنگی میان روش‌های نام‌گذاری بابلی و یونانی بیش از آن است که تصور کنیم از ریشه‌های جداگانه‌ای برخاسته‌اند.[۱۸] این تطابق‌ها کامل نیست. مثلاً نرگال خدای جنگ بابل بود و از این رو یونانی‌ها او را به نام آرس شناختند، هرچند که بر خلاف آرس، خدای کشتن و زمین خاکی نیز بود.[۶۴] مردم یونان امروزی همچنان نام‌های باستانی را برای سیارات به‌کار می‌برند، اما سایر زبان‌های اروپایی، تحت تأثیر امپراتوری روم و بعدها کلیسای کاتولیک از نام‌های رومی به جای نام‌های یونانی استفاده می‌کنند. رومی‌ها که همچون یونانی‌ها دین نیا-هند و اروپایی داشتند، خدایانی مانند یونانی‌ها با نام‌های متفاوت داشتند اما خبری از داستان‌سرایی‌های غنی یونانی‌ها که فرهنگ شاعرانه یونان به خدایانشان بخشیده بود، نبود. در اواخر دوران جمهوری روم، نویسندگان رومی بسیاری از داستان‌های یونانی را قرض گرفته و در مورد خدایان خود به‌کاربردند، تا اندازه‌ای که تقریباً تفاوت آن‌ها قابل تشخیص نبود.[۶۵] وقتی رومی‌ها اخترشناسی یونانی را مطالعه کردند، نام خدایان خود را بر روی سیارات نهادند: مرکوریوس (به جای هرمس)، ونوس (آفرودیت)، مارس (آرس)، ژوپیتر (زئوس) و ساتورنوس (کرونوس). وقتی سیارات بعدی در قرون ۱۸ام و ۱۹ام کشف شدند نیز این روش نامگذاری در مورد نپتون (پوزئیدون) پابرجا ماند. اورانوس در این میان استثناست زیرا نام آن از یک خدابانوی یونانی گرفته‌شده‌است و نه از معادل رومی آن.

برخی از رومیان در پی اعتقادی که احتمالاً از بین‌النهرین سرچشمه گرفته و در مصر هلنیستی شکل گرفته، بر این باور بودند که خدایان هفت‌گانه‌ای که سیارات از روی آن‌ها نام‌گذاری شده‌اند در شیفت‌های ساعتی امور روی زمین را مراقبت می‌نمایند. ترتیب شیفت‌ها به صورت ساترن، ژوپیتر، مارس، خورشید(Sun)، ونوس، مرکوری و ماه بود.[۶۶] بنابراین نخستین روز با ساترن آغاز می‌شود (ساعت ۱ام)، دومین روز با خورشید (ساعت ۲۵ام)، روزهای بعدی با ماه (ساعت ۴۹ام)، مارس، مرکوری، ژوپیتر و ونوس. از آنجا که هر روز به نام خدایی که آن را آغاز می‌کند نامگذاری می‌شد، روزهای هفته در گاه‌شماری رومی نیز به همین ترتیبند و همچنان در بسیاری از زبان‌های امروزی به همین ترتیب حفظ شده‌است.[۶۷] در زبان انگلیسی واژه‌های Saturday (شنبه)، Sunday (یکشنبه) و Monday (دوشنبه) ترجمه مستقیم این نام‌های رومی هستند. نام روزهای دیگر از خدایان انگلو-ساکسون گرفته شده‌است: Tuesday (سه‌شنبه) از Tiw (تیر (اساطیر))، Wednesday (چهارشنبه) از Wóden (ودن)، Thursay (پنجشنبه) از Thunor (ثور) و Friday (جمعه) از Fríge (فریج). این خدایان انگلوساکسون به ترتیب شبیه یا معادل مارس، مرکوری، ژوپیتر و ونوس هستند.

زمین تنها سیاره‌ای است که نام آن در زبان انگلیسی از اساطیر یونانی-رومی گرفته نشده‌است. از آنجا که تنها در قرن هفدهم بود که زمین به‌طور عمومی به عنوان سیاره پذیرفته شد،[۳۵] نام آن برگرفته از نام هیچ خدایی نیست. واژه earth به معنی زمین برگرفته از واژه انگلو-ساکسون قرن هشتم، erda است که به معنی زمین یا خاک است و نخستین بار به صورت مکتوب به عنوان نام کره زمین در حدود سال‌های ۱۳۰۰ به‌کار گرفته شد،[۶۸][۶۹] و همانند زبان‌های ژرمنی دیگر در نهایت ا واژه نیا-ژرمنی ertho «زمین» گرفته شده‌است.[۶۹] مثلاً در انگلیسی earth، آلمانی Erde، هلندی aarde و اسکاندیناوی jord. بسیاری از زبان‌های رومی‌تبار از واژه کهن ترا یا شکلی تغییریافته از آن استفاده می‌کنند که به معنی «زمین خشکی» در مقابل دریا استفاده می‌شد.[۷۰] اما زبان‌های غیر رومی‌تبار از واژگان بومی خود استفاده می‌کنند. مثلاً یونانی‌ها همچنان از واژه قدیمی Γή (ژئو) استفاده می‌کنند.

فرهنگ‌های غیر اروپایی از روش‌های نام‌گذاری دیگر استفاده کرده‌اند. هند از روشی بر پایه ناواگراها استفاده می‌کند که شامل هفت سیاره (سوریا برای خورشید، چاندرا برای ماه، و بودها، شوکرا، مانگالا، برهاسپاتی و شانی برای تیر، ناهید، بهرام، مشتری و کیوان) و دو گره مداری صعودی و نزولی ماه (راهو و کتو) می‌شود. چین و کشورهای آسیای شرقی که از لحاظ تاریخی در معرض تأثیر فرهنگی چین بوده‌اند (مانند ژاپن، کره و ویتنام)، برپایه عناصر پنجگانه چینی آب (تیر)، فلز (ونوس)، آتش (بهرام)، چوب (مشتری) و خاک (کیوان) نام‌گذاری کرده‌اند.[۶۷]

پیدایش سیاره‌ها[ویرایش]

در مورد چگونگی پیدایش سیارات، هنوز اطلاع قطعی وجود ندارد. نظریه پیشتاز این است که سیارات در حین فروریختن یک سحابی و تبدیل آن به به قرص نازکی از گاز و غبار شکل می‌گیرند. در پی این فروریزی یک پیش‌ستاره در هسته تشکیل می‌شود که قرص پیش‌سیاره‌ای چرخانی آن را دربرگرفته‌است. از طریق برافزایش (یک فرایند برخورد چسبنده) ذرات غبار قرص به شکل پایداری در کنار هم انباشته می‌شوند تا اجسامی بزرگتر تشکیل دهند. تجمع‌های محلی جرم به نام سیارات خرد شکل می‌گیرند و با بهره‌گیری از جاذبه گرانشی فرایند برافزایش را تسریع می‌کنند. این تجمع‌ها مرتباً چگال‌تر می‌شوند تا اینکه سرانجام بر اثر گرانش به درون فرو ریخته و پیش‌سیاره‌ها را تشکیل می‌دهند.[۷۱] پس از آنکه قطر سیاره از ماه بزرگتر شد، شروع به انباشتن یک اتمسفر گسترده می‌کند و از طریق پدیده پسار اتمسفری، سرعت جذب سیارات خرد آن بسیار افزایش می‌یابد.[۷۲]

برداشتی هنری از یک قرص پیش‌سیاره‌ای

وقتی یک پیش‌ستاره به‌اندازه‌ای بزرگ می‌شود که شعله‌ور گردد و ستاره‌ای به‌وجود آید، قرص باقی‌مانده توسط پدیده‌های تبخیر فوتونی، بادهای خورشیدی و کشش پوینتینگ-رابرتسون از درون به خارج رانده می‌شود.[۷۳][۷۴] پس از آن ممکن است که هنوز پیش‌سیاره‌های زیادی در حال گردش به دور ستاره یا یکدیگر باشند، اما به مرور زمان با هم برخورد کرده یا تشکیل یک سیاره بزرگتر یا اینکه مواد آن‌ها پراکنده می‌شود تا جذب پیش‌سیاره‌ها و سیاره‌های بزرگتر شود.[۷۵] آن اجسامی که به اندازه کافی پرجرم می‌شوند، بیشتر مواد موجود در همسایگی خود را جذب می‌کنند و تشکیل سیاره می‌دهند. در این میان، پیش‌سیاراتی که از برخوردها دوری کرده‌اند، یا از طریق جذب گرانشی به قمرهای طبیعی این سیارات تبدیل می‌شوند یا اینکه در کمربندهایی در کنار اجسام دیگر باقی‌مانده و تبدیل به سیاره کوتوله و اجرام کوچک می‌شوند.

تأثیرات پرانرژی سیارات خرد (و همچنین واپاشی رادیواکتیو)، باعث گرم شدن سیارات در حال رشد و ذوب شدن حداقل بخشی از آن‌ها می‌شود، جرم بخش درونی سیاره تغییر کرده و چگالتر می‌شود.[۷۶]

با کشف و مشاهده سامانه‌های سیاره‌ای پیرامون ستارگان دیگری به غیر از خورشید، رفته رفته امکان آن پدید می‌آید که این دیدگاه را شفاف‌سازی، تجدید نظر یا حتی عوض نمود. اکنون این باور به‌وجود آمده‌است که درجه فلزیگی - یک اصطلاح اخترشناسی که میزان فراوانی عناصر شیمیایی با عدد اتمی بزرگتر از ۲ (هلیم) را نشان می‌دهد - می‌تواند احتمال سیاره داشتن یک ستاره را تعیین کند.[۷۷] از این رو گمان می‌رود که یک ستاره پرفلز جمعیت یک از یک ستاره کم فلز جمعیت دو، شانس بیشتری برای داشتن یک سامانه سیاره‌ای دارد.

منظومه شمسی[ویرایش]

سیارات منظومه شمسی(اندازه‌ها بر پایه مقیاس واقعی‌است اما فاصله‌ها و روشنایی‌ها در مقیاس واقعی نیستند)
سیارات درونی. از چپ به راست: تیر، ناهید، زمین و بهرام -در رنگهای واقعی. (اندازه‌ها بر پایه مقیاس واقعی‌است اما فاصله‌ها در مقیاس واقعی نیستند)
جهار غول گازی در برابر خورشید: مشتری، کیوان، اورانوس، نپتون (اندازه‌ها بر پایه مقیاس واقعی‌است اما فاصله‌ها در مقیاس واقعی نیستند)

طبق تعریف اتحادیه بین‌المللی اخترشناسی، هشت سیاره در منظومه شمسی (سامانه خورشیدی) وجود دارند. این سیارات به ترتیب فاصله از خورشید عبارتند از:

  1. ☿ تیر
  2. ♀ ناهید
  3. ⊕ زمین
  4. ♂ بهرام
  5. ♃ مشتری
  6. ♄ کیوان
  7. ♅ اورانوس
  8. ♆ نپتون

مشتری با جرم ۳۱۸ برابر جرم زمین بزرگترین و تیر با ۰٫۰۵۵ جرم زمین کوچکترین سیاره‌ها هستند.

سیاره‌های سامانه خورشیدی را می‌توان بر پایهٔ ترکیباتشان در رده‌هایی طبقه‌بندی نمود:

  • سنگی: سیاراتی که شبیه به زمین هستند و بدنهٔ آن‌ها عمدتاً از سنگ تشکیل شده‌است: تیر، ناهید، زمین و بهرام. تیر با ۰٫۰۵۵ جرم زمین کوچکترین سیاره سنگی و زمین بزرگترین سیاره سنگی منظومه شمسی هستند.
  • غول‌های گازی: سیاراتی که عمدتاً از مواد گازی تشکیل شده‌اند و دارای جرم‌های بسیار بیشتری از سیارت سنگی هستند: مشتری، کیوان، اورانوس، نپتون. مشتری با ۳۱۸ برابر جرم زمین بزرگترین سیاره منظومه شمسی است در حالیکه کیوان یک سوم مشتری و ۹۵ برابر جرم زمین، جرم دارد.
    • غول‌های یخی، شامل اورانوس و نپتون زیررده‌ای از غول‌های گازی است که وجه تمایز آن‌ها با غول‌های گازی دیگر، جرم به مراتب کمتر آن‌ها (تنها ۱۴ تا ۱۷ برابر جرم زمین)، خالی بودن اتمسفرشان از هلیم و هیدروژن و مقادیر به مراتب بیشتر سنگ و یخ در آن‌هاست.

ویژگی‌های سیاره‌ها[ویرایش]

نوع نام قطر
استوایی[h]
جرم[h] شعاع مداری (AU) تناوب مداری
(سال)[h]
انحراف مداری
سوی استوای خورشید
(°)
خروج از مرکز
مداری
دوره چرخش
(روز)
قمرهای
تاییدشده [i]
دارای حلقه اتمسفر
سنگی تیر ۰٫۳۸۲ ۰٫۰۶ ۰٫۳۱–۰٫۴۷ ۰٫۲۴ ۳٫۳۸ ۰٫۲۰۶ ۵۸٫۶۴ ۰ خیر کمینه
ناهید ۰٫۹۴۹ ۰٫۸۲ ۰٫۷۲ ۰٫۶۲ ۳٫۸۶ ۰٫۰۰۷ ۲۴۳٫۰۲- ۰ خیر CO2, N2
زمین[j] ۱٫۰۰ ۱٫۰۰ ۱٫۰۰ ۱٫۰۰ ۷٫۲۵ ۰٫۰۱۷ ۱٫۰۰ ۱ خیر N2, O2, Ar
بهرام ۰٫۵۳۲ ۰٫۱۱ ۱٫۵۲ ۱٫۸۸ ۵٫۶۵ ۰٫۰۹۳ ۱٫۰۳ ۲ خیر CO2, N2, Ar
غول مشتری ۱۱٫۲۰۹ ۳۱۷٫۸ ۵٫۲۰ ۱۱٫۸۶ ۶٫۰۹ ۰٫۰۴۸ ۰٫۴۱ ۶۷ بله H2, He
کیوان ۹٫۴۹۹ ۹۵٫۲ ۹٫۵۴ ۲۹٫۴۶ ۵٫۵۱ ۰٫۰۵۴ ۰٫۴۳ ۶۲ بله H2, He
اورانوس ۴٫۰۰۷ ۱۴٫۶ ۱۹٫۲۲ ۸۴٫۰۱ ۶٫۴۸ ۰٫۰۴۷ ۰٫۷۲- ۲۷ بله H2, He
نپتون ۳٫۸۸۳ ۱۷٫۲ ۳۰٫۰۶ ۱۶۴٫۸ ۶٫۴۳ ۰٫۰۰۹ ۰٫۶۷ ۱۴ بله H2, He

سیارات فراخورشیدی[ویرایش]

برون‌سیارات بر پایه سال اکتشاف تا فوریه ۲۰۱۴.

به سیاراتی که بیرون از منظومه شمسی قرار دارند، برون سیاره یا سیاره فراخورشیدی گفته می‌شود. نزدیک به ۱۸۰۰ نمونه از چنین سیاراتی کشف شده‌اند[۷۹][۸۰][۸۱] (تا تاریخ ۱۰ مه ۲۰۱۴ تعداد ۱۷۸۶ سیاره در ۱۱۰۶ سامانه سیاره‌ای شامل ۴۶۰ سامانه چند سیاره‌ای)[۳] در اوایل سال ۱۹۹۲، اخترشناسان، الکساندر والشتان و دیل فریل دو سیاره را در مدار تپ‌اختر پی‌اس‌آر بی۱۲۵۷+۱۲ کشف نمودند.[۸۲] این کشف تأیید شد و به‌طور عمومی به عنوان نخستین کشف رسمی سیارات فراخورشیدی محسوب می‌شود. گمان می‌رود که دو سیاره این تپ‌اختر، یا در دور دوم پیدایش سیارات، از بقایای نامعمول ابرنواختری هستند که این تپ‌اختر را به‌وجود آورده‌است ویا اینکه بقایای هسته‌های سنگی غول‌های گازی هستند که از ابرنواختر جان سالم به‌در برده و سپس به مدارهای کنونی‌شان واپاشی شده‌اند

اندازه‌های نامزدهای سیاره کپلر – برپایه ۲۷۴۰ نامزد که به دور ۲۰۳۶ ستاره می‌گردند. (ناسا).

نخستین سیاره فراخورشیدی کشف شده پیرامون یک ستاره معمولی رشته اصلی در ۶ اکتبر ۱۹۹۵ رخ داد، زمانی که دیدیه کیلوز و میشل مایر از دانشگاه ژنو کشف یک سیاره را در اطراف ۵۱ پگاسوس اعلام نمودند. از آن زمان تا مأموریت کپلر بیشتر سیارات فراخورشیدی شناخته‌شده غول‌های گازی بودند که جرمشان قابل مقایسه با مشتری یا بزرگتر بود، زیرا به آسانی آشکارسازی می‌شدند، اما کاتالوگ کپلر بیشتر شامل سیاراتی در اندازه نپتون یا کوچکتر تا اندازه‌های کوچکتر از تیر، است.

گونه‌هایی از سیارات هستند که در منظومه خورشیدی وجود ندارند: ابرزمین‌ها و مینی‌نپتون‌ها که می‌توانند مانند زمین سنگی باشند یا مانند نپتون مخلوطی از متغیرها و گازها باشند. (یکی از مرزهای ممکن جداکننده ین دو نوع سیارات، شعاع ۱٫۷۵ برابر شعاع زمین است)[۸۳] گونه‌هایی از سیارات به نام مشتری داغ وجود دارند که مدارشان بسیار نزدیک به ستاره‌شان است و ممکن است لایه‌های بیرونی آن‌ها به‌خاطر این نزدیکی تبخیر شود و سیاره فرولایه‌ای تشکیل دهند، یعنی از هسته باقی‌مانده آن‌ها سیاره‌ای زمین‌سان تشکیل شود. یکی دیگر از گونه‌های ممکن سیارات، سیاره کربنی است که در سامانه‌هایی با درصد کربن بیشتر از منظومه شمسی به وجود می‌آیند.

تا سال ۲۰۱۲، طبق تحلیل داده‌های ریزهمگرایی گرانشی، تخمین زده‌شده‌است که به ازای هر ستاره در کهکشان راه شیری، ۱٫۶ سیاره وجود دارد.[۸۴] در ۲۰ دسامبر ۲۰۱۱ تیم تلسکوپ فضایی کپلر کشف نخستین سیارات زمین‌سان فراخورشیدی با نام‌های کپلر-۲۰ای[۴] و کپلر-۲۰اف[۵] را که به دوره ستاره‌ای خورشیدسان به نام کپلر-۲۰ می‌گردند را اعلام نمود.[۶][۷][۸]

تقریباً یکی از هر پنج سیاره خورشیدسان[b] یک سیاره زمین‌سان[c] در منطقه قابل سکونت[d] خود دارند، نزدیک‌ترین آن‌ها در حدود ۱۲ سال نوری از زمین فاصله دارد.[۸۵][۸۶] فراوانی رخداد این سیاره‌های سنگی یکی از متغیرها در معادله دریک است که تعداد تمدنهای هوشمند قادر به ارتباط در کهکشان راه شیری را تخمین می‌زند.[۸۷]

برون‌سیاره‌های (سیاره‌های فراخورشیدی) وجود دارند که از هر سیاره‌ای در منظومه شمسی به ستاره مربوط به خود نزدیک‌تر یا از آن دورتر هستند، تیر نزدیک‌ترین سیاره به خورشید است که در حدود ۰٫۴ واحد نجومی (AU) از خورشید فاصله دارد و مدارش را طی ۸۸ روز به‌طور کامل می‌پیماید، اما کوتاهترین مدارهای شناخته شده برای برون‌سیاره‌ها مانند کپلر-۷۰بی، پیمودنشان تنها چند ساعت طول می‌کشد. ۵ تا از سیاره‌های منظومه کپلر-۱۱، مدارهایی کوتاهتر از تیر دارند. نپتون ۳۰ واحد نجومی با خورشید فاصله دارد و پیمودن مدارش ۱۶۵ سال به طول می‌انجامد، اما برون‌سیاره‌هایی هستند که چند صد واحد نجومی با ستاره خود فاصله دارند و پیمودن کامل مدارشان بیش از ۱۰۰۰ سال طول می‌کشد، مانند ۱آرایکس‌اس جی۱۶۰۹۲۹٫۱−۲۱۰۵۲۴.

چند تلسکوپ فضایی مورد انتظار بعدی برای مطالعه سیارات برون خورشیدی عبارتند از: گایا (به انگلیسی: Gaia) که در دسامبر ۲۰۱۳ پرتاب شد، چئوپس (به انگلیسی: CHEOPS) در ۲۰۱۷، تس (به انگلیسی: TESS) در ۲۰۱۷ و تلسکوپ فضایی جیمز وب در ۲۰۱۸.

اجسام سیاره-جرم[ویرایش]

جسم سیاره-جرم (به انگلیسی: Planetary-mass object) (اختصاری PMO) یا جسم سیاره‌ای یا سیاره‌نما، شیئی آسمانی است که جرم آن در محدوده تعریف‌شده برای سیاره قرار می‌گیرد، جرم ان در حدی بزرگ هست که تعادل هیدرواستاتیکی برسد (بر اثر گرانش خود گرد شود) اما به اندازه‌ای نیست که مانند یک ستاره بتواند از طریق همجوشی تولید انرژی کند.[۸۸] طبق تعریف تمام سیارات جسم سیاره-جرم هستند، اما این واژه بیشتر به اجسامی اشاره دارد که ویژگی‌های معمول مورد انتظار در مورد یک سیاره را ندارند. این اجسام شامل سیاره‌های کوتوله، قمرهای بزرگتر، سیاره‌نماهای غوطه‌ور آزاد، که یا از منظومه‌ای به بیرون پرتاب شده یا اینکه به جای برافزایش، از طریق فروریزی ابر به وجود آمده‌اند. (گاهی به آن‌ها کوتوله قهوه‌ای گفته می‌شود)

سیاره‌های سرگردان[ویرایش]

چندین شبیه‌سازی‌های رایانه‌ای از شکل‌گیری و تکامل ستارگان و سیارات چنین پیشنهاد می‌کنند که برخی از اجسام سیاره‌جرم ممکن است به فضای میان‌ستاره‌ای پرتاب شوند.[۸۹] برخی از دانشمندان معتقدند که چنین اجسامی را باید سیاره دانست در حالیکه برخی دیگر بر این باورند که باید این اجسام را کوتوله قهوه‌ای کم‌جرم نامید.[۹۰][۹۱]

کوتوله‌های نیمه‌قهوه‌ای[ویرایش]

ستارگان در نتیجه رمبش گرانشی ابرهای گاز پدید می‌آیند، اما اجسام کوچکتری نیز ممکن است بر اثر رمبش ابر به وجود آید. گاهی اجسام سیاره‌جرمی را که از این روش به‌وجود می‌آیند کوتوله نیمه‌قهوه‌ای می‌نامند. کوتوله نیمه‌قهوه‌ای ممکن است مانند چا ۱۱۰۹۱۳-۷۷۳۴۴۴ در غوطه‌وری آزاد باشد یا مانند ۲مس جی۰۴۴۱۴۴۸۹+۲۳۰۱۵۱۳ در مدار جسم بزرگتری باشند.

برای مدت کوتاهی در ۲۰۰۶، اخترشناسان گمان می‌کردند که یک منظومه دوتایی از این اجسام به نام اُف ۱۶۲۲۲۵–۲۴۰۵۱۵ را یافته‌اند اما تحلیل‌های جدیدتر نشان داده که جرم این اجسام بیشتر از ۱۳ برابر جرم مشتری است و در نتیجه یک جفت کوتوله قهوه‌ای هستند.[۹۲][۹۳][۹۴]

ستارگان پیشین[ویرایش]

در منظومه‌های ستارگان دوتایی نزدیک به هم، یکی از ستارگان ممکن است جرم خود را به ستاره بزرگتر بدهد و از جرم آن کاسته شود تا به حد اجسام سیاره‌جرم برسد. نمونه‌ای از این اجسام به دور تپ‌اختر پی‌اس‌آر جی۱۷۱۹-۱۴۳۸ می‌گردد.[۹۵]

سیاره‌های قمری و سیاره‌های کمربندی[ویرایش]

برخی از قمرهای بزرگ هم‌اندازه یا حتی بزرگ‌تر از تیر هستند. به عنوان نمونه می‌توان به قمرهای گالیله‌ای مشتری و قمر تیتان اشاره نمود. آلن استرن بر این نظر است که مکان نباید اهمیت داشته‌باشد و تنها ویژگی‌های ژئوفیزیکی باید در تعریف سیاره مهم باشند. او واژه سیاره قمری را برای اقمار با جرم در حد سیاره، پیشنهاد می‌کند. همچنین بنا بر نظر وی سیاره‌های کوتوله موجود در کمربند کویپر و کمربند سیارکی نیز می‌بایست سیاره محسوب گرددند.[۹۶]

ویژگی‌ها[ویرایش]

اگرچه هر سیاره‌ای ویژگی‌های فیزیکی منحصر به فردی دارد اما شماری از مشترکات گسترده نیز در بین آن‌ها وجود دارد. برخی از این ویژگی‌ها مانند حلقه‌های سیاره‌ای یا قمرهای طبیعی، تاکنون تنها در میان سیارات منظومه شمسی مشاهده شده‌است در حالی‌که سایر ویژگی‌ها به‌طور عمومی در سیارات فراخورشیدی نیز مشاهده می‌شوند.

ویژگی‌های پویا[ویرایش]

مدار[ویرایش]

مدار نپتون در مقایسه با مدار پلوتون. به کشیدگی مدار پلوتون نسبت به نپتون(خروج از مرکز)، و همچنین زاویه زیاد آن با صفحه دائرةالبروج (انحراف) توجه کنید.

طبق تعاریف کنونی همه سیارات باید به دور ستارگان بگردند؛ بنابراین سیارات سرگردان را شامل نمی‌شوند. در منظومه شمسی تمام سیارات به دور خورشید در همان جهت چرخش خود خورشید (اگر از بالای قطب شمال خورشید نگاه کنیم جهت پادساعت‌گرد خواهد بود) می‌گردند. حداقل یک سیاره فراخورشیدی شناخته‌شده به نام وسپ-۱۷بی در جهت عکس چرخش ستاره خود به دور آن می‌گردد.[۹۷] دوره یک‌بار گردش سیاره در مدارش را تناوب مداری یا سال آن سیاره نام دارد.[۹۸] سال یک سیاره به فاصله آن از ستاره‌اش بستگی دارد، هرچه سیاره از ستاره‌اش دورتر باشد، هم مدارش بزرگتر می‌شود و فاصله بیشتری می‌پیماید و هم اینکه به دلیل کمتر شدن اثر گرانش، سرعت آن نیز کاهش می‌یابد. از آنجا که مدار هیچ سیاره‌ای دایره کامل نیست، فاصله سیاره با ستاره‌اش در طول سال سیاره متغیر است. نزدیکترین نقطه مدار سیاره به ستاره‌اش حضیض (در منظومه شمسی، حضیض خورشیدی) و دورترین فاصله سیاره از ستاره‌اش اوج (در منظومه شمسی، اوج خورشیدی) نامیده می‌شود. چنان‌که سیاره به به حضیض خود نزدیک می‌شود، سرعت آن افزایش می‌یابد زیرا انرژی پتانسیل گرانشی به جنبشی تبدیل می‌شود، همان‌طور که یک جسم در سقوط آزاد با نزدیک شدن به زمین سرعتش افزایش می‌یابد. وقتی که سیاره به اوج خود نزدیک می‌شود سرعت آن کاهش می‌یابد، دقیقاً به همان دلیل که جسمی که به بالا پرتاب می‌شود سرعتش با نزدیک شدن به نقطه اوج مسیرش کاهش می‌یابد.[۹۹]

مدار هر سیاره‌ای را با شماری از عناصر مشخص می‌شود:

  • خروج از مرکز مداری مشخص‌کننده این است که مدار سیاره چقدر کشیده‌شده‌است. سیارات با خروج از مرکز مداری کوچکتر مدار گردتری دارند و سیارات با خروج از مرکز مداری بیشتر، شکل بیضی‌تری دارند. سیارات منظومه شمسی، خروج از مرکز مداری کمی دارند و به همین دلیل تقریباً گرد هستند.[۹۸] دنباله‌دارها و اجسام کمربند کویپر و همچنین چندین سیاره فراخورشیدی، خروج از مرکز مداری بالا و در نتیجه مدارهای بسیار بیضوی دارند.[۹۸][۱۰۰][۱۰۱]
  • تصویر نیم‌قطر بزرگ
    نیم‌قطر بزرگ عبارت است از فاصله سیاره با مرکز طولانی‌ترین قطر مدار بیضوی‌اش (شکل را ببینید). این نقطه با نقطه اوج یکی نیست زیرا ستاره هیچ سیاره‌ای دقیقاً در مرکز مدارش قرار نمی‌گیرد.[۹۸]
  • انحراف مداری به ما می‌گوید که مدار سیاره به چه میزان بالا یا پایین یک صفحه مرجع مشخص قرار می‌گیرد. در منظومه شمسی، صفحه مرجع صفحه مدار زمین است که دائرةالبروج خوانده می‌شود. برای سیارات فراخورشیدی، این صفحه که به نام صفحه آسمان شناخته می‌شود صفحه خط دید ناظر روی زمین است.[۱۰۲]

هشت سیاره منظومه شمسی همگی مدارشان در صفحه‌ای بسیار نزدیک به دائرةالبروج قرار می‌گیرد. دنبال دارها و اجسام روی کمربند کویپر مانند پلوتون زاویه بسیار بیشتری باآن دارند.[۱۰۳] نقاطی را که در آن سیاره صفحه مرجع را قطع می‌کند، گره‌های مداری صعودی و نزولی می‌نامند. طول گره صعودی زاویه میان نقطه با طول جغرافیای صفر روی صفحه مرجع و نقطه گره صعودی مدار سیاره است. شناسه حضیض، زاویه بین گره صعودی مدار یک سیاره و نزدیک‌ترین نقطه آن به ستاره است.[۹۸]

انحراف محوری[ویرایش]

انحراف محوری زمین در حدود °۲۳ است.

سیارات همچنین درجات مختلفی از انحراف محوری دارند؛ یعنی نسبت به صفحه مرجع استوای ستاره خود، زاویه دارند. این موضوع سبب می‌شود که میزان نور دریافت شده توسط هر نیمکره در طول سال سیاره تغییر کند. وقتی که نیمکره شمالی به بیرون متمایل است، نیمکره جنوبی به درون متمایل است و بالعکس. از این رو هر سیاره‌ای دارای پدیده فصل خواهد بود؛ یعنی تغییرات آب‌وهوا در طول سال سیاره. زمان‌هایی را که که در آن هر نیمکره‌ای بیشترین و کمترین فاصله را با ستاره دارد، انقلابین می‌گویند. هر سیاره‌ای دو تا از این نقاط در مدار خود دارد؛ وقتی یک نیمکره در انقلاب تابستانی خود است و روزهایش طولانی‌ترند، نیمکره دیگر در انقلاب زمستانی خود است و روزهایش کوتاه‌ترند. مقادیر متغیر نور و گرمای دریافت شده توسط هر نیمکره در طول سال تغییرات سالانه‌ای در الگوهای آب و هوایی برای هر نیمکره ایجاد می‌کند. انحراف محوری مشتری بسیار اندک است و در نتیجه تغییرات فصلی آن کم است؛ از سوی دیگر، انحراف محوری اورانوس آنقدر زیاد است که تقریباً به یک طرف خوابیده‌است. این بدان معنی‌است که هر نیمکره آن در حول و حوش انقلابینش، یا کاملاً در نور است یا کاملاً در تاریکی.[۱۰۴] در میان سیارات فراخورشیدی مقادیر انحراف محوری با قطعیت دانسته شده نیست اگرچه گمان می‌رود که میزان انحراف محوری مشتری‌های داغ به دلیل نزدیکی‌شان به ستاره، ناچیز یا صفر است.[۱۰۵]

چرخش[ویرایش]

سیارات به دور محورهای نامرئی که از مرکزشان می‌گذرد می‌چرخند. دوره چرخش یک سیاره، روز نام دارد. بیشتر سیارات در منظومه شمسی در همان جهتی که به دور خورشید می‌گردند، به دور خویش می‌چرخند، که اگر از بالای قطب شمال خورشید بنگریم این چرخش پادساعت‌گرد خواهد بود. ناهید[۱۰۶] و اورانوس[۱۰۷] استثناهایی هستند که در جهت ساعت‌گرد می‌چرخند، هرچند که انحراف محوری بسیار زیاد اورانوس سبب تفاوت نظر در تعیین قطب شمال و جنوب آن و اینکه آیا چرخش آن ساعت‌گرد یا پادساعت‌گرد است وجود دارد،[۱۰۸] هر چند جدای از اینکه کدام قطب شمال باشد، اورانوس نسبت به مدارش، حرکت چرخشی بازگشتی دارد.

چرخش سیاره ممکن است بر اثر عوامل مختلفی در حین شکل‌گیری به‌وجود آمده باشد. از برآیند تکانه‌های زاویه‌ای تکه‌های ماده برافزوده‌شده ممکن است تکانه زاویه‌ای خالصی در کل سیاره به وجود آید. برافزایش گاز توسط غول‌های گازی نیز می‌تواند عاملی برای تکانه زاویه‌ای باشد و سرانجام در مراحل پایانی پیدایش سیاره، یک فرایند تصادفی برافزایش پیش‌سیاره‌ای می‌تواند باعث تغییر تصادفی محور چرخش سیاره شود.[۱۰۹] طول روز در سیاره‌های مختلف بسیار متفاوت است. چرخش ناهید ۲۴۳ روز طول می‌کشد و غول‌های گازی تنها چند ساعت.[۱۱۰] دوره چرخش سیارات فراخورشیدی دانسته نیست. هرچند که نزدیکی مشتری‌های داغ به ستاره‌شان بدین معنی است که این سیارات در قفل جزر و مدی (به انگلیسی: tidal lock) هستند (مدارهایشان با چرخششان هماهنگ است) و این یعنی اینکه آن‌ها همواره یک سمتشان به سمت ستاره‌شان است، یعنی یک سمتشان همیشه روز و سمت دیگر همیشه شب است.[۱۱۱]

پاکسازی مدار[ویرایش]

ویژگی پویای تعریف‌کننده سیاره این است که باید همسایگی‌اش را پاکسازی کرده‌باشد. سیاره‌ای که همسایگی‌اش را پاکسازی کرده‌باشد آنقدر جرم انباشته که همه سیارات خرد در مدارش را جمع‌آوری یا جارو کند. در واقع، سیاره به تنهایی به دور ستاره می‌گردد و مدارش را با مجموعه‌ای از اشیا هم‌اندازه خودش به اشتراک نمی‌گذارد. این ویژگی در تعریف سال ۲۰۰۶ اتحادیه بین‌المللی اخترشناسی(IAU) از سیاره، الزامی شد. افزودن این معیار سبب می‌شود که اجسامی همچون پلوتون، اریس و سرس سیاره کامل محسوب نشوند و در رده سیاره‌های کوتوله طبقه‌بندی شوند.[۱] اگرچه تا امروز عملاً این معیار تنها در مورد سیارات منظومه شمسی بکار رفته‌است و شماری از منظومه‌های فراخورشیدی جوان پیدا شده‌اند که شواهد حاکی است که پاکسازی مداری در قرص‌های پیرا ستاره‌ای(Circumstellar Disks) صورت می‌گیرد.

ویژگی‌های فیزیکی[ویرایش]

جرم[ویرایش]

ویژگی فیزیکی تعریف‌کننده یک سیاره این است که باید آنقدر جرم داشته باشد که نیروی گرانش‌اش به اندازه‌ای قوی باشد که بر نیروهای الکترومغناطیسی که ساختار فیزیکی‌اش را پیوند می‌دهند غلبه کرده و به حالت تعادل هیدرواستاتیکی برسد. این در عمل بدین معنی است که تمام سیارات کروی یا کروی‌مانند هستند. تا حد خاصی از جرم، یک جسم ممکن است که شکلی بی‌قاعده داشته باشد اما در جرم‌های فراتر از این حد که به ساختار شیمیایی جسم بستگی دارد، گرانش جسم را به سمت مرکز جرم خود می‌کشد تا جسم در نهایت به کره‌ای فروریزد.[۱۱۲]

ویژگی اصلی جداکننده ستاره‌ها و سیارات نیز جرم است. حد بالای جرم برای سیاره بودن، برای اجسامی با فراوانی ایزوتوپی شبیه خورشید، تقریباً ۱۳ برابر جرم مشتری است. فراتر از آن جسم شرایط مناسب برای همجوشی هسته‌ای را پیدا می‌کند. به جز خورشید، جسم دیگری با چنین جرمی در منظومه شمسی وجود ندارد، اما سیارات فراخورشیدی با این اندازه وجود دارند. حد جرمی ۱۳ برابر مشتری مورد توافق جهانی قرار نگرفته و دانشنامه سیاره‌های فراخورشیدی اجسامی با جرم‌های تا ۲۰ برابر مشتری معرفی می‌کند،[۱۱۳] و مرورگر داده‌های برون سیاره‌ها شامل اجسامی با ۲۴ برابر جرم مشتری است.[۱۱۴]

کوچکترین سیاره شناخته‌شده پی‌اس‌آر بی۱۲۵۷+۱۲ای است که یکی از نخستین سیارات فراخورشیدی کشف‌شده در سال ۱۹۹۲ در مدار یک تپ‌اختر بود. جرم آن تقریباً نصف جرم سیاره تیر است.[۳] کوچکترین سیاره‌ای که به دور یک ستاره معمولی رشته اصلی به غیر از خورشید می‌گردد کپلر-۳۷بی که جرم (و شعاع) آن اندکی از ماه بیشتر است.

ناهمگنی درونی[ویرایش]

تصویر درون مشتری، با یک هسته سنگی که توسط لایه ضخیمی از هیدروژن فلزی پوشیده شده‌است.

هر سیاره‌ای در هنگام پیدایش در حال شاره است؛ در آغاز شکل‌گیری مواد چگالتر و سنگینتر به مرکز سیاره فرورفته و مواد سبک‌تر را نزدیک به سطح سیاره رها می‌کنند؛ بنابراین هر سیاره‌ای ساختار داخلی ناهمگنی متشکل از یک هسته سیاره‌ای چگال که با گوشته‌ای (جبه) پوشیده‌شده که یا شاره است یا شاره بوده‌است. سیارات سنگی در پوسته‌های سختی پوشیده شده‌اند،[۱۱۵] اما در غول‌های گازی، گوشته به سادگی در لایه‌های ابر بالایی حل می‌شود. سیارات سنگی هسته‌هایی از عناصری مانند آهن و نیکل، و گوشته‌هایی متشکل از سیلیکات‌ها دارند. این باور وجود دارد که مشتری و کیوان هسته‌های سنگی و فلزی دارند که در گوشته‌هایی از هیدروژن فلزی پیچیده شده‌اند.[۱۱۶] اورانوس و نپتون که کوچکتر هستند هسته‌های سنگی پوشیده از گوشته‌های آب، آمونیاک، متان و سایر یخ‌ها دارند.[۱۱۷] کنش شاره در درون هسته این سیارات یک ژئودینامو ایجاد می‌کند که باعث تولید یک میدان مغناطیسی می‌شود.[۱۱۵]

اتمسفر[ویرایش]

اتمسفر زمین

تمام سیارات منظومه شمسی به غیر از تیر[۱۱۸] اتمسفر دارند زیرا گرانش آن‌ها به اندازه کافی قوی هست که گازها را نزدیک سطح خود نگه دارد. غول‌های گازی به اندازه‌ای پر جرم هستند که بتوانند مقادیر عظیمی از گازهای سبک هیدروژن و هلیم را نزدیک خود نگه دارند، در حالی‌که سیارات کوچکتر این گازها را از دست می‌دهند.[۱۱۹] ترکیب اتمسفر زمین از سیارات دیگر متفاوت است، زیرا فرایندهای مختلف حیات که بر روی زمین جاری است باعث پیدایش اکسیژن مولکولی می‌شود.[۱۲۰]

اتمسفر سیارات تحت تأثیر تغییرات تابش خورشیدی یا انرژی درونی قرار می‌گیرند که منجر به شکل‌گیری منطقه‌های کم‌فشار پویا مانند توفندها (روی زمین)، طوفان‌های شن تمام سیاره‌ای (روی بهرام)، یک طوفان واچرخندی به وسعت کل زمین روی مشتری (به نام لکه سرخ بزرگ) و سوراخهایی در اتمسفر (روی نپتون) می‌گردد.[۱۰۴] حداقل یک سیاره فراخورشیدی اچ‌دی ۱۸۹۷۳۳ بی وجود دارد که ادعا می‌شود سامانه آب‌وهوایی شبیه به لکه سرخ قرمز با وسعت دوبرابر آن را داراست.[۱۲۱]

مشتری‌های داغ به دلیلی نزدیکی بیش از حد به ستاره‌های میزبانشان اتمسفر خود را مانند دم دنباله‌دارها بر اثر تابش ستاره‌ای از دست می‌دهند.[۱۲۲][۱۲۳] در این دسته از سیارات ممکن است آنقدر اختلاف دما بین سمت روز و سمت شب خود داشته باشند که بادهای سوپرسونیک ایجاد کنند،[۱۲۴] اما اختلاف دمای سمت روز و شب اچ‌دی ۱۸۹۷۳۳ بی، کم است و نشان می‌دهد که اتمسفر به روش مؤثری انرژی را در سیاره توزیع مجدد می‌نماید.[۱۲۱]

مگنتوسفر[ویرایش]

شماتیکی از مگنتوسفر زمین

یکی از ویژگی‌های بسیار پراهمیت سیاره‌ها گشتاورهای مغناطیسی ذاتی آنهاست که باعث پیدایش مگنتوسفر می‌شود. وجود یک میدان مغناطیسی نشان‌دهنده آن است که سیاره هنوز از نظر ژئولوژیکی زنده است. به عبارت دیگر، سیارات مغناطیسی جریانی از مواد رسانای الکتریکی در درون خود دارند که میدان مغناطیسی آن‌ها را به وجود می‌آورد. این میدان‌ها تأثیر زیادی روی برهم‌کنش میان سیاره و بادهای خورشیدی می‌گذارند. یک سیاره مغناطیسی حفره‌ای در باد خورشیدی در اطراف خود ایجاد می‌کند که مگنتوسفر نامیده می‌شود و باد خورشیدی نمی‌تواند به آن نفوذ کند. مگنتوسفر ممکن است از خود سیاره بسیار بزرگتر باشد. در مقابل، سیارات غیرمغناطیسی تنها مگنتوسفرهای کوچکی دارند که از برهم‌کنش یونوسفر با باد خورشیدی القا می‌شود و نمی‌تواند عملاً سیاره را محافظت کند.[۱۲۵]

از هشت سیاره منظومه شمسی تنها ناهید و بهرام میدان مغناطیسی ندارند.[۱۲۵] علاوه بر این ماه مشتری، گانمید نیز دارای میدان مغناطیسی است. از میان سیارات مغناطیسی میدان مغناطیسی تیر از همه کوچکتر است و به زحمت قادر به دفع بادهای خورشیدی خواهد بود. میدان مغناطیسی گانمید چندین برابر بزرگ‌تر است و مشتری قوی‌ترین میدان مغناطیسی را در منظومه شمسی دارد (به حدی قوی است که جان فضانوردان آتی که به مأموریت‌های انسانی روی قمرهایش می‌روند را به خطر می‌اندازد). قدرت مغناطیسی سایر غول‌های گازی کم و بیش مانند زمین است، اما گشتاورهای مغناطیسی آن‌ها کاملاً بزرگ‌تر است. میدان‌های مغناطیسی اورانوس و نپتون اندکی از محور چرخش آن‌ها منحرف شده و از مرکز آن‌ها خارج شده‌است.[۱۲۵]

در سال ۲۰۰۴، تیمی از اخترشناسان در هاوایی یک سیاره فراخورشیدی در اطراف اچ‌دی ۱۷۹۹۴۹ مشاهده نمودند که به نظر می‌رسید لکهٔ روی سطح ستاره‌اش ایجاد نموده‌است. تیم این فرضیه را مطرح نمود که مگنتوسفر سیاره انرژی را به سطح ستاره منتقل می‌نمود و دمای داغ ۷۷۶۰ درجه‌ای آن را ۴۰۰ درجه افزایش داده‌است.[۱۲۶]

ویژگی‌های ثانویه[ویرایش]

چندین سیاره و سیاره کوتوله در منظومه شمسی (مانند نپتون و پلوتون) تناوب‌های مداری‌شان در رزونانس با یکدیگر یا با اجسام کوچکتر هستند. همه به جز تیر و ناهید قمرهای طبیعی دارند. زمین یکی دارد، بهرام دو قمر دارد و غول‌های گازی چندین قمر دارند. بسیاری از قمرهای غول‌های گازی ویژگی‌هایی شبیه به سیاره‌های سنگی و سیارات کوتوله دارند و برخی از آن‌ها برای امکان حیات احتمالی (بویژه اروپا) مورد مطالعه قرار گرفته‌اند.[۱۲۷][۱۲۸][۱۲۹]

چهار غول گازی همچنین چهار حلقه سیاره‌ای با اندازه و پیچیدگی‌های مختلف به دورشان می‌گردد، این حلقه‌ها بیشتر از غبار و مواد ذره‌ای تشکیل شده‌اند اما ممکن است حاوی ماهکهای ریزی باشند که گرانششان ساختار آن‌ها را شکل می‌دهد و نگاه می‌دارد. اگرچه منشأ حلقه‌های سیاره‌ای به درستی شناخته‌شده نیست اما گمان می‌رود که نتیجه قمرهای طبیعی باشند که زیر حد روش (Roche Limit) سیاره‌شان قرار می‌گیرند و توسط نیروی کشندی از هم گسیخته می‌شوند.[۱۳۰][۱۳۱]

هیچ ویژگی ثانویه‌ای در مورد سیارات فراخورشیدی مشاهده نشده‌است. هرچند که کوتوله نیمه‌قهوه‌ای چا ۱۱۰۹۱۳-۷۷۳۴۴۴ که به عنوان سیاره سرگردان توصیف شده‌است، به نظر می‌رسد که در یک قرص پیش سیاره‌ای به دور آن می‌گردد.[۹۰]

جستارهای وابسته[ویرایش]

پیوند به بیرون[ویرایش]

یادداشت‌ها[ویرایش]

  1. این تعریف سیاره برگرفته از دو اعلامیه مجزای اتحادیه بین‌المللی اخترشناسی(IAU) است؛ یک تعریف رسمی که در سال ۲۰۰۶ در IAU به توافق رسید، و یک تعریف غیررسمی در حال تکمیل در سال ۲۰۰۳–۲۰۰۱ که برای اجسام آسمانی خارج از منظومه شمسی ارائه شد. تعریف رسمی ارائه شده در سال ۲۰۰۶ تنها در مورد اجسام واقع در منظومه شمسی است، در حالی که تعریف ۲۰۰۳ سیارات پیرامون ستارگان دیگر را نیز شامل می‌گردد. مسئله ستارگان خارج منظومه‌ای پیچیده‌تر از آن به نظر می‌رسید که در کنفرانس IAU ۲۰۰۶ قابل حل باشد.
  2. ۲٫۰ ۲٫۱ در این آمار یک از پنج، منظور از «خورشیدسان» ستاره نوع جی رشته اصلی می‌باشد. داده‌های مربوط به ستاره‌های نوع جی در دسترس نبود و از این رو این آمار از برون‌یابی داده‌های مربوط به ستارگان نوع کی رشته اصلی به دست امده‌است.
  3. ۳٫۰ ۳٫۱ در این آمار یک از پنج، «زمین‌سان» به معنی ۱–۲ برابر شعاع زمین است.
  4. ۴٫۰ ۴٫۱ در این آمار یک از پنج، "ناحیه قابل سکونت" یعنی منطقه‌ای با ۰٫۲۵ تا ۴ برابر گردش ستاره‌ای زمین (معادل ۰٫۵–۲ واحد نجومی برای زمین).
  5. کریستین هویگنس در کتاب سیستما ساتورنیوم خود با نام «پلانتس نوووس» (سیاره نو) یاد می‌کند.
  6. هر دو توسط کاسینی در کتاب Découverte de deux nouvelles planetes autour de Saturne با عنوان nouvelles planètes (سیارات نو) نام برده شده‌اند[۶۰]
  7. ۷٫۰ ۷٫۱ هر دو زمانی توسط کاسینی در <79:AEOTJD>2.0.CO;2-J An Extract of the Journal Des Scavans... به عنوان سیاره قلمداد می‌شوند. با وجود اینکه استفاده از واژه «قمر» قبل از آن آغاز شده بود، تا چنین اجسامی را از اجسامی که به دور آن‌ها می‌گردند ("سیاره‌های اولیه") متمایز سازد.
  8. ۸٫۰ ۸٫۱ ۸٫۲ مقادیر، نسبت به زمین محاسبه شده‌اند.
  9. مشتری دارای بیشترین تعداد قمرهای تأیید شده(۶۷) در میان سیارات منظومه شمسی می‌باشد.[۷۸]
  10. برای دیدن مقادیر مطلق نوشتار زمین را ببینید.

منابع[ویرایش]

  1. ۱٫۰ ۱٫۱ "IAU 2006 General Assembly: Result of the IAU Resolution votes" [همایش عمومی اتحادیه بین‌المللی اخترشناسی ۲۰۰۶: نتایج آرای تصمیم‌گیری]. اتحادیه بین‌المللی اخترشناسی. 2006. Retrieved ۳۰/۱۲/۲۰۰۹. Check date values in: |بازبینی= (help)
  2. ۲٫۰ ۲٫۱ "Working Group on Extrasolar Planets (WGESP) of the International Astronomical Union" [گروه کاری سیاره‌های فرامنظومه‌ای اتحادیه بین‌المللی اخترشناسی]. اتحادیه بین‌المللی اخترشناسی. 2001. Retrieved ۲۳/۰۸/۲۰۰۸. Check date values in: |بازبینی= (help)
  3. ۳٫۰ ۳٫۱ ۳٫۲ اشنایدر, جین (16 ژانویه 2013). "Interactive Extra-solar Planets Catalog" [کاتالوگ سیارات برون خورشیدی]. دانشنامه سیارات فراخورشیدی. Retrieved ۱۵/۱/۲۰۱۳. Check date values in: |بازبینی= (help)
  4. ۴٫۰ ۴٫۱ کارکنان ناسا (20 دسامبر 2011). "Kepler: A Search For Habitable Planets – Kepler-20e" [کپلر: جستجویی برای یافتن سیارات قابل سکونت - کپلر-۲۰ای]. Template:Spaceflight. Retrieved ۲۳/۱۲/۲۰۱۱. Check date values in: |بازبینی= (help)
  5. ۵٫۰ ۵٫۱ کارکنان ناسا (20 دسامبر 2011). "Kepler: A Search For Habitable Planets – Kepler-20f" [کپلر: جستجویی برای یافتن سیارات قابل سکونت - کپلر-۲۰اف]. Template:Spaceflight. Retrieved ۲۳/۱۲/۲۰۱۱. Check date values in: |بازبینی= (help)
  6. ۶٫۰ ۶٫۱ جانسون، میشل (۲۰ دسامبر ۲۰۱۱). «NASA Discovers First Earth-size Planets Beyond Our Solar System» [ناسا نخستین سیاره زمین‌سان فراتر از منظومه شمسی را کشف نمود.]. Template:Spaceflight. دریافت‌شده در ۲۰/۱۲/۲۰۱۱. تاریخ وارد شده در |بازبینی= را بررسی کنید (کمک)
  7. ۷٫۰ ۷٫۱ هند, اریک (20 December 2011). "Kepler discovers first Earth-sized exoplanets" [کپلر نخستین سیاره فراخورشیدی هم‌اندازه زمین راکشف نمود.]. Nature (journal). doi:10.1038/nature.2011.9688.
  8. ۸٫۰ ۸٫۱ Overbye, Dennis (20 دسامبر 2011). "Two Earth-Size Planets Are Discovered" [دو سیاره هم‌اندازه زمین کشف شدند.]. New York Times. Retrieved ۲۱/۱۲/۲۰۱۱. Check date values in: |بازبینی= (help)
  9. Cassan, Arnaud; D. Kubas, J. -P. Beaulieu, M. Dominik, K. Horne, J. Greenhill, J. Wambsganss, J. Menzies, A. Williams, U. G. Jørgensen, A. Udalski, D. P. Bennett, M. D. Albrow, V. Batista, S. Brillant, J. A. R. Caldwell, A. Cole, Ch. Coutures, K. H. Cook, S. Dieters, D. Dominis Prester, J. Donatowicz, P. Fouqué, K. Hill, N. Kains; et al. (12 January 2012). "One or more bound planets per Milky Way star from microlensing observations" [یک یا چند سیاره به ازای هر ستاره کهکشان راه شیری از مشاهدات ریزهمگرایی گرانشی]. Nature (journal). ۴۸۱ (۷۳۸۰): ۱۶۷–۱۶۹. arXiv:1202.0903. Bibcode:2012Natur.481..167C. doi:10.1038/nature10684. PMID 22237108. Retrieved 11 January 2012.
  10. تبریزی، محمد حسین بن خلف (۱۳۴۲) [۱۰۶۲]. برهان قاطع. ۴. به کوشش دکتر محمد معین. (ویراست دوم). تهران: کتاب‌فروشی ابن سینا. هرپاسب - هر یک از سیارات را گویند که آن زحل و مشتری و مریخ و آفتاب و ناهید و عطارد و ماه باشد. از پارامتر ناشناخته |ماه= صرف‌نظر شد (کمک)
  11. رجبی، پرویز (۱۳۸۰). هزاره‌های گمشده. ۱ (ویراست نخست). تهران: نشر توس. صص. ۴۳۹–۴۵۰. هنگامی که سیارات در ادب پهلوی اَباختران خوانده می‌شوند، پیداست که این اصطلاح در دانشی کهن و نجومی کاربرد داشته و فقط مخلوق ذهن نویسندهٔ بُندهش نیست: سیاره را از این روی اَباختر می‌گویند که اختر نیست. ستیز اباختران با اختران (ثوابت) و افسانه‌های در پیوند با اینان در ادبیات ایران باستان حامل نخستین برخوردها و برداشت‌های ایرانیان باستان با دنیای ستارگان است … در ادب پهلوی ستارگان به دو دستهٔ هرمزدی و اهریمنی تقسیم می‌شوند. اختران یا ثوابت به خاطر سکون و آرامششان هرمزدیاند و اباختران یا سیارات، به سبب هرزگی و ناآرامی شان در فضا، اهریمنی. ماه و خورشید و ستارگان تا پدیدار شدن اهریمن ثابت و بی حرکت بودند و روزگار به پاکی می‌گذشت و همه جا نیمروز بود، امّا با آمدن اهریمن[برخی] به حرکت درآمدند و تا فرجام ازحرکت بازنایستند. ایرانیان نیز مانند یونانیان به وجود هفت اباختر قائل بودند: هرمزد (مشتری)، کیوان (زحل)، بهرام (مریخ)، ناهید یا آناهیتا (زهره)، تیر (عُطارِد)، ماه سیاه یا ماه اباختری وخورشید سیاه یا مهر اباختری
  12. πλανήτης، اچ.جی. لیندل و آر. اسکات، یک Lexicon یونانی-انگلیسی، ویرایش نهم، (آکسفورد: انتشارات کلارندون، ۱۹۴۰).
  13. "Definition of planet" [تعریف planet]. مریام-وبستر آنلاین. Retrieved ۲۳/۰۷/۲۰۰۷. Check date values in: |بازبینی= (help)
  14. ۱۴٫۰ ۱۴٫۱ «واژه planet, n». واژه‌نامه انگلیسی آکسفورد. ۲۰۰۷. دریافت‌شده در ۰۷/۰۲/۲۰۰۸. تاریخ وارد شده در |بازبینی= را بررسی کنید (کمک) توجه: لطفاً برگه «ethymology» را انتخاب کنید.
  15. نوگ‌بائر, اوتو ای. (1945). "The History of Ancient Astronomy Problems and Methods" [تاریخچه مسائل و روش‌های اخترشناسی باستانی]. ژورنال مطالعات شرق نزدیک. ۴ (۱): ۱–۳۸. doi:10.1086/370729.
  16. رونان, کالین. "اخترشناسی پیش از تلسکوپ". Astronomy in China, Korea and Japan [اخترشناسی در چین، کره و ژاپن] (واکر ed.). pp. ۲۶۴–۲۶۵.
  17. کوهن, توماس اس. (1957). The Copernican Revolution [انقلاب کوپرنیکی]. انتشارات دانشگاه هاروارد. pp. ۵–۲۰. ISBN 0-674-17103-9.
  18. ۱۸٫۰ ۱۸٫۱ ۱۸٫۲ ۱۸٫۳ اوانس، جیمز (۱۹۹۸). The History and Practice of Ancient Astronomy [تاریخچه و تجربه اخترشناسی باستانی]. Oxford University Press. صص. ۷–۲۹۶. شابک ۹۷۸-۰-۱۹-۵۰۹۵۳۹-۵. دریافت‌شده در ۰۴/۰۲/۲۰۰۸. تاریخ وارد شده در |بازبینی= را بررسی کنید (کمک)
  19. فرانچسکا روچبرگ (۲۰۰۰). «Astronomy and Calendars in Ancient Mesopotamia». در جک ساسون. Civilizations of the Ancient Near East [تمدنهای شرق نزدیک باستان - فصل: اخترشناسی و تقویم‌ها در بین‌النهرین باستانی]. III. ص. ۱۹۳۰.
  20. هولدن، جیمز هرشل (۱۹۹۶). A History of Horoscopic Astrology [تاریخچه‌ای از طالع‌بینی ستاره‌ای]. هنرهای زیبا و باستانی (). ص. ۱. شابک ۹۷۸-۰-۸۶۶۹۰-۴۶۳-۶.
  21. هرمان هانگر, ویراستار (۱۹۹۲). Astrological reports to Assyrian kings [گزارش‌های ستاره‌بینی به شاهان آشوری]. State Archives of Assyria. ۸. انتشارات دانشگاه هلسینکی. شابک ۹۵۱-۵۷۰-۱۳۰-۹.
  22. لمبرت، دبلیو. جی.؛ رینر، اریکا (۱۹۸۷). «Babylonian Planetary Omens. Part One. Enuma Anu Enlil, Tablet 63: The Venus Tablet of Ammisaduqa». ژورنال جامعه مشرقی آمریکا. ۱۰۷ (۱): ۹۳–۹۶. doi:10.2307/602955. جی‌استور ۶۰۲۹۵۵.
  23. کساک، ان؛ وید، رائول (۲۰۰۱). «Understanding Planets in Ancient Mesopotamia (PDF)» (PDF). ژورنال الکترونیک فولکلور. موزه ادبیات استونی. ۱۶: ۷–۳۵. doi:10.7592/fejf2001.16.planets. دریافت‌شده در ۰۲/۰۶/۲۰۰۸. تاریخ وارد شده در |بازبینی= را بررسی کنید (کمک)
  24. ای. ساچس (۲ مه ۱۹۷۴). «Babylonian Observational Astronomy» [اخترشناسی رصدی بابلیان]. تعاملات فلسفی انجمن سلطنتی. انجمن سلطنتی لندن. ۲۷۶ (۱۲۵۷): ۴۳–۵۰[۴۵ & ۹-۴۸]. doi:10.1098/rsta.1974.0008. بیبکد:1974RSPTA.276...43S. جی‌استور ۷۴۲۷۳.
  25. برنت, جان (1950). Greek philosophy: Thales to Plato [فلسفه یونانی: تالس تا افلاطون]. مک‌میلان و شرکا. pp. ۷–۱۱. ISBN 978-1-4067-6601-1. Retrieved ۰۷/۰۲/۲۰۰۸. Check date values in: |بازیابی= (help)
  26. ۲۶٫۰ ۲۶٫۱ گلدشتین, برنارد آر. (1997). "Saving the phenomena: the background to Ptolemy's planetary theory" [نجات پدیده: مقدمه نظریه سیاره‌ای بطلمیوس]. ژورنال تاریخ اخترشناسی. کمبریج (انگلستان). ۲۸ (۱): ۱–۱۲. Bibcode:1997JHA....28....1G.
  27. بطلمیوس; جرالد جی. تومر (1998). Ptolemy's Almagest [Almagest بطلمیوس]. انتشارات دانشگاه پرینستون. ISBN 978-0-691-00260-6.
  28. جی. جی؛ و ای. اف رابرتسون،آریابهاتای بزرگتر, بایگانی تاریخ ریاضیات مک‌تیوتر
  29. کی. وی. سارما (1997) "اخترشناسی در هند" در هلین سلین (ویراستار) Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures, ناشرین دانشگاهی کلوور، شابک ‎۰-۷۹۲۳-۴۰۶۶-۳, ص. ۱۱۶
  30. ۳۰٫۰ ۳۰٫۱ راما سوبرامانیا، کی. (۱۹۹۸). «Model of planetary motion in the works of Kerala astronomers» [مدل حرکت سیارات در آثار اخترشناسان کرالا]. بولتن انجمن اخترشناسی هند. ۲۶: ۱۱–۳۱[۴-۲۳]. بیبکد:1998BASI...26...11R.
  31. Ramasubramanian etc. (1994)
  32. سالی پی. ریجب (۲۰۰۷). «Ibn Sīnā: Abū ʿAlī al‐Ḥusayn ibn ʿAbdallāh ibn Sīnā». در توماس هاکی. دانشنامه زندگینامه اخترشناسان. Springer Science+Business Media. صص. ۵۷۰–۵۷۲. doi:10.1888/0333750888/3736. بیبکد:2000eaa..bookE3736.. شابک ۰-۳۳۳-۷۵۰۸۸-۸.
  33. «Another Reports for Observation of Venus Transit by Avicenna and its Effect on Ancient Astronomy». بولتن جامعه اخترشناسی آمریکا. ۱۸: ۶۸۶. بیبکد:1986BAAS...18R.686H. پارامتر |first1= بدون |last1= در Authors list وارد شده‌است (کمک)
  34. فرد اسپناک. «Six millennium catalog of Venus transits: 2000 BCE to 4000 CE» [کاتالوگ شش هزار ساله گذر ناهید:۲۰۰۰ قبل از میلاد تا ۴۰۰۰ پس از میلاد]. NASA/GSFC. دریافت‌شده در ۱۱ فوریه ۲۰۱۲.
  35. ۳۵٫۰ ۳۵٫۱ ون هلدن، ال (۱۹۹۵). «Copernican System». پروژه گالیله. دریافت‌شده در ۲۸/۰۱/۲۰۰۸. تاریخ وارد شده در |بازبینی= را بررسی کنید (کمک)
  36. Hilton, James L. (2001/09/17). "When Did the Asteroids Become Minor Planets?" [سیارک‌ها چه زمانی سیاره کوچک شدند؟]. رصدخانه نیروی دریایی آمریکا. Archived from the original on ۲۱/۰۹/۲۰۰۷. Retrieved ۰۸/۰۴/۲۰۰۷. Check date values in: |بازبینی=, |تاریخ=, |تاریخ بایگانی= (help)
  37. کراسول، کی. (۱۹۹۷). Planet Quest: The Epic Discovery of Alien Solar Systems [درجستجوی سیارات: کشف حماسی منظومه‌های شمسی بیگانه]. The Free Press. ص. ۵۷. شابک ۹۷۸-۰-۶۸۴-۸۳۲۵۲-۴.
  38. Lyttleton, Raymond A. (1936). "On the possible results of an encounter of Pluto with the Neptunian system". Monthly Notices of the Royal Astronomical Society. 97: 108. Bibcode:1936MNRAS..97..108L.
  39. Whipple, Fred (1964). "The History of the Solar System". Proceedings of the National Academy of Sciences of the United States of America. 52 (2): 565–594. Bibcode:1964PNAS...52..565W. doi:10.1073/pnas.52.2.565. PMC 300311. PMID 16591209.
  40. لو، جین ایکس.؛ جوئیت، دیوید سی. (۱۹۹۶). «The Kuiper Belt». Scientific American. ۲۷۴ (۵): ۴۶–۵۲. doi:10.1038/scientificamerican0596-46.
  41. Wolszczan, A.; Frail, D. A. (1992). "A planetary system around the millisecond pulsar PSR1257 + 12". Nature. 355 (6356): 145–147. Bibcode:1992Natur.355..145W. doi:10.1038/355145a0.
  42. مایر، میشل؛ کیلوز، دیدیه (۱۹۹۵). «A Jupiter-mass companion to a solar-type star». نیچر. ۳۷۸ (۶۳۵۶): ۳۵۵–۳۵۹. doi:10.1038/378355a0. بیبکد:1995Natur.378..355M.
  43. «IAU General Assembly: Definition of Planet debate» (.wmv). MediaStream.cz. ۲۰۰۶. دریافت‌شده در ۲۳/۰۸/۲۰۰۸. تاریخ وارد شده در |بازبینی= را بررسی کنید (کمک)
  44. Basri, Gibor (2000). "Observations of Brown Dwarfs". بررسی سالانه اخترشناسی و اخترفیزیک. ۳۸ (۱): ۴۸۵. Bibcode:2000ARA&A..38..485B. doi:10.1146/annurev.astro.38.1.485.
  45. گرین، دی. دبلیو. ای. (۲۰۰۶-۰۹-۱۳). «(134340) Pluto, (136199) Eris, and (136199) Eris I (Dysnomia)» (PDF). Circular No٫ ۸۷۴۷. Central Bureau for Astronomical Telegrams, International Astronomical Union. بایگانی‌شده از اصلی در ژوئن ۲۴, ۲۰۰۸. دریافت‌شده در ۲۰۱۱-۰۷-۰۵.
  46. Saumon, D.; Hubbard, W. B. ; Burrows, A. ; Guillot, T. ; Lunine, J. I. ; Chabrier, G. (1996). "A Theory of Extrasolar Giant Planets". Astrophysical Journal. 460: 993–1018. arXiv:astro-ph/9510046. Bibcode:1996ApJ...460..993S. doi:10.1086/177027.
  47. مثلاً لیستی از مراجع را در این مورد ببینید: Butler, R. P. et al. (۲۰۰۶). «Catalog of Nearby Exoplanets». University of California and the Carnegie Institution. دریافت‌شده در ۲۰۰۸-۰۸-۲۳.
  48. Stern, S. Alan (2004-03-22). "Gravity Rules: The Nature and Meaning of Planethood". SpaceDaily. Retrieved 2008-08-23.
  49. Whitney Clavin (2005-11-29). "A Planet With Planets? Spitzer Finds Cosmic Oddball". NASA. Retrieved 2006-03-26.
  50. Spiegel; Adam Burrows; Milsom (2010). "The Deuterium-Burning Mass Limit for Brown Dwarfs and Giant Planets". arXiv:1008.5150 [astro-ph.EP].
  51. Schneider, J.; Dedieu, C.; Le Sidaner, P.; Savalle, R.; Zolotukhin, I. (2011). "Defining and cataloging exoplanets: The exoplanet.eu database". Astronomy & Astrophysics. 532 (79): A79. arXiv:1106.0586. Bibcode:2011A&A...532A..79S. doi:10.1051/0004-6361/201116713.
  52. Wright; et al. (2010). "The Exoplanet Orbit Database". arXiv:1012.5676 [astro-ph.SR].
  53. Exoplanet Criteria for Inclusion in the Archive, NASA Exoplanet Archive
  54. "Planetesimals To Brown Dwarfs: What is a Planet?". Ann. Rev. Earth Planet. Sci. 34: 193–216. 2006. arXiv:astro-ph/0608417. Bibcode:2006AREPS..34..193B. doi:10.1146/annurev.earth.34.031405.125058.
  55. Boss, Alan P.; Basri, Gibor; Kumar, Shiv S.; Liebert, James; Martín, Eduardo L.; Reipurth, Bo; Zinnecker, Hans (2003). "Nomenclature: Brown Dwarfs, Gas Giant Planets, and ?". Brown Dwarfs. 211: 529. Bibcode:2003IAUS..211..529B.
  56. Staff (2006). "IAU 2006 General Assembly: Result of the IAU resolution votes". IAU. Retrieved 2007-05-11.
  57. Rincon, Paul (2006-08-16). "Planets plan boosts tally 12". BBC. Retrieved 2008-08-23.
  58. "Pluto loses status as a planet". BBC. 2006-08-24. Retrieved 2008-08-23.
  59. Moskowitz, Clara (2006-10-18). "Scientist who found '10th planet' discusses downgrading of Pluto". Stanford news. Retrieved 2008-08-23.
  60. Giovanni Cassini (1673). Decouverte de deux Nouvelles Planetes autour de Saturne. Sabastien Mabre-Craniusy. pp. 6–14.
  61. Hilton, James L. "When did the asteroids become minor planets?". U.S. Naval Observatory. Archived from the original on 24 March 2008. Retrieved 2008-05-08.
  62. "The Planet Hygea". spaceweather.com. 1849. Retrieved 2008-04-18.
  63. Ross, Kelley L. (2005). "The Days of the Week". The Friesian School. Retrieved 2008-08-23.
  64. Cochrane, Ev (1997). Martian Metamorphoses: The Planet Mars in Ancient Myth and Tradition. Aeon Press. ISBN 0-9656229-0-8. Retrieved 2008-02-07.
  65. Cameron, Alan (2005). Greek Mythography in the Roman World. Oxford University Press. ISBN 0-19-517121-7.
  66. Zerubavel, Eviatar (1989). The Seven Day Circle: The History and Meaning of the Week. University of Chicago Press. p. 14. ISBN 0-226-98165-7. Retrieved 2008-02-07.
  67. ۶۷٫۰ ۶۷٫۱ Falk, Michael; Koresko, Christopher (1999). "Astronomical Names for the Days of the Week". Journal of the Royal Astronomical Society of Canada. 93: 122–133. Bibcode:1999JRASC..93..122F. doi:10.1016/j.newast.2003.07.002.
  68. "earth, n". Oxford English Dictionary. 1989. Retrieved 2008-02-06.
  69. ۶۹٫۰ ۶۹٫۱ Harper, Douglas (September 2001). "Earth". Online Etymology Dictionary. Retrieved 2008-08-23.
  70. Harper, Douglas (September 2001). "Etymology of "terrain"". Online Etymology Dictionary. Retrieved 2008-01-30.
  71. Wetherill, G. W. (1980). "Formation of the Terrestrial Planets". Annual Review of Astronomy and Astrophysics. 18 (1): 77–113. Bibcode:1980ARA&A..18...77W. doi:10.1146/annurev.aa.18.090180.000453.
  72. Inaba, S. ; Ikoma, M. (2003). "Enhanced Collisional Growth of a Protoplanet that has an Atmosphere". Astronomy and Astrophysics. 410 (2): 711–723. Bibcode:2003A&A...410..711I. doi:10.1051/0004-6361:20031248.
  73. Dutkevitch, Diane (1995). "The Evolution of Dust in the Terrestrial Planet Region of Circumstellar Disks Around Young Stars". PhD thesis, University of Massachusetts Amherst. Bibcode:1995PhDT..........D. Archived from the original on 25 November 2007. Retrieved 2008-08-23.
  74. Matsuyama, I. ; Johnstone, D. ; Murray, N. (2005). "Halting Planet Migration by Photoevaporation from the Central Source". The Astrophysical Journal. 585 (2): L143–L146. arXiv:astro-ph/0302042. Bibcode:2003astro.ph..2042M. doi:10.1086/374406.
  75. Kenyon, Scott J.; Bromley, Benjamin C. (2006). "Terrestrial Planet Formation. I. The Transition from Oligarchic Growth to Chaotic Growth". Astronomical Journal. 131 (3): 1837. arXiv:astro-ph/0503568. Bibcode:2006AJ....131.1837K. doi:10.1086/499807. Lay summaryKenyon, Scott J. Personal web page.
  76. Ida, Shigeru; Nakagawa, Yoshitsugu; Nakazawa, Kiyoshi (1987). "The Earth's core formation due to the Rayleigh-Taylor instability". Icarus. 69 (2): 239. Bibcode:1987Icar...69..239I. doi:10.1016/0019-1035(87)90103-5.
  77. Aguilar, David; Pulliam, Christine (2004-01-06). "Lifeless Suns Dominated The Early Universe" (Press release). Harvard-Smithsonian Center for Astrophysics. Retrieved 2011-10-23.
  78. Scott S. Sheppard (2013-01-04). "The Jupiter Satellite Page (Now Also The Giant Planet Satellite and Moon Page)". Carnegie Institution for Science. Retrieved 2013-04-12.
  79. Confirmed Planets - NASA Exoplanet Archive[پیوند مرده]
  80. Johnson, Michele; Harrington, J.D. (February 26, 2014). "NASA's Kepler Mission Announces a Planet Bonanza, 715 New Worlds". NASA. Retrieved February 26, 2014.
  81. The Habitable Exoplanets Catalog - Planetary Habitability Laboratory @ UPR Arecibo
  82. Wolszczan, A.; Frail, D. A. (1992). "A planetary system around the millisecond pulsar PSR1257 + 12". Nature. 355 (6356): 145–147. doi:10.1038/355145a0. ISSN 0028-0836.
  83. Lopez, E. D.; Fortney, J. J. (2013). "Understanding the Mass-Radius Relation for Sub-Neptunes: Radius as a Proxy for Composition". arXiv:1311.0329 [astro-ph.EP].
  84. Cassan, Arnaud; D. Kubas, J. -P. Beaulieu, M. Dominik, K. Horne, J. Greenhill, J. Wambsganss, J. Menzies, A. Williams, U. G. Jørgensen, A. Udalski, D. P. Bennett, M. D. Albrow, V. Batista, S. Brillant, J. A. R. Caldwell, A. Cole, Ch. Coutures, K. H. Cook, S. Dieters, D. Dominis Prester, J. Donatowicz, P. Fouqué, K. Hill, N. Kains; et al. (12 January 2012). "One or more bound planets per Milky Way star from microlensing observations". Nature. 481 (7380): 167–169. arXiv:1202.0903. Bibcode:2012Natur.481..167C. doi:10.1038/nature10684. PMID 22237108. Retrieved 11 January 2012.
  85. Sanders, R. (4 November 2013). "Astronomers answer key question: How common are habitable planets?". newscenter.berkeley.edu.
  86. Petigura, E. A.; Howard, A. W.; Marcy, G. W. (2013). "Prevalence of Earth-size planets orbiting Sun-like stars". Proceedings of the National Academy of Sciences of the United States of America. doi:10.1073/pnas.1319909110.
  87. Drake, Frank (2003-09-29). "The Drake Equation Revisited". Astrobiology Magazine. Archived from the original on 28 June 2011. Retrieved 2008-08-23.
  88. G. Basri & E.M. Brown, 2006. Annual Review of Earth and Planetary Sciences, 34: 193–216
  89. Lissauer, J. J. (1987). "Timescales for Planetary Accretion and the Structure of the Protoplanetary disk". Icarus. 69 (2): 249–265. Bibcode:1987Icar...69..249L. doi:10.1016/0019-1035(87)90104-7.
  90. ۹۰٫۰ ۹۰٫۱ Luhman, K. L.; Adame, Lucía; D'Alessio, Paola; Calvet, Nuria (2005). "Discovery of a Planetary-Mass Brown Dwarf with a Circumstellar Disk". Astrophysical Journal. 635 (1): L93. arXiv:astro-ph/0511807. Bibcode:2005ApJ...635L..93L. doi:10.1086/498868. Lay summaryNASA Press Release (2005-11-29).
  91. Clavin, Whitney (November 9, 2005). "A Planet with Planets? Spitzer Finds Cosmic Oddball". Spitzer Space Telescope Newsroom. Archived from the original on 11 July 2007. Retrieved 2009-11-18.
  92. Close, Laird M. et al. ; Zuckerman, B.; Song, Inseok; Barman, Travis; Marois, Christian; Rice, Emily L.; Siegler, Nick; MacIntosh, Bruce; Becklin, E. E. (2007). "The Wide Brown Dwarf Binary Oph 1622–2405 and Discovery of A Wide, Low Mass Binary in Ophiuchus (Oph 1623–2402): A New Class of Young Evaporating Wide Binaries?". Astrophysical Journal. 660 (2): 1492. arXiv:astro-ph/0608574. Bibcode:2007ApJ...660.1492C. doi:10.1086/513417.
  93. Luhman, K. L. N. ; Jaffe, D. T. ; Cushing, M. C.; Allers, K. N.; Jaffe, D. T.; Cushing, M. C.; Williams, K. A.; Slesnick, C. L.; Vacca, W. D. (2007). "Ophiuchus 1622–2405: Not a Planetary-Mass Binary". The Astrophysical Journal. 659 (2): 1629–36. arXiv:astro-ph/0701242. Bibcode:2007ApJ...659.1629L. doi:10.1086/512539.
  94. Britt, Robert Roy (2004-09-10). "Likely First Photo of Planet Beyond the Solar System". Space.com. Retrieved 2008-08-23.
  95. Bailes, M.; Bates, S. D.; Bhalerao, V.; Bhat, N. D. R.; Burgay, M.; Burke-Spolaor, S.; d'Amico, N.; Johnston, S.; Keith, M. J. (2011). "Transformation of a Star into a Planet in a Millisecond Pulsar Binary". Science. 333 (6050): 1717–20. arXiv:1108.5201. Bibcode:2011Sci...333.1717B. doi:10.1126/science.1208890. PMID 21868629.
  96. "Should Large Moons Be Called 'Satellite Planets'?". News.discovery.com. 2010-05-14. Retrieved 2011-11-04.
  97. D. R. Anderson et al. ; Hellier, C.; Gillon, M.; Triaud, A. H. M. J.; Smalley, B.; Hebb, L.; Collier Cameron, A.; Maxted, P. F. L. et al. (2009). "WASP-17b: an ultra-low density planet in a probable retrograde orbit". arXiv:0908.1553 [astro-ph.EP].
  98. ۹۸٫۰ ۹۸٫۱ ۹۸٫۲ ۹۸٫۳ ۹۸٫۴ Young, Charles Augustus (1902). Manual of Astronomy: A Text Book. Ginn & company. pp. 324–7.
  99. Dvorak, R. ; Kurths, J. ; Freistetter, F. (2005). Chaos And Stability in Planetary Systems. New York: Springer. ISBN 3-540-28208-4.
  100. Moorhead, Althea V. ; Adams, Fred C.; Adams (2008). "Eccentricity evolution of giant planet orbits due to circumstellar disk torques". Icarus. 193 (2): 475. arXiv:0708.0335. Bibcode:2008Icar..193..475M. doi:10.1016/j.icarus.2007.07.009.
  101. "Planets – Kuiper Belt Objects". The Astrophysics Spectator. 2004-12-15. Retrieved 2008-08-23.
  102. Tatum, J. B. (2007). "17. Visual binary stars". Celestial Mechanics. Personal web page. Retrieved 2008-02-02.
  103. Trujillo, Chadwick A.; Brown, Michael E. (2002). "A Correlation between Inclination and Color in the Classical Kuiper Belt". Astrophysical Journal. 566 (2): L125. arXiv:astro-ph/0201040. Bibcode:2002ApJ...566L.125T. doi:10.1086/339437.
  104. ۱۰۴٫۰ ۱۰۴٫۱ Harvey, Samantha (2006-05-01). "Weather, Weather, Everywhere?". NASA. Retrieved 2008-08-23.
  105. Winn, Joshua N. ; Holman, Matthew J.; Holman (2005). "Obliquity Tides on Hot Jupiters". The Astrophysical Journal. 628 (2): L159. arXiv:astro-ph/0506468. Bibcode:2005ApJ...628L.159W. doi:10.1086/432834.
  106. Goldstein, R. M. ; Carpenter, R. L. (1963). "Rotation of Venus: Period Estimated from Radar Measurements". Science. 139 (3558): 910–1. Bibcode:1963Sci...139..910G. doi:10.1126/science.139.3558.910. PMID 17743054.
  107. Belton, M. J. S.; Terrile R. J. (1984). Bergstralh, J. T., ed. "Uranus and Neptune". In its Uranus and Neptune pp. 327–347 (SEE N85-11927 02-91). 2330: 327. Bibcode:1984urnp.nasa..327B. |contribution= ignored (help)
  108. Borgia, Michael P. (2006). The Outer Worlds; Uranus, Neptune, Pluto, and Beyond. Springer New York. pp. 195–206.
  109. Lissauer, Jack J. (1993). "Planet formation". Annual review of astronomy and astrophysics. 31. (A94-12726 02–90) (1): 129–174. Bibcode:1993ARA&A..31..129L. doi:10.1146/annurev.aa.31.090193.001021.
  110. Strobel, Nick. "Planet tables". astronomynotes.com. Retrieved 2008-02-01.
  111. Zarka, Philippe; Treumann, Rudolf A. ; Ryabov, Boris P. ; Ryabov, Vladimir B. (2001). "Magnetically-Driven Planetary Radio Emissions and Application to Extrasolar Planets". Astrophysics & Space Science. 277 (1/2): 293. Bibcode:2001Ap&SS.277..293Z. doi:10.1023/A:1012221527425.
  112. Brown, Michael E. (2006). "The Dwarf Planets". California Institute of Technology. Retrieved 2008-02-01.
  113. How One Astronomer Became the Unofficial Exoplanet Record-Keeper, www.scientificamerican.com
  114. Jason T Wright; Onsi Fakhouri; Marcy; Eunkyu Han; Ying Feng; John Asher Johnson; Howard; Fischer et al. (2010). "The Exoplanet Orbit Database". arXiv:1012.5676 [astro-ph.SR].
  115. ۱۱۵٫۰ ۱۱۵٫۱ "Planetary Interiors". Department of Physics, University of Oregon. Retrieved 2008-08-23.
  116. Elkins-Tanton, Linda T. (2006). Jupiter and Saturn. New York: Chelsea House. ISBN 0-8160-5196-8.
  117. Wolszczan, A.; Frail, D. A. (1992-1). "A planetary system around the millisecond pulsar PSR1257 + 12". Nature. 355 (6356): 145–147. doi:10.1038/355145a0. ISSN 0028-0836. Check date values in: |date= (help)
  118. Hunten D. M. , Shemansky D. E. , Morgan T. H. (1988), The Mercury atmosphere, In: Mercury (A89-43751 19–91). University of Arizona Press, pp. 562–612
  119. Sheppard, Scott S.; Jewitt, David; Kleyna, Jan (2005). "An Ultradeep Survey for Irregular Satellites of Uranus: Limits to Completeness". The Astronomical Journal. 129 (1): 518–525. doi:10.1086/426329. ISSN 0004-6256.
  120. Zeilik, Michael A.; Gregory, Stephan A. (1998). Introductory Astronomy & Astrophysics (4th ed.). Saunders College Publishing. p. 67. ISBN 0-03-006228-4.
  121. ۱۲۱٫۰ ۱۲۱٫۱ Knutson, Heather A.; Charbonneau, David; Allen, Lori E. ; Fortney, Jonathan J. (2007). "A map of the day-night contrast of the extrasolar planet HD 189733 b". Nature. 447 (7141): 183–6. arXiv:0705.0993. Bibcode:2007Natur.447..183K. doi:10.1038/nature05782. PMID 17495920. Lay summaryCenter for Astrophysics press release (2007-05-09).
  122. Weaver, Donna; Villard, Ray (2007-01-31). "Hubble Probes Layer-cake Structure of Alien World's Atmosphere" (Press release). Space Telescope Science Institute. Retrieved 2011-10-23.
  123. Ballester, Gilda E.; Sing, David K. ; Herbert, Floyd (2007). "The signature of hot hydrogen in the atmosphere of the extrasolar planet HD 209458b". Nature. 445 (7127): 511–4. Bibcode:2007Natur.445..511B. doi:10.1038/nature05525. PMID 17268463.
  124. Harrington, Jason; Hansen, Brad M. ; Luszcz, Statia H. ; Seager, Sara (2006). "The phase-dependent infrared brightness of the extrasolar planet Andromeda b". Science. 314 (5799): 623–6. arXiv:astro-ph/0610491. Bibcode:2006Sci...314..623H. doi:10.1126/science.1133904. PMID 17038587. Lay summaryNASA press release (2006-10-12).
  125. ۱۲۵٫۰ ۱۲۵٫۱ ۱۲۵٫۲ Kivelson, Margaret Galland; Bagenal, Fran (2007). "Planetary Magnetospheres". In Lucyann Mcfadden, Paul Weissman, Torrence Johnson. Encyclopedia of the Solar System. Academic Press. p. 519. ISBN 978-0-12-088589-3.
  126. Gefter, Amanda (2004-01-17). "Magnetic planet". Astronomy. Retrieved 2008-01-29.
  127. Grasset, O.; Sotin C. ; Deschamps F. (2000). "On the internal structure and dynamic of Titan". Planetary and Space Science. 48 (7–8): 617–636. Bibcode:2000P&SS...48..617G. doi:10.1016/S0032-0633(00)00039-8.
  128. Fortes, A. D. (2000). "Exobiological implications of a possible ammonia-water ocean inside Titan". Icarus. 146 (2): 444–452. Bibcode:2000Icar..146..444F. doi:10.1006/icar.2000.6400.
  129. Jones, Nicola (2001-12-11). "Bacterial explanation for Europa's rosy glow". New Scientist Print Edition. Retrieved 2008-08-23.
  130. Molnar, L. A. ; Dunn, D. E.; Dunn (1996). "On the Formation of Planetary Rings". Bulletin of the American Astronomical Society. 28: 77–115. Bibcode:1996DPS....28.1815M.
  131. Thérèse, Encrenaz (2004). The Solar System (Third ed.). Springer. pp. 388–390. ISBN 3-540-00241-3.
  • Ronan, Colin. "Astronomy Before the Telescope". Astronomy in China, Korea and Japan (Walker ed.). pp. ۲۶۴–۲۶۵
  • Goldstein, Bernard R. (۱۹۹۷). «Saving the phenomena: the background to Ptolemy's planetary theory". Journal for the History of Astronomy (Cambridge (UK)) ۲۸ (۱): ۱–۱۲. http://adsabs.harvard.edu/abs/1997

Mercury Venus
Earth Mars
Jupiter Saturn
Uranus Neptune
The eight known planets[a] of the Solar System:
Mercury, Venus, Earth, and Mars
Jupiter and Saturn (gas giants)
Uranus and Neptune (ice giants)

Shown in order from the Sun and in true color. Sizes are not to scale.

A planet is an astronomical body orbiting a star or stellar remnant that is massive enough to be rounded by its own gravity, is not massive enough to cause thermonuclear fusion, and has cleared its neighbouring region of planetesimals.[b][1][2]

The term planet is ancient, with ties to history, astrology, science, mythology, and religion. Five planets in the Solar System are visible to the naked eye. These were regarded by many early cultures as divine, or as emissaries of deities. As scientific knowledge advanced, human perception of the planets changed, incorporating a number of disparate objects. In 2006, the International Astronomical Union (IAU) officially adopted a resolution defining planets within the Solar System. This definition is controversial because it excludes many objects of planetary mass based on where or what they orbit. Although eight of the planetary bodies discovered before 1950 remain "planets" under the current definition, some celestial bodies, such as Ceres, Pallas, Juno and Vesta (each an object in the solar asteroid belt), and Pluto (the first trans-Neptunian object discovered), that were once considered planets by the scientific community, are no longer viewed as planets under the current definition of planet.

Planets in astrology have a different definition.

The planets were thought by Ptolemy to orbit Earth in deferent and epicycle motions. Although the idea that the planets orbited the Sun had been suggested many times, it was not until the 17th century that this view was supported by evidence from the first telescopic astronomical observations, performed by Galileo Galilei. About the same time, by careful analysis of pre-telescopic observational data collected by Tycho Brahe, Johannes Kepler found the planets' orbits were elliptical rather than circular. As observational tools improved, astronomers saw that, like Earth, each of the planets rotated around an axis tilted with respect to its orbital pole, and some shared such features as ice caps and seasons. Since the dawn of the Space Age, close observation by space probes has found that Earth and the other planets share characteristics such as volcanism, hurricanes, tectonics, and even hydrology.

Planets are generally divided into two main types: large low-density giant planets, and smaller rocky terrestrials. There are eight planets in the Solar System.[1] In order of increasing distance from the Sun, they are the four terrestrials, Mercury, Venus, Earth, and Mars, then the four giant planets, Jupiter, Saturn, Uranus, and Neptune. Six of the planets are orbited by one or more natural satellites.

Several thousands of planets around other stars ("extrasolar planets" or "exoplanets") have been discovered in the Milky Way. As of 1 November 2019, 4,126 known extrasolar planets in 3,067 planetary systems (including 671 multiple planetary systems), ranging in size from just above the size of the Moon to gas giants about twice as large as Jupiter have been discovered, out of which more than 100 planets are the same size as Earth, nine of which are at the same relative distance from their star as Earth from the Sun, i.e. in the circumstellar habitable zone.[3][4] On December 20, 2011, the Kepler Space Telescope team reported the discovery of the first Earth-sized extrasolar planets, Kepler-20e[5] and Kepler-20f,[6] orbiting a Sun-like star, Kepler-20.[7][8][9] A 2012 study, analyzing gravitational microlensing data, estimates an average of at least 1.6 bound planets for every star in the Milky Way.[10] Around one in five Sun-like[c] stars is thought to have an Earth-sized[d] planet in its habitable[e] zone.

History

Printed rendition of a geocentric cosmological model from Cosmographia, Antwerp, 1539

The idea of planets has evolved over its history, from the divine lights of antiquity to the earthly objects of the scientific age. The concept has expanded to include worlds not only in the Solar System, but in hundreds of other extrasolar systems. The ambiguities inherent in defining planets have led to much scientific controversy.

The five classical planets, being visible to the naked eye, have been known since ancient times and have had a significant impact on mythology, religious cosmology, and ancient astronomy. In ancient times, astronomers noted how certain lights moved across the sky, as opposed to the "fixed stars", which maintained a constant relative position in the sky.[11] Ancient Greeks called these lights πλάνητες ἀστέρες (planētes asteres, "wandering stars") or simply πλανῆται (planētai, "wanderers"),[12] from which today's word "planet" was derived.[13][14][15] In ancient Greece, China, Babylon, and indeed all pre-modern civilizations,[16][17] it was almost universally believed that Earth was the center of the Universe and that all the "planets" circled Earth. The reasons for this perception were that stars and planets appeared to revolve around Earth each day[18] and the apparently common-sense perceptions that Earth was solid and stable and that it was not moving but at rest.

Babylon

The first civilization known to have a functional theory of the planets were the Babylonians, who lived in Mesopotamia in the first and second millennia BC. The oldest surviving planetary astronomical text is the Babylonian Venus tablet of Ammisaduqa, a 7th-century BC copy of a list of observations of the motions of the planet Venus, that probably dates as early as the second millennium BC.[19] The MUL.APIN is a pair of cuneiform tablets dating from the 7th century BC that lays out the motions of the Sun, Moon, and planets over the course of the year.[20] The Babylonian astrologers also laid the foundations of what would eventually become Western astrology.[21] The Enuma anu enlil, written during the Neo-Assyrian period in the 7th century BC,[22] comprises a list of omens and their relationships with various celestial phenomena including the motions of the planets.[23][24] Venus, Mercury, and the outer planets Mars, Jupiter, and Saturn were all identified by Babylonian astronomers. These would remain the only known planets until the invention of the telescope in early modern times.[25]

Greco-Roman astronomy

Ptolemy's 7 planetary spheres
1
Moon
☾
2
Mercury
☿
3
Venus
♀
4
Sun
☉
5
Mars
♂
6
Jupiter
♃
7
Saturn
♄

The ancient Greeks initially did not attach as much significance to the planets as the Babylonians. The Pythagoreans, in the 6th and 5th centuries BC appear to have developed their own independent planetary theory, which consisted of the Earth, Sun, Moon, and planets revolving around a "Central Fire" at the center of the Universe. Pythagoras or Parmenides is said to have been the first to identify the evening star (Hesperos) and morning star (Phosphoros) as one and the same (Aphrodite, Greek corresponding to Latin Venus),[26] though this had long been known by the Babylonians. In the 3rd century BC, Aristarchus of Samos proposed a heliocentric system, according to which Earth and the planets revolved around the Sun. The geocentric system remained dominant until the Scientific Revolution.

By the 1st century BC, during the Hellenistic period, the Greeks had begun to develop their own mathematical schemes for predicting the positions of the planets. These schemes, which were based on geometry rather than the arithmetic of the Babylonians, would eventually eclipse the Babylonians' theories in complexity and comprehensiveness, and account for most of the astronomical movements observed from Earth with the naked eye. These theories would reach their fullest expression in the Almagest written by Ptolemy in the 2nd century CE. So complete was the domination of Ptolemy's model that it superseded all previous works on astronomy and remained the definitive astronomical text in the Western world for 13 centuries.[19][27] To the Greeks and Romans there were seven known planets, each presumed to be circling Earth according to the complex laws laid out by Ptolemy. They were, in increasing order from Earth (in Ptolemy's order and using modern names): the Moon, Mercury, Venus, the Sun, Mars, Jupiter, and Saturn.[15][27][28]

Cicero, in his De Natura Deorum, enumerated the planets known during the 1st century BCE using the names for them in use at the time:[29]

"But there is most matter for wonder in the movements of the five stars which are falsely called wandering; falsely, because nothing wanders which through all eternity preserves its forward and retrograde courses, and its other movements, constant and unaltered. ... For instance, the star which is farthest from the earth, which is known as the star of Saturn, and is called by the Greeks Φαέθων (Phainon), accomplishes its course in about thirty years, and though in that course it does much that is wonderful, first preceding the sun, and then falling off in speed, becoming invisible at the hour of evening, and returning to view in the morning, it never through the unending ages of time makes any variation, but performs the same movements at the same times. Beneath it, and nearer to the earth, moves the planet of Jupiter, which is called in Greek Φαέθων (Phaethon); it completes the same round of the twelve signs in twelve years, and performs in its course the same variations as the planet of Saturn. The circle next below it is held by Πυρόεις (Pyroeis), which is called the planet of Mars, and traverses the same round as the two planets above it in four and twenty months, all but, I think, six days. Beneath this is the planet of Mercury, which is called by the Greeks Στίλβων (Stilbon); it traverses the round of the zodiac in about the time of the year’s revolution, and never withdraws more than one sign’s distance from the sun, moving at one time in advance of it, and at another in its rear. The lowest of the five wandering stars, and the one nearest the earth, is the planet of Venus, which is called Φωσϕόρος (Phosphoros) in Greek, and Lucifer in Latin, when it is preceding the sun, but Ἕσπερος (Hesperos) when it is following it; it completes its course in a year, traversing the zodiac both latitudinally and longitudinally, as is also done by the planets above it, and on whichever side of the sun it is, it never departs more than two signs’ distance from it."

India

In 499 CE, the Indian astronomer Aryabhata propounded a planetary model that explicitly incorporated Earth's rotation about its axis, which he explains as the cause of what appears to be an apparent westward motion of the stars. He also believed that the orbits of planets are elliptical.[30] Aryabhata's followers were particularly strong in South India, where his principles of the diurnal rotation of Earth, among others, were followed and a number of secondary works were based on them.[31]

In 1500, Nilakantha Somayaji of the Kerala school of astronomy and mathematics, in his Tantrasangraha, revised Aryabhata's model.[32] In his Aryabhatiyabhasya, a commentary on Aryabhata's Aryabhatiya, he developed a planetary model where Mercury, Venus, Mars, Jupiter and Saturn orbit the Sun, which in turn orbits Earth, similar to the Tychonic system later proposed by Tycho Brahe in the late 16th century. Most astronomers of the Kerala school who followed him accepted his planetary model.[32][33]

Medieval Muslim astronomy

In the 11th century, the transit of Venus was observed by Avicenna, who established that Venus was, at least sometimes, below the Sun.[34] In the 12th century, Ibn Bajjah observed "two planets as black spots on the face of the Sun", which was later identified as a transit of Mercury and Venus by the Maragha astronomer Qotb al-Din Shirazi in the 13th century.[35] Ibn Bajjah could not have observed a transit of Venus, because none occurred in his lifetime.[36]

European Renaissance

Renaissance planets,
c. 1543 to 1610 and c. 1680 to 1781
1
Mercury
☿
2
Venus
♀
3
Earth
⊕
4
Mars
♂
5
Jupiter
♃
6
Saturn
♄

With the advent of the Scientific Revolution, use of the term "planet" changed from something that moved across the sky (in relation to the star field); to a body that orbited Earth (or that was believed to do so at the time); and by the 18th century to something that directly orbited the Sun when the heliocentric model of Copernicus, Galileo and Kepler gained sway.

Thus, Earth became included in the list of planets,[37] whereas the Sun and Moon were excluded. At first, when the first satellites of Jupiter and Saturn were discovered in the 17th century, the terms "planet" and "satellite" were used interchangeably – although the latter would gradually become more prevalent in the following century.[38] Until the mid-19th century, the number of "planets" rose rapidly because any newly discovered object directly orbiting the Sun was listed as a planet by the scientific community.

19th century

Eleven planets, 1807–1845
1
Mercury
☿
2
Venus
♀
3
Earth
⊕
4
Mars
♂
5
Vesta
⚶
6
Juno
⚵
7
Ceres
⚳
8
Pallas
⚴
9
Jupiter
♃
10
Saturn
♄
11
Uranus
♅

In the 19th century astronomers began to realize that recently discovered bodies that had been classified as planets for almost half a century (such as Ceres, Pallas, Juno, and Vesta) were very different from the traditional ones. These bodies shared the same region of space between Mars and Jupiter (the asteroid belt), and had a much smaller mass; as a result they were reclassified as "asteroids". In the absence of any formal definition, a "planet" came to be understood as any "large" body that orbited the Sun. Because there was a dramatic size gap between the asteroids and the planets, and the spate of new discoveries seemed to have ended after the discovery of Neptune in 1846, there was no apparent need to have a formal definition.[39]

20th century

Planets 1854–1930, Solar planets 2006–present
1
Mercury
☿
2
Venus
♀
3
Earth
⊕
4
Mars
♂
5
Jupiter
♃
6
Saturn
♄
7
Uranus
♅
8
Neptune
♆

In the 20th century, Pluto was discovered. After initial observations led to the belief that it was larger than Earth,[40] the object was immediately accepted as the ninth planet. Further monitoring found the body was actually much smaller: in 1936, Ray Lyttleton suggested that Pluto may be an escaped satellite of Neptune,[41] and Fred Whipple suggested in 1964 that Pluto may be a comet.[42] As it was still larger than all known asteroids and seemingly did not exist within a larger population,[43] it kept its status until 2006.

(Solar) planets 1930–2006
1
Mercury
☿
2
Venus
♀
3
Earth
⊕
4
Mars
♂
5
Jupiter
♃
6
Saturn
♄
7
Uranus
♅
8
Neptune
♆
9
Pluto
♇

In 1992, astronomers Aleksander Wolszczan and Dale Frail announced the discovery of planets around a pulsar, PSR B1257+12.[44] This discovery is generally considered to be the first definitive detection of a planetary system around another star. Then, on October 6, 1995, Michel Mayor and Didier Queloz of the Geneva Observatory announced the first definitive detection of an exoplanet orbiting an ordinary main-sequence star (51 Pegasi).[45]

The discovery of extrasolar planets led to another ambiguity in defining a planet: the point at which a planet becomes a star. Many known extrasolar planets are many times the mass of Jupiter, approaching that of stellar objects known as brown dwarfs. Brown dwarfs are generally considered stars due to their ability to fuse deuterium, a heavier isotope of hydrogen. Although objects more massive than 75 times that of Jupiter fuse hydrogen, objects of only 13 Jupiter masses can fuse deuterium. Deuterium is quite rare, and most brown dwarfs would have ceased fusing deuterium long before their discovery, making them effectively indistinguishable from supermassive planets.[46]

21st century

With the discovery during the latter half of the 20th century of more objects within the Solar System and large objects around other stars, disputes arose over what should constitute a planet. There were particular disagreements over whether an object should be considered a planet if it was part of a distinct population such as a belt, or if it was large enough to generate energy by the thermonuclear fusion of deuterium.

A growing number of astronomers argued for Pluto to be declassified as a planet, because many similar objects approaching its size had been found in the same region of the Solar System (the Kuiper belt) during the 1990s and early 2000s. Pluto was found to be just one small body in a population of thousands.

Some of them, such as Quaoar, Sedna, and Eris, were heralded in the popular press as the tenth planet, failing to receive widespread scientific recognition. The announcement of Eris in 2005, an object then thought of as 27% more massive than Pluto, created the necessity and public desire for an official definition of a planet.

Acknowledging the problem, the IAU set about creating the definition of planet, and produced one in August 2006. The number of planets dropped to the eight significantly larger bodies that had cleared their orbit (Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune), and a new class of dwarf planets was created, initially containing three objects (Ceres, Pluto and Eris).[47]

Extrasolar planets

There is no official definition of extrasolar planets. In 2003, the International Astronomical Union (IAU) Working Group on Extrasolar Planets issued a position statement, but this position statement was never proposed as an official IAU resolution and was never voted on by IAU members. The positions statement incorporates the following guidelines, mostly focused upon the boundary between planets and brown dwarfs:[2]

  1. Objects with true masses below the limiting mass for thermonuclear fusion of deuterium (currently calculated to be 13 times the mass of Jupiter for objects with the same isotopic abundance as the Sun[48]) that orbit stars or stellar remnants are "planets" (no matter how they formed). The minimum mass and size required for an extrasolar object to be considered a planet should be the same as that used in the Solar System.
  2. Substellar objects with true masses above the limiting mass for thermonuclear fusion of deuterium are "brown dwarfs", no matter how they formed or where they are located.
  3. Free-floating objects in young star clusters with masses below the limiting mass for thermonuclear fusion of deuterium are not "planets", but are "sub-brown dwarfs" (or whatever name is most appropriate).

This working definition has since been widely used by astronomers when publishing discoveries of exoplanets in academic journals.[49] Although temporary, it remains an effective working definition until a more permanent one is formally adopted. It does not address the dispute over the lower mass limit,[50] and so it steered clear of the controversy regarding objects within the Solar System. This definition also makes no comment on the planetary status of objects orbiting brown dwarfs, such as 2M1207b.

One definition of a sub-brown dwarf is a planet-mass object that formed through cloud collapse rather than accretion. This formation distinction between a sub-brown dwarf and a planet is not universally agreed upon; astronomers are divided into two camps as whether to consider the formation process of a planet as part of its division in classification.[51] One reason for the dissent is that often it may not be possible to determine the formation process. For example, a planet formed by accretion around a star may get ejected from the system to become free-floating, and likewise a sub-brown dwarf that formed on its own in a star cluster through cloud collapse may get captured into orbit around a star.

One study suggests that objects above 10 MJup formed through gravitational instability and should not be thought of as planets.[52]

The 13 Jupiter-mass cutoff represents an average mass rather than a precise threshold value. Large objects will fuse most of their deuterium and smaller ones will fuse only a little, and the 13 MJ value is somewhere in between. In fact, calculations show that an object fuses 50% of its initial deuterium content when the total mass ranges between 12 and 14 MJ.[53] The amount of deuterium fused depends not only on mass but also on the composition of the object, on the amount of helium and deuterium present.[54] As of 2011 the Extrasolar Planets Encyclopaedia included objects up to 25 Jupiter masses, saying, "The fact that there is no special feature around 13 MJup in the observed mass spectrum reinforces the choice to forget this mass limit".[55] As of 2016 this limit was increased to 60 Jupiter masses[56] based on a study of mass–density relationships.[57] The Exoplanet Data Explorer includes objects up to 24 Jupiter masses with the advisory: "The 13 Jupiter-mass distinction by the IAU Working Group is physically unmotivated for planets with rocky cores, and observationally problematic due to the sin i ambiguity."[58] The NASA Exoplanet Archive includes objects with a mass (or minimum mass) equal to or less than 30 Jupiter masses.[59]

Another criterion for separating planets and brown dwarfs, rather than deuterium fusion, formation process or location, is whether the core pressure is dominated by coulomb pressure or electron degeneracy pressure.[60][61]

2006 IAU definition of planet

Euler diagram showing the types of bodies in the Solar System.

The matter of the lower limit was addressed during the 2006 meeting of the IAU's General Assembly. After much debate and one failed proposal, a large majority of those remaining at the meeting voted to pass a resolution. The 2006 resolution defines planets within the Solar System as follows:[1]

A "planet" [1] is a celestial body that (a) is in orbit around the Sun, (b) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, and (c) has cleared the neighbourhood around its orbit.

[1] The eight planets are: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune.

Under this definition, the Solar System is considered to have eight planets. Bodies that fulfill the first two conditions but not the third (such as Ceres, Pluto, and Eris) are classified as dwarf planets, provided they are not also natural satellites of other planets. Originally an IAU committee had proposed a definition that would have included a much larger number of planets as it did not include (c) as a criterion.[62] After much discussion, it was decided via a vote that those bodies should instead be classified as dwarf planets.[63]

This definition is based in theories of planetary formation, in which planetary embryos initially clear their orbital neighborhood of other smaller objects. As described by astronomer Steven Soter:[64]

"The end product of secondary disk accretion is a small number of relatively large bodies (planets) in either non-intersecting or resonant orbits, which prevent collisions between them. Minor planets and comets, including KBOs [Kuiper belt objects], differ from planets in that they can collide with each other and with planets."

The 2006 IAU definition presents some challenges for exoplanets because the language is specific to the Solar System and because the criteria of roundness and orbital zone clearance are not presently observable. Astronomer Jean-Luc Margot proposed a mathematical criterion that determines whether an object can clear its orbit during the lifetime of its host star, based on the mass of the planet, its semimajor axis, and the mass of its host star.[65][66] This formula produces a value π that is greater than 1 for planets. The eight known planets and all known exoplanets have π values above 100, while Ceres, Pluto, and Eris have π values of 0.1 or less. Objects with π values of 1 or more are also expected to be approximately spherical, so that objects that fulfill the orbital zone clearance requirement automatically fulfill the roundness requirement.[67]

Objects formerly considered planets

The table below lists Solar System bodies once considered to be planets.

Body Current classification Notes
Sun Star Classified as a classical planet (Ancient Greek πλανῆται, wanderers) in classical antiquity and medieval Europe, in accordance with the now-disproved geocentric model.[68]
Moon Natural satellite
Io, Europa, Ganymede, and Callisto Natural satellites The four largest moons of Jupiter, known as the Galilean moons after their discoverer Galileo Galilei. He referred to them as the "Medicean Planets" in honor of his patron, the Medici family. They were known as secondary planets.[69]
Titan,[f] Iapetus,[g] Rhea,[g] Tethys,[h] and Dione[h] Natural satellites Five of Saturn's larger moons, discovered by Christiaan Huygens and Giovanni Domenico Cassini. As with Jupiter's major moons, they were known as secondary planets.[69]
Pallas, Juno, and Vesta Asteroids Regarded as planets from their discoveries between 1801 and 1807 until they were reclassified as asteroids during the 1850s.[71]

Ceres was subsequently classified as a dwarf planet in 2006.

Ceres Dwarf planet and asteroid
Astraea, Hebe, Iris, Flora, Metis, Hygiea, Parthenope, Victoria, Egeria, Irene, Eunomia Asteroids More asteroids, discovered between 1845 and 1851. The rapidly expanding list of bodies between Mars and Jupiter prompted their reclassification as asteroids, which was widely accepted by 1854.[72]
Pluto Dwarf planet and Kuiper belt object The first known trans-Neptunian object (i.e. minor planet with a semi-major axis beyond Neptune). Regarded as a planet from its discovery in 1930 until it was reclassified as a dwarf planet in 2006.

Beyond the scientific community, Pluto still holds cultural significance for many in the general public due to its historical classification as a planet from 1930 to 2006.[73]

Mythology and naming

The Greek gods of Olympus, after whom the Solar System's Roman names of the planets are derived

The names for the planets in the Western world are derived from the naming practices of the Romans, which ultimately derive from those of the Greeks and the Babylonians. In ancient Greece, the two great luminaries the Sun and the Moon were called Helios and Selene; the farthest planet (Saturn) was called Phainon, the shiner; followed by Phaethon (Jupiter), "bright"; the red planet (Mars) was known as Pyroeis, the "fiery"; the brightest (Venus) was known as Phosphoros, the light bringer; and the fleeting final planet (Mercury) was called Stilbon, the gleamer. The Greeks also made each planet sacred to one among their pantheon of gods, the Olympians: Helios and Selene were the names of both planets and gods; Phainon was sacred to Cronus, the Titan who fathered the Olympians; Phaethon was sacred to Zeus, Cronus's son who deposed him as king; Pyroeis was given to Ares, son of Zeus and god of war; Phosphoros was ruled by Aphrodite, the goddess of love; and Hermes, messenger of the gods and god of learning and wit, ruled over Stilbon.[19]

The Greek practice of grafting their gods' names onto the planets was almost certainly borrowed from the Babylonians. The Babylonians named Phosphoros after their goddess of love, Ishtar; Pyroeis after their god of war, Nergal, Stilbon after their god of wisdom Nabu, and Phaethon after their chief god, Marduk.[74] There are too many concordances between Greek and Babylonian naming conventions for them to have arisen separately.[19] The translation was not perfect. For instance, the Babylonian Nergal was a god of war, and thus the Greeks identified him with Ares. Unlike Ares, Nergal was also god of pestilence and the underworld.[75]

Today, most people in the western world know the planets by names derived from the Olympian pantheon of gods. Although modern Greeks still use their ancient names for the planets, other European languages, because of the influence of the Roman Empire and, later, the Catholic Church, use the Roman (Latin) names rather than the Greek ones. The Romans, who, like the Greeks, were Indo-Europeans, shared with them a common pantheon under different names but lacked the rich narrative traditions that Greek poetic culture had given their gods. During the later period of the Roman Republic, Roman writers borrowed much of the Greek narratives and applied them to their own pantheon, to the point where they became virtually indistinguishable.[76] When the Romans studied Greek astronomy, they gave the planets their own gods' names: Mercurius (for Hermes), Venus (Aphrodite), Mars (Ares), Iuppiter (Zeus) and Saturnus (Cronus). When subsequent planets were discovered in the 18th and 19th centuries, the naming practice was retained with Neptūnus (Poseidon). Uranus is unique in that it is named for a Greek deity rather than his Roman counterpart.

Some Romans, following a belief possibly originating in Mesopotamia but developed in Hellenistic Egypt, believed that the seven gods after whom the planets were named took hourly shifts in looking after affairs on Earth. The order of shifts went Saturn, Jupiter, Mars, Sun, Venus, Mercury, Moon (from the farthest to the closest planet).[77] Therefore, the first day was started by Saturn (1st hour), second day by Sun (25th hour), followed by Moon (49th hour), Mars, Mercury, Jupiter and Venus. Because each day was named by the god that started it, this is also the order of the days of the week in the Roman calendar after the Nundinal cycle was rejected – and still preserved in many modern languages.[78] In English, Saturday, Sunday, and Monday are straightforward translations of these Roman names. The other days were renamed after Tiw (Tuesday), Wóden (Wednesday), Thunor (Thursday), and Fríge (Friday), the Anglo-Saxon gods considered similar or equivalent to Mars, Mercury, Jupiter, and Venus, respectively.

Earth is the only planet whose name in English is not derived from Greco-Roman mythology. Because it was only generally accepted as a planet in the 17th century,[37] there is no tradition of naming it after a god. (The same is true, in English at least, of the Sun and the Moon, though they are no longer generally considered planets.) The name originates from the 8th century Anglo-Saxon word erda, which means ground or soil and was first used in writing as the name of the sphere of Earth perhaps around 1300.[79][80] As with its equivalents in the other Germanic languages, it derives ultimately from the Proto-Germanic word ertho, "ground",[80] as can be seen in the English earth, the German Erde, the Dutch aarde, and the Scandinavian jord. Many of the Romance languages retain the old Roman word terra (or some variation of it) that was used with the meaning of "dry land" as opposed to "sea".[81] The non-Romance languages use their own native words. The Greeks retain their original name, Γή (Ge).

Non-European cultures use other planetary-naming systems. India uses a system based on the Navagraha, which incorporates the seven traditional planets (Surya for the Sun, Chandra for the Moon, Budha for Mercury, Shukra for Venus, Mangala for Mars, Bṛhaspati for Jupiter, and Shani for Saturn) and the ascending and descending lunar nodes Rahu and Ketu.

China and the countries of eastern Asia historically subject to Chinese cultural influence (such as Japan, Korea and Vietnam) use a naming system based on the five Chinese elements: water (Mercury), metal (Venus), fire (Mars), wood (Jupiter) and earth (Saturn).[78]

In traditional Hebrew astronomy, the seven traditional planets have (for the most part) descriptive names – the Sun is חמה Ḥammah or "the hot one," the Moon is לבנה Levanah or "the white one," Venus is כוכב נוגה Kokhav Nogah or "the bright planet," Mercury is כוכב Kokhav or "the planet" (given its lack of distinguishing features), Mars is מאדים Ma'adim or "the red one," and Saturn is שבתאי Shabbatai or "the resting one" (in reference to its slow movement compared to the other visible planets).[82] The odd one out is Jupiter, called צדק Tzedeq or "justice". Steiglitz suggests that this may be a euphemism for the original name of כוכב בעל Kokhav Ba'al or "Baal's planet", seen as idolatrous and euphemized in a similar manner to Ishbosheth from II Samuel.[82]

In Arabic, Mercury is عُطَارِد (ʿUṭārid, cognate with Ishtar / Astarte), Venus is الزهرة (az-Zuhara, "the bright one",[83] an epithet of the goddess Al-'Uzzá[84]), Earth is الأرض (al-ʾArḍ, from the same root as eretz), Mars is اَلْمِرِّيخ (al-Mirrīkh, meaning "featherless arrow" due to its retrograde motion[85]), Jupiter is المشتري (al-Muštarī, "the reliable one", from Akkadian[86]) and Saturn is زُحَل (Zuḥal, "withdrawer"[87]).[88][89]

Formation

An artist's impression of protoplanetary disk

It is not known with certainty how planets are formed. The prevailing theory is that they are formed during the collapse of a nebula into a thin disk of gas and dust. A protostar forms at the core, surrounded by a rotating protoplanetary disk. Through accretion (a process of sticky collision) dust particles in the disk steadily accumulate mass to form ever-larger bodies. Local concentrations of mass known as planetesimals form, and these accelerate the accretion process by drawing in additional material by their gravitational attraction. These concentrations become ever denser until they collapse inward under gravity to form protoplanets.[90] After a planet reaches a mass somewhat larger than Mars' mass, it begins to accumulate an extended atmosphere,[91] greatly increasing the capture rate of the planetesimals by means of atmospheric drag.[92][93] Depending on the accretion history of solids and gas, a giant planet, an ice giant, or a terrestrial planet may result.[94][95][96]

Asteroid collision - building planets (artist concept).

When the protostar has grown such that it ignites to form a star, the surviving disk is removed from the inside outward by photoevaporation, the solar wind, Poynting–Robertson drag and other effects.[97][98] Thereafter there still may be many protoplanets orbiting the star or each other, but over time many will collide, either to form a single larger planet or release material for other larger protoplanets or planets to absorb.[99] Those objects that have become massive enough will capture most matter in their orbital neighbourhoods to become planets. Protoplanets that have avoided collisions may become natural satellites of planets through a process of gravitational capture, or remain in belts of other objects to become either dwarf planets or small bodies.

The energetic impacts of the smaller planetesimals (as well as radioactive decay) will heat up the growing planet, causing it to at least partially melt. The interior of the planet begins to differentiate by mass, developing a denser core.[100] Smaller terrestrial planets lose most of their atmospheres because of this accretion, but the lost gases can be replaced by outgassing from the mantle and from the subsequent impact of comets.[101] (Smaller planets will lose any atmosphere they gain through various escape mechanisms.)

With the discovery and observation of planetary systems around stars other than the Sun, it is becoming possible to elaborate, revise or even replace this account. The level of metallicity—an astronomical term describing the abundance of chemical elements with an atomic number greater than 2 (helium)—is now thought to determine the likelihood that a star will have planets.[102] Hence, it is thought that a metal-rich population I star will likely have a more substantial planetary system than a metal-poor, population II star.

Supernova remnant ejecta producing planet-forming material.

Solar System

Solar System – sizes but not distances are to scale
The Sun and the eight planets of the Solar System
The four giant planets Jupiter, Saturn, Uranus, and Neptune against the Sun and some sunspots

There are eight planets in the Solar System, which are in increasing distance from the Sun:

  1. Mercury
  2. Venus
  3. Earth
  4. Mars
  5. Jupiter
  6. Saturn
  7. Uranus
  8. Neptune

Jupiter is the largest, at 318 Earth masses, whereas Mercury is the smallest, at 0.055 Earth masses.

The planets of the Solar System can be divided into categories based on their composition:

  • Terrestrials: Planets that are similar to Earth, with bodies largely composed of rock: Mercury, Venus, Earth and Mars. At 0.055 Earth masses, Mercury is the smallest terrestrial planet (and smallest planet) in the Solar System. Earth is the largest terrestrial planet.
  • Giant planets (Jovians): Massive planets significantly more massive than the terrestrials: Jupiter, Saturn, Uranus, Neptune.
    • Gas giants, Jupiter and Saturn, are giant planets primarily composed of hydrogen and helium and are the most massive planets in the Solar System. Jupiter, at 318 Earth masses, is the largest planet in the Solar System, and Saturn is one third as massive, at 95 Earth masses.
    • Ice giants, Uranus and Neptune, are primarily composed of low-boiling-point materials such as water, methane, and ammonia, with thick atmospheres of hydrogen and helium. They have a significantly lower mass than the gas giants (only 14 and 17 Earth masses).

Planetary attributes

Name Equatorial
diameter [i]
Mass[i] Semi-major axis (AU) Orbital period
(years) [i]
Inclination
to Sun's equator
(°)
Orbital
eccentricity
Rotation period
(days)
Confirmed
moons[j]
Axial tilt (°) Rings Atmosphere
1. Mercury 0.382 0.06 0.39 0.24 3.38 0.206 58.64 0 0.04 no minimal
2. Venus 0.949 0.82 0.72 0.62 3.86 0.007 −243.02 0 177.36 no CO2, N2
3. Earth(a) 1.00 1.00 1.00 1.00 7.25 0.017 1.00 1 23.44 no N2, O2, Ar
4. Mars 0.532 0.11 1.52 1.88 5.65 0.093 1.03 2 25.19 no CO2, N2, Ar
5. Jupiter 11.209 317.8 5.20 11.86 6.09 0.048 0.41 79 3.13 yes H2, He
6. Saturn 9.449 95.2 9.54 29.46 5.51 0.054 0.43 82 26.73 yes H2, He
7. Uranus 4.007 14.6 19.22 84.01 6.48 0.047 −0.72 27 97.77 yes H2, He, CH4
8. Neptune 3.883 17.2 30.06 164.8 6.43 0.009 0.67 14 28.32 yes H2, He, CH4
Color legend:   terrestrial planets   gas giants   ice giants (both are giant planets). (a) Find absolute values in article Earth

Exoplanets

Exoplanets, by year of discovery, through September 2014.

An exoplanet (extrasolar planet) is a planet outside the Solar System. As of 1 November 2019, there are 4,126 confirmed exoplanets in 3,067 systems, with 671 systems having more than one planet.[104][105][106][107]

In early 1992, radio astronomers Aleksander Wolszczan and Dale Frail announced the discovery of two planets orbiting the pulsar PSR 1257+12.[44] This discovery was confirmed, and is generally considered to be the first definitive detection of exoplanets. These pulsar planets are believed to have formed from the unusual remnants of the supernova that produced the pulsar, in a second round of planet formation, or else to be the remaining rocky cores of giant planets that survived the supernova and then decayed into their current orbits.

Sizes of Kepler Planet Candidates – based on 2,740 candidates orbiting 2,036 stars as of 4 November 2013 (NASA).

The first confirmed discovery of an extrasolar planet orbiting an ordinary main-sequence star occurred on 6 October 1995, when Michel Mayor and Didier Queloz of the University of Geneva announced the detection of an exoplanet around 51 Pegasi. From then until the Kepler mission most known extrasolar planets were gas giants comparable in mass to Jupiter or larger as they were more easily detected. The catalog of Kepler candidate planets consists mostly of planets the size of Neptune and smaller, down to smaller than Mercury.

There are types of planets that do not exist in the Solar System: super-Earths and mini-Neptunes, which could be rocky like Earth or a mixture of volatiles and gas like Neptune—a radius of 1.75 times that of Earth is a possible dividing line between the two types of planet.[108] There are hot Jupiters that orbit very close to their star and may evaporate to become chthonian planets, which are the leftover cores. Another possible type of planet is carbon planets, which form in systems with a higher proportion of carbon than in the Solar System.

A 2012 study, analyzing gravitational microlensing data, estimates an average of at least 1.6 bound planets for every star in the Milky Way.[10]

On December 20, 2011, the Kepler Space Telescope team reported the discovery of the first Earth-size exoplanets, Kepler-20e[5] and Kepler-20f,[6] orbiting a Sun-like star, Kepler-20.[7][8][9]

Around 1 in 5 Sun-like[c] stars have an "Earth-sized"[d] planet in the habitable[e] zone, so the nearest would be expected to be within 12 light-years distance from Earth.[109][110] The frequency of occurrence of such terrestrial planets is one of the variables in the Drake equation, which estimates the number of intelligent, communicating civilizations that exist in the Milky Way.[111]

There are exoplanets that are much closer to their parent star than any planet in the Solar System is to the Sun, and there are also exoplanets that are much farther from their star. Mercury, the closest planet to the Sun at 0.4 AU, takes 88 days for an orbit, but the shortest known orbits for exoplanets take only a few hours, e.g. Kepler-70b. The Kepler-11 system has five of its planets in shorter orbits than Mercury's, all of them much more massive than Mercury. Neptune is 30 AU from the Sun and takes 165 years to orbit, but there are exoplanets that are hundreds of AU from their star and take more than a thousand years to orbit, e.g. 1RXS1609 b.

Planetary-mass objects

Artist's impression of a super-Jupiter around the brown dwarf 2M1207.[112]

A planetary-mass object (PMO), planemo,[113] or planetary body is a celestial object with a mass that falls within the range of the definition of a planet: massive enough to achieve hydrostatic equilibrium (to be rounded under its own gravity), but not enough to sustain core fusion like a star.[114][115] By definition, all planets are planetary-mass objects, but the purpose of this term is to refer to objects that do not conform to typical expectations for a planet. These include dwarf planets, which are rounded by their own gravity but not massive enough to clear their own orbit, the larger moons, and free-floating planemos, which may have been ejected from a system (rogue planets) or formed through cloud-collapse rather than accretion (sometimes called sub-brown dwarfs).

Dwarf planets

A dwarf planet is a planetary-mass object that is neither a true planet nor a natural satellite; it is in direct orbit of a star, and is massive enough for its gravity to compress it into a hydrostatically equilibrious shape (usually a spheroid), but has not cleared the neighborhood of other material around its orbit. Alan Stern, who proposed the term 'dwarf planet', has argued that location should not matter and that only geophysical attributes should be taken into account (geophysical planet definition), and that dwarf planets are thus a subtype of planet. However, the IAU classifies dwarf planets as a separate category.[116] The number of dwarf planets in the Solar System is unknown. IAU has recognized three (Ceres, Pluto and Eris) and assigned the naming of two additional candidates, Haumea and Makemake, to the IAU dwarf-planet naming committee.

Rogue planets

Several computer simulations of stellar and planetary system formation have suggested that some objects of planetary mass would be ejected into interstellar space.[117] Some scientists have argued that such objects found roaming in deep space should be classed as "planets", although others have suggested that they should be called low-mass brown dwarfs.[118][119]

Sub-brown dwarfs

Stars form via the gravitational collapse of gas clouds, but smaller objects can also form via cloud-collapse. Planetary-mass objects formed this way are sometimes called sub-brown dwarfs. Sub-brown dwarfs may be free-floating such as Cha 110913-773444[118] and OTS 44,[120] or orbiting a larger object such as 2MASS J04414489+2301513.

Binary systems of sub-brown dwarfs are theoretically possible; Oph 162225-240515 was initially thought to be a binary system of a brown dwarf of 14 Jupiter masses and a sub-brown dwarf of 7 Jupiter masses, but further observations revised the estimated masses upwards to greater than 13 Jupiter masses, making them brown dwarfs according to the IAU working definitions.[121][122][123]

Former stars

In close binary star systems one of the stars can lose mass to a heavier companion. Accretion-powered pulsars may drive mass loss. The shrinking star can then become a planetary-mass object. An example is a Jupiter-mass object orbiting the pulsar PSR J1719-1438.[124] These shrunken white dwarfs may become a helium planet or carbon planet.

Satellite planets

Some large satellites (moons) are of similar size or larger than the planet Mercury, e.g. Jupiter's Galilean moons and Titan. Alan Stern has argued that location should not matter and that only geophysical attributes should be taken into account in the definition of a planet, and proposes the term satellite planet for a planet-sized satellite.[125]

Captured planets

Rogue planets in stellar clusters have similar velocities to the stars and so can be recaptured. They are typically captured into wide orbits between 100 and 105 AU. The capture efficiency decreases with increasing cluster volume, and for a given cluster size it increases with the host/primary mass. It is almost independent of the planetary mass. Single and multiple planets could be captured into arbitrary unaligned orbits, non-coplanar with each other or with the stellar host spin, or pre-existing planetary system.[126]

Attributes

Although each planet has unique physical characteristics, a number of broad commonalities do exist among them. Some of these characteristics, such as rings or natural satellites, have only as yet been observed in planets in the Solar System, whereas others are also commonly observed in extrasolar planets.

Dynamic characteristics

Orbit

The orbit of the planet Neptune compared to that of Pluto. Note the elongation of Pluto's orbit in relation to Neptune's (eccentricity), as well as its large angle to the ecliptic (inclination).

According to current definitions, all planets must revolve around stars; thus, any potential "rogue planets" are excluded. In the Solar System, all the planets orbit the Sun in the same direction as the Sun rotates (counter-clockwise as seen from above the Sun's north pole). At least one extrasolar planet, WASP-17b, has been found to orbit in the opposite direction to its star's rotation.[127] The period of one revolution of a planet's orbit is known as its sidereal period or year.[128] A planet's year depends on its distance from its star; the farther a planet is from its star, not only the longer the distance it must travel, but also the slower its speed, because it is less affected by its star's gravity. No planet's orbit is perfectly circular, and hence the distance of each varies over the course of its year. The closest approach to its star is called its periastron (perihelion in the Solar System), whereas its farthest separation from the star is called its apastron (aphelion). As a planet approaches periastron, its speed increases as it trades gravitational potential energy for kinetic energy, just as a falling object on Earth accelerates as it falls; as the planet reaches apastron, its speed decreases, just as an object thrown upwards on Earth slows down as it reaches the apex of its trajectory.[129]

Each planet's orbit is delineated by a set of elements:

  • The eccentricity of an orbit describes how elongated a planet's orbit is. Planets with low eccentricities have more circular orbits, whereas planets with high eccentricities have more elliptical orbits. The planets in the Solar System have very low eccentricities, and thus nearly circular orbits.[128] Comets and Kuiper belt objects (as well as several extrasolar planets) have very high eccentricities, and thus exceedingly elliptical orbits.[130][131]
  • Illustration of the semi-major axis
    The semi-major axis is the distance from a planet to the half-way point along the longest diameter of its elliptical orbit (see image). This distance is not the same as its apastron, because no planet's orbit has its star at its exact centre.[128]
  • The inclination of a planet tells how far above or below an established reference plane its orbit lies. In the Solar System, the reference plane is the plane of Earth's orbit, called the ecliptic. For extrasolar planets, the plane, known as the sky plane or plane of the sky, is the plane perpendicular to the observer's line of sight from Earth.[132] The eight planets of the Solar System all lie very close to the ecliptic; comets and Kuiper belt objects like Pluto are at far more extreme angles to it.[133] The points at which a planet crosses above and below its reference plane are called its ascending and descending nodes.[128] The longitude of the ascending node is the angle between the reference plane's 0 longitude and the planet's ascending node. The argument of periapsis (or perihelion in the Solar System) is the angle between a planet's ascending node and its closest approach to its star.[128]

Axial tilt

Earth's axial tilt is about 23.4°. It oscillates between 22.1° and 24.5° on a 41,000-year cycle and is currently decreasing.

Planets also have varying degrees of axial tilt; they lie at an angle to the plane of their stars' equators. This causes the amount of light received by each hemisphere to vary over the course of its year; when the northern hemisphere points away from its star, the southern hemisphere points towards it, and vice versa. Each planet therefore has seasons, changes to the climate over the course of its year. The time at which each hemisphere points farthest or nearest from its star is known as its solstice. Each planet has two in the course of its orbit; when one hemisphere has its summer solstice, when its day is longest, the other has its winter solstice, when its day is shortest. The varying amount of light and heat received by each hemisphere creates annual changes in weather patterns for each half of the planet. Jupiter's axial tilt is very small, so its seasonal variation is minimal; Uranus, on the other hand, has an axial tilt so extreme it is virtually on its side, which means that its hemispheres are either perpetually in sunlight or perpetually in darkness around the time of its solstices.[134] Among extrasolar planets, axial tilts are not known for certain, though most hot Jupiters are believed to have negligible to no axial tilt as a result of their proximity to their stars.[135]

Rotation

The planets rotate around invisible axes through their centres. A planet's rotation period is known as a stellar day. Most of the planets in the Solar System rotate in the same direction as they orbit the Sun, which is counter-clockwise as seen from above the Sun's north pole, the exceptions being Venus[136] and Uranus,[137] which rotate clockwise, though Uranus's extreme axial tilt means there are differing conventions on which of its poles is "north", and therefore whether it is rotating clockwise or anti-clockwise.[138] Regardless of which convention is used, Uranus has a retrograde rotation relative to its orbit.

The rotation of a planet can be induced by several factors during formation. A net angular momentum can be induced by the individual angular momentum contributions of accreted objects. The accretion of gas by the giant planets can also contribute to the angular momentum. Finally, during the last stages of planet building, a stochastic process of protoplanetary accretion can randomly alter the spin axis of the planet.[139] There is great variation in the length of day between the planets, with Venus taking 243 days to rotate, and the giant planets only a few hours.[140] The rotational periods of extrasolar planets are not known. However, for "hot" Jupiters, their proximity to their stars means that they are tidally locked (i.e., their orbits are in sync with their rotations). This means, they always show one face to their stars, with one side in perpetual day, the other in perpetual night.[141]

Orbital clearing

The defining dynamic characteristic of a planet is that it has cleared its neighborhood. A planet that has cleared its neighborhood has accumulated enough mass to gather up or sweep away all the planetesimals in its orbit. In effect, it orbits its star in isolation, as opposed to sharing its orbit with a multitude of similar-sized objects. This characteristic was mandated as part of the IAU's official definition of a planet in August, 2006. This criterion excludes such planetary bodies as Pluto, Eris and Ceres from full-fledged planethood, making them instead dwarf planets.[1] Although to date this criterion only applies to the Solar System, a number of young extrasolar systems have been found in which evidence suggests orbital clearing is taking place within their circumstellar discs.[142]

Physical characteristics

Mass

A planet's defining physical characteristic is that it is massive enough for the force of its own gravity to dominate over the electromagnetic forces binding its physical structure, leading to a state of hydrostatic equilibrium. This effectively means that all planets are spherical or spheroidal. Up to a certain mass, an object can be irregular in shape, but beyond that point, which varies depending on the chemical makeup of the object, gravity begins to pull an object towards its own centre of mass until the object collapses into a sphere.[143]

Mass is also the prime attribute by which planets are distinguished from stars. The upper mass limit for planethood is roughly 13 times Jupiter's mass for objects with solar-type isotopic abundance, beyond which it achieves conditions suitable for nuclear fusion. Other than the Sun, no objects of such mass exist in the Solar System; but there are exoplanets of this size. The 13-Jupiter-mass limit is not universally agreed upon and the Extrasolar Planets Encyclopaedia includes objects up to 20 Jupiter masses,[144] and the Exoplanet Data Explorer up to 24 Jupiter masses.[145]

The smallest known planet is PSR B1257+12A, one of the first extrasolar planets discovered, which was found in 1992 in orbit around a pulsar. Its mass is roughly half that of the planet Mercury.[4] The smallest known planet orbiting a main-sequence star other than the Sun is Kepler-37b, with a mass (and radius) slightly higher than that of the Moon.

Internal differentiation

Illustration of the interior of Jupiter, with a rocky core overlaid by a deep layer of metallic hydrogen

Every planet began its existence in an entirely fluid state; in early formation, the denser, heavier materials sank to the centre, leaving the lighter materials near the surface. Each therefore has a differentiated interior consisting of a dense planetary core surrounded by a mantle that either is or was a fluid. The terrestrial planets are sealed within hard crusts,[146] but in the giant planets the mantle simply blends into the upper cloud layers. The terrestrial planets have cores of elements such as iron and nickel, and mantles of silicates. Jupiter and Saturn are believed to have cores of rock and metal surrounded by mantles of metallic hydrogen.[147] Uranus and Neptune, which are smaller, have rocky cores surrounded by mantles of water, ammonia, methane and other ices.[148] The fluid action within these planets' cores creates a geodynamo that generates a magnetic field.[146]

Atmosphere

Earth's atmosphere

All of the Solar System planets except Mercury[149] have substantial atmospheres because their gravity is strong enough to keep gases close to the surface. The larger giant planets are massive enough to keep large amounts of the light gases hydrogen and helium, whereas the smaller planets lose these gases into space.[150] The composition of Earth's atmosphere is different from the other planets because the various life processes that have transpired on the planet have introduced free molecular oxygen.[151]

Planetary atmospheres are affected by the varying insolation or internal energy, leading to the formation of dynamic weather systems such as hurricanes, (on Earth), planet-wide dust storms (on Mars), a greater-than-Earth-sized anticyclone on Jupiter (called the Great Red Spot), and holes in the atmosphere (on Neptune).[134] At least one extrasolar planet, HD 189733 b, has been claimed to have such a weather system, similar to the Great Red Spot but twice as large.[152]

Hot Jupiters, due to their extreme proximities to their host stars, have been shown to be losing their atmospheres into space due to stellar radiation, much like the tails of comets.[153][154] These planets may have vast differences in temperature between their day and night sides that produce supersonic winds,[155] although the day and night sides of HD 189733 b appear to have very similar temperatures, indicating that that planet's atmosphere effectively redistributes the star's energy around the planet.[152]

Magnetosphere

One important characteristic of the planets is their intrinsic magnetic moments, which in turn give rise to magnetospheres. The presence of a magnetic field indicates that the planet is still geologically alive. In other words, magnetized planets have flows of electrically conducting material in their interiors, which generate their magnetic fields. These fields significantly change the interaction of the planet and solar wind. A magnetized planet creates a cavity in the solar wind around itself called the magnetosphere, which the wind cannot penetrate. The magnetosphere can be much larger than the planet itself. In contrast, non-magnetized planets have only small magnetospheres induced by interaction of the ionosphere with the solar wind, which cannot effectively protect the planet.[156]

Of the eight planets in the Solar System, only Venus and Mars lack such a magnetic field.[156] In addition, the moon of Jupiter Ganymede also has one. Of the magnetized planets the magnetic field of Mercury is the weakest, and is barely able to deflect the solar wind. Ganymede's magnetic field is several times larger, and Jupiter's is the strongest in the Solar System (so strong in fact that it poses a serious health risk to future manned missions to its moons). The magnetic fields of the other giant planets are roughly similar in strength to that of Earth, but their magnetic moments are significantly larger. The magnetic fields of Uranus and Neptune are strongly tilted relative the rotational axis and displaced from the centre of the planet.[156]

In 2004, a team of astronomers in Hawaii observed an extrasolar planet around the star HD 179949, which appeared to be creating a sunspot on the surface of its parent star. The team hypothesized that the planet's magnetosphere was transferring energy onto the star's surface, increasing its already high 7,760 °C temperature by an additional 400 °C.[157]

Secondary characteristics

Several planets or dwarf planets in the Solar System (such as Neptune and Pluto) have orbital periods that are in resonance with each other or with smaller bodies (this is also common in satellite systems). All except Mercury and Venus have natural satellites, often called "moons". Earth has one, Mars has two, and the giant planets have numerous moons in complex planetary-type systems. Many moons of the giant planets have features similar to those on the terrestrial planets and dwarf planets, and some have been studied as possible abodes of life (especially Europa).[158][159][160]

The four giant planets are also orbited by planetary rings of varying size and complexity. The rings are composed primarily of dust or particulate matter, but can host tiny 'moonlets' whose gravity shapes and maintains their structure. Although the origins of planetary rings is not precisely known, they are believed to be the result of natural satellites that fell below their parent planet's Roche limit and were torn apart by tidal forces.[161][162]

No secondary characteristics have been observed around extrasolar planets. The sub-brown dwarf Cha 110913-773444, which has been described as a rogue planet, is believed to be orbited by a tiny protoplanetary disc[118] and the sub-brown dwarf OTS 44 was shown to be surrounded by a substantial protoplanetary disk of at least 10 Earth masses.[120]

See also

Notes

  1. ^ According to the IAU definition of planet.
  2. ^ This definition is drawn from two separate IAU declarations; a formal definition agreed by the IAU in 2006, and an informal working definition established by the IAU in 2001/2003 for objects outside of the Solar System. The official 2006 definition applies only to the Solar System, whereas the 2003 definition applies to planets around other stars. The extrasolar planet issue was deemed too complex to resolve at the 2006 IAU conference.
  3. ^ a b For the purpose of this 1 in 5 statistic, "Sun-like" means G-type star. Data for Sun-like stars wasn't available so this statistic is an extrapolation from data about K-type stars
  4. ^ a b For the purpose of this 1 in 5 statistic, Earth-sized means 1–2 Earth radii
  5. ^ a b For the purpose of this 1 in 5 statistic, "habitable zone" means the region with 0.25 to 4 times Earth's stellar flux (corresponding to 0.5–2 AU for the Sun).
  6. ^ Referred to by Huygens as a Planetes novus ("new planet") in his Systema Saturnium
  7. ^ a b Both labelled nouvelles planètes (new planets) by Cassini in his Découverte de deux nouvelles planetes autour de Saturne[70]
  8. ^ a b Both once referred to as "planets" by Cassini in his An Extract of the Journal Des Scavans.... The term "satellite" had already begun to be used to distinguish such bodies from those around which they orbited ("primary planets").
  9. ^ a b c Measured relative to Earth.
  10. ^ Jupiter has the most verified satellites (79) in the Solar System.[103]

References

  1. ^ a b c d "IAU 2006 General Assembly: Result of the IAU Resolution votes". International Astronomical Union. 2006. Retrieved 2009-12-30.
  2. ^ a b "Working Group on Extrasolar Planets (WGESP) of the International Astronomical Union". IAU. 2001. Archived from the original on 2006-09-16. Retrieved 2008-08-23.
  3. ^ "NASA discovery doubles the number of known planets". USA TODAY. 10 May 2016. Retrieved 10 May 2016.
  4. ^ a b Schneider, Jean (16 January 2013). "Interactive Extra-solar Planets Catalog". The Extrasolar Planets Encyclopaedia. Retrieved 2013-01-15.
  5. ^ a b NASA Staff (20 December 2011). "Kepler: A Search For Habitable Planets – Kepler-20e". NASA. Retrieved 2011-12-23.
  6. ^ a b NASA Staff (20 December 2011). "Kepler: A Search For Habitable Planets – Kepler-20f". NASA. Retrieved 2011-12-23.
  7. ^ a b Johnson, Michele (20 December 2011). "NASA Discovers First Earth-size Planets Beyond Our Solar System". NASA. Retrieved 2011-12-20.
  8. ^ a b Hand, Eric (20 December 2011). "Kepler discovers first Earth-sized exoplanets". Nature. doi:10.1038/nature.2011.9688.
  9. ^ a b Overbye, Dennis (20 December 2011). "Two Earth-Size Planets Are Discovered". New York Times. Retrieved 2011-12-21.
  10. ^ a b Cassan, Arnaud; D. Kubas; J.-P. Beaulieu; M. Dominik; et al. (12 January 2012). "One or more bound planets per Milky Way star from microlensing observations". Nature. 481 (7380): 167–169. arXiv:1202.0903. Bibcode:2012Natur.481..167C. doi:10.1038/nature10684. PMID 22237108.
  11. ^ "Ancient Greek Astronomy and Cosmology". The Library of Congress. Retrieved 2016-05-19.
  12. ^ πλανήτης, H. G. Liddell and R. Scott, A Greek–English Lexicon, ninth edition, (Oxford: Clarendon Press, 1940).
  13. ^ "Definition of planet". Merriam-Webster OnLine. Retrieved 2007-07-23.
  14. ^ "Planet Etymology". dictionary.com. Retrieved 29 June 2015.
  15. ^ a b "planet, n". Oxford English Dictionary. 2007. Retrieved 2008-02-07. Note: select the Etymology tab
  16. ^ Neugebauer, Otto E. (1945). "The History of Ancient Astronomy Problems and Methods". Journal of Near Eastern Studies. 4 (1): 1–38. doi:10.1086/370729.
  17. ^ Ronan, Colin. "Astronomy Before the Telescope". Astronomy in China, Korea and Japan (Walker ed.). pp. 264–265.
  18. ^ Kuhn, Thomas S. (1957). The Copernican Revolution. Harvard University Press. pp. 5–20. ISBN 978-0-674-17103-9.
  19. ^ a b c d Evans, James (1998). The History and Practice of Ancient Astronomy. Oxford University Press. pp. 296–7. ISBN 978-0-19-509539-5. Retrieved 2008-02-04.
  20. ^ Francesca Rochberg (2000). "Astronomy and Calendars in Ancient Mesopotamia". In Jack Sasson (ed.). Civilizations of the Ancient Near East. III. p. 1930.
  21. ^ Holden, James Herschel (1996). A History of Horoscopic Astrology. AFA. p. 1. ISBN 978-0-86690-463-6.
  22. ^ Hermann Hunger, ed. (1992). Astrological reports to Assyrian kings. State Archives of Assyria. 8. Helsinki University Press. ISBN 978-951-570-130-5.
  23. ^ Lambert, W. G.; Reiner, Erica (1987). "Babylonian Planetary Omens. Part One. Enuma Anu Enlil, Tablet 63: The Venus Tablet of Ammisaduqa". Journal of the American Oriental Society. 107 (1): 93–96. doi:10.2307/602955. JSTOR 602955.
  24. ^ Kasak, Enn; Veede, Raul (2001). Mare Kõiva; Andres Kuperjanov (eds.). "Understanding Planets in Ancient Mesopotamia" (PDF). Electronic Journal of Folklore. 16: 7–35. CiteSeerX 10.1.1.570.6778. doi:10.7592/fejf2001.16.planets. Retrieved 2008-02-06.
  25. ^ A. Sachs (May 2, 1974). "Babylonian Observational Astronomy". Philosophical Transactions of the Royal Society. 276 (1257): 43–50 [45 & 48–9]. Bibcode:1974RSPTA.276...43S. doi:10.1098/rsta.1974.0008. JSTOR 74273.
  26. ^ Burnet, John (1950). Greek philosophy: Thales to Plato. Macmillan and Co. pp. 7–11. ISBN 978-1-4067-6601-1. Retrieved 2008-02-07.
  27. ^ a b Goldstein, Bernard R. (1997). "Saving the phenomena: the background to Ptolemy's planetary theory". Journal for the History of Astronomy. 28 (1): 1–12. Bibcode:1997JHA....28....1G. doi:10.1177/002182869702800101.
  28. ^ Ptolemy; Toomer, G. J. (1998). Ptolemy's Almagest. Princeton University Press. ISBN 978-0-691-00260-6.
  29. ^ Cicero, De Natura Deorum.
  30. ^ J. J. O'Connor and E. F. Robertson, Aryabhata the Elder, MacTutor History of Mathematics archive
  31. ^ Sarma, K. V. (1997) "Astronomy in India" in Selin, Helaine (editor) Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures, Kluwer Academic Publishers, ISBN 0-7923-4066-3, p. 116
  32. ^ a b Ramasubramanian, K. (1998). "Model of planetary motion in the works of Kerala astronomers". Bulletin of the Astronomical Society of India. 26: 11–31 [23–4]. Bibcode:1998BASI...26...11R.
  33. ^ Ramasubramanian etc. (1994)
  34. ^ Sally P. Ragep (2007). "Ibn Sina, Abu Ali [known as Avicenna] (980?1037)". In Thomas Hockey (ed.). Ibn Sīnā: Abū ʿAlī al‐Ḥusayn ibn ʿAbdallāh ibn Sīnā. The Biographical Encyclopedia of Astronomers. Springer Science+Business Media. pp. 570–572. Bibcode:2000eaa..bookE3736.. doi:10.1888/0333750888/3736. ISBN 978-0-333-75088-9.
  35. ^ S. M. Razaullah Ansari (2002). History of oriental astronomy: proceedings of the joint discussion-17 at the 23rd General Assembly of the International Astronomical Union, organised by the Commission 41 (History of Astronomy), held in Kyoto, August 25–26, 1997. Springer. p. 137. ISBN 978-1-4020-0657-9.
  36. ^ Fred Espenak. "Six millennium catalog of Venus transits: 2000 BCE to 4000 CE". NASA/GSFC. Retrieved 11 February 2012.
  37. ^ a b Van Helden, Al (1995). "Copernican System". The Galileo Project. Retrieved 2008-01-28.
  38. ^ See primary citations in Timeline of discovery of Solar System planets and their moons
  39. ^ Hilton, James L. (2001-09-17). "When Did the Asteroids Become Minor Planets?". U.S. Naval Observatory. Archived from the original on 2007-09-21. Retrieved 2007-04-08.
  40. ^ Croswell, K. (1997). Planet Quest: The Epic Discovery of Alien Solar Systems. The Free Press. p. 57. ISBN 978-0-684-83252-4.
  41. ^ Lyttleton, Raymond A. (1936). "On the possible results of an encounter of Pluto with the Neptunian system". Monthly Notices of the Royal Astronomical Society. 97 (2): 108–115. Bibcode:1936MNRAS..97..108L. doi:10.1093/mnras/97.2.108.
  42. ^ Whipple, Fred (1964). "The History of the Solar System". Proceedings of the National Academy of Sciences of the United States of America. 52 (2): 565–594. Bibcode:1964PNAS...52..565W. doi:10.1073/pnas.52.2.565. PMC 300311. PMID 16591209.
  43. ^ Luu, Jane X.; Jewitt, David C. (1996). "The Kuiper Belt". Scientific American. 274 (5): 46–52. Bibcode:1996SciAm.274e..46L. doi:10.1038/scientificamerican0596-46.
  44. ^ a b Wolszczan, A.; Frail, D. A. (1992). "A planetary system around the millisecond pulsar PSR1257 + 12". Nature. 355 (6356): 145–147. Bibcode:1992Natur.355..145W. doi:10.1038/355145a0.
  45. ^ Mayor, Michel; Queloz, Didier (1995). "A Jupiter-mass companion to a solar-type star". Nature. 378 (6356): 355–359. Bibcode:1995Natur.378..355M. doi:10.1038/378355a0.
  46. ^ Basri, Gibor (2000). "Observations of Brown Dwarfs". Annual Review of Astronomy and Astrophysics. 38 (1): 485–519. Bibcode:2000ARA&A..38..485B. doi:10.1146/annurev.astro.38.1.485.
  47. ^ Green, D. W. E. (2006-09-13). "(134340) Pluto, (136199) Eris, and (136199) Eris I (Dysnomia)" (PDF). IAU Circular. Central Bureau for Astronomical Telegrams, International Astronomical Union. 8747: 1. Bibcode:2006IAUC.8747....1G. Circular No. 8747. Archived from the original on June 24, 2008. Retrieved 2011-07-05.
  48. ^ Saumon, D.; Hubbard, W. B.; Burrows, A.; Guillot, T.; et al. (1996). "A Theory of Extrasolar Giant Planets". Astrophysical Journal. 460: 993–1018. arXiv:astro-ph/9510046. Bibcode:1996ApJ...460..993S. doi:10.1086/177027.
  49. ^ See for example the list of references for: Butler, R. P.; et al. (2006). "Catalog of Nearby Exoplanets". University of California and the Carnegie Institution. Retrieved 2008-08-23.
  50. ^ Stern, S. Alan (2004-03-22). "Gravity Rules: The Nature and Meaning of Planethood". SpaceDaily. Retrieved 2008-08-23.
  51. ^ Whitney Clavin (2005-11-29). "A Planet With Planets? Spitzer Finds Cosmic Oddball". NASA. Retrieved 2006-03-26.
  52. ^ Evidence of an Upper Bound on the Masses of Planets and its Implications for Giant Planet Formation, Kevin C. Schlaufman, 18 Jan 2018. The Astrophysical Journal, Volume 853, Number 1, 2018 January 22, http://iopscience.iop.org/article/10.3847/1538-4357/aa961c/meta
  53. ^ Bodenheimer, Peter; D'Angelo, Gennaro; Lissauer, Jack J.; Fortney, Jonathan J.; Saumon, Didier (20 June 2013). "Deuterium Burning in Massive Giant Planets and Low-mass Brown Dwarfs Formed by Core-nucleated Accretion". The Astrophysical Journal. 770 (2): 120. arXiv:1305.0980. Bibcode:2013ApJ...770..120B. doi:10.1088/0004-637X/770/2/120.
  54. ^ Spiegel; Adam Burrows; Milsom (2010). "The Deuterium-Burning Mass Limit for Brown Dwarfs and Giant Planets". The Astrophysical Journal. 727 (1): 57. arXiv:1008.5150. Bibcode:2011ApJ...727...57S. doi:10.1088/0004-637X/727/1/57.
  55. ^ Schneider, J.; Dedieu, C.; Le Sidaner, P.; Savalle, R.; Zolotukhin, I. (2011). "Defining and cataloging exoplanets: The exoplanet.eu database". Astronomy & Astrophysics. 532 (79): A79. arXiv:1106.0586. Bibcode:2011A&A...532A..79S. doi:10.1051/0004-6361/201116713.
  56. ^ Exoplanets versus brown dwarfs: the CoRoT view and the future, Jean Schneider, 4 Apr 2016
  57. ^ Hatzes Heike Rauer, Artie P. (2015). "A Definition for Giant Planets Based on the Mass-Density Relationship". The Astrophysical Journal. 810 (2): L25. arXiv:1506.05097. Bibcode:2015ApJ...810L..25H. doi:10.1088/2041-8205/810/2/L25.
  58. ^ Wright, J. T.; et al. (2010). "The Exoplanet Orbit Database". arXiv:1012.5676v1 [astro-ph.SR].
  59. ^ Exoplanet Criteria for Inclusion in the Archive, NASA Exoplanet Archive
  60. ^ Basri, Gibor; Brown, Michael E (2006). "Planetesimals To Brown Dwarfs: What is a Planet?". Annu. Rev. Earth Planet. Sci. 34: 193–216. arXiv:astro-ph/0608417. Bibcode:2006AREPS..34..193B. doi:10.1146/annurev.earth.34.031405.125058.
  61. ^ Boss, Alan P.; Basri, Gibor; Kumar, Shiv S.; Liebert, James; et al. (2003). "Nomenclature: Brown Dwarfs, Gas Giant Planets, and ?". Brown Dwarfs. 211: 529. Bibcode:2003IAUS..211..529B.
  62. ^ Rincon, Paul (2006-08-16). "Planets plan boosts tally 12". BBC. Retrieved 2008-08-23.
  63. ^ "Pluto loses status as a planet". BBC. 2006-08-24. Retrieved 2008-08-23.
  64. ^ Soter, Steven (2006). "What is a Planet". Astronomical Journal. 132 (6): 2513–19. arXiv:astro-ph/0608359. Bibcode:2006AJ....132.2513S. doi:10.1086/508861.
  65. ^ "Simpler way to define what makes a planet". Science Daily. 2015-11-10.
  66. ^ "Why we need a new definition of the word 'planet'". Los Angeles Times.
  67. ^ Jean-Luc Margot (2015). "A Quantitative Criterion For Defining Planets". The Astronomical Journal. 150 (6): 185. arXiv:1507.06300. Bibcode:2015AJ....150..185M. doi:10.1088/0004-6256/150/6/185.
  68. ^ Lindberg, David C. (2007). The Beginnings of Western Science (2nd ed.). Chicago: The University of Chicago Press. p. 257. ISBN 978-0-226-48205-7.
  69. ^ a b Salmon, Thomas; Tytler, James (1782). "The New Universal Geographical Grammar".
  70. ^ Giovanni Cassini (1673). Decouverte de deux Nouvelles Planetes autour de Saturne. Sabastien Mabre-Craniusy. pp. 6–14.
  71. ^ Hilton, James L. "When did the asteroids become minor planets?". U.S. Naval Observatory. Archived from the original on 2008-03-24. Retrieved 2008-05-08.
  72. ^ "The Planet Hygea". spaceweather.com. 1849. Retrieved 2008-04-18.
  73. ^ Moskowitz, Clara (2006-10-18). "Scientist who found '10th planet' discusses downgrading of Pluto". Stanford news. Retrieved 2008-08-23.
  74. ^ Ross, Kelley L. (2005). "The Days of the Week". The Friesian School. Retrieved 2008-08-23.
  75. ^ Cochrane, Ev (1997). Martian Metamorphoses: The Planet Mars in Ancient Myth and Tradition. Aeon Press. ISBN 978-0-9656229-0-5. Retrieved 2008-02-07.
  76. ^ Cameron, Alan (2005). Greek Mythography in the Roman World. Oxford University Press. ISBN 978-0-19-517121-1.
  77. ^ Zerubavel, Eviatar (1989). The Seven Day Circle: The History and Meaning of the Week. University of Chicago Press. p. 14. ISBN 978-0-226-98165-9. Retrieved 7 February 2008.
  78. ^ a b Falk, Michael; Koresko, Christopher (2004). "Astronomical Names for the Days of the Week". Journal of the Royal Astronomical Society of Canada. 93: 122–133. arXiv:astro-ph/0307398. Bibcode:1999JRASC..93..122F. doi:10.1016/j.newast.2003.07.002.
  79. ^ "earth, n". Oxford English Dictionary. 1989. Retrieved 6 February 2008.
  80. ^ a b Harper, Douglas (September 2001). "Earth". Online Etymology Dictionary. Retrieved 23 August 2008.
  81. ^ Harper, Douglas (September 2001). "Etymology of "terrain"". Online Etymology Dictionary. Retrieved 2008-01-30.
  82. ^ a b Stieglitz, Robert (Apr 1981). "The Hebrew Names of the Seven Planets". Journal of Near Eastern Studies. 40 (2): 135–137. doi:10.1086/372867. JSTOR 545038.
  83. ^ Ragep, F. J.; Hartner, W. (24 April 2012). "Zuhara". Encyclopaedia of Islam (Second ed.) – via referenceworks.brillonline.com.
  84. ^ Natan, Yoel (31 July 2018). Moon-o-theism, Volume I of II. Yoel Natan. ISBN 9781438299648 – via Google Books.
  85. ^ Ali-Abu'l-Hassan, Mas'ûdi (31 July 2018). "Historical encyclopaedia: entitled "Meadows of gold and mines of gems"". Printed for the Oriental Translation Fund of Great Britain and Ireland – via Google Books.
  86. ^ Galter, Hannes D. (31 July 1993). Die Rolle Der Astronomie in Den Kulturen Mesopotamiens: Beiträge Zum 3. Grazer Morgenländischen Symposion (23–27 September 1991). GrazKult. ISBN 9783853750094 – via Google Books.
  87. ^ Meyers, Carol L.; O'Connor, M.; O'Connor, Michael Patrick (31 July 1983). The Word of the Lord Shall Go Forth: Essays in Honor of David Noel Freedman in Celebration of His Sixtieth Birthday. Eisenbrauns. ISBN 9780931464195 – via Google Books.
  88. ^ "Planetary Spheres كواكب". 29 August 2016.
  89. ^ al-Masūdī (31 July 2018). "El-Masūdī's Historical Encyclopaedia, entitled "Meadows of Gold and Mines of Gems."". Oriental Translation Fund of Great Britain and Ireland – via Google Books.
  90. ^ Wetherill, G. W. (1980). "Formation of the Terrestrial Planets". Annual Review of Astronomy and Astrophysics. 18 (1): 77–113. Bibcode:1980ARA&A..18...77W. doi:10.1146/annurev.aa.18.090180.000453.
  91. ^ D'Angelo, G.; Bodenheimer, P. (2013). "Three-dimensional Radiation-hydrodynamics Calculations of the Envelopes of Young Planets Embedded in Protoplanetary Disks". The Astrophysical Journal. 778 (1): 77 (29 pp.). arXiv:1310.2211. Bibcode:2013ApJ...778...77D. doi:10.1088/0004-637X/778/1/77.
  92. ^ Inaba, S.; Ikoma, M. (2003). "Enhanced Collisional Growth of a Protoplanet that has an Atmosphere". Astronomy and Astrophysics. 410 (2): 711–723. Bibcode:2003A&A...410..711I. doi:10.1051/0004-6361:20031248.
  93. ^ D'Angelo, G.; Weidenschilling, S. J.; Lissauer, J. J.; Bodenheimer, P. (2014). "Growth of Jupiter: Enhancement of core accretion by a voluminous low-mass envelope". Icarus. 241: 298–312. arXiv:1405.7305. Bibcode:2014Icar..241..298D. doi:10.1016/j.icarus.2014.06.029.
  94. ^ Lissauer, J. J.; Hubickyj, O.; D'Angelo, G.; Bodenheimer, P. (2009). "Models of Jupiter's growth incorporating thermal and hydrodynamic constraints". Icarus. 199 (2): 338–350. arXiv:0810.5186. Bibcode:2009Icar..199..338L. doi:10.1016/j.icarus.2008.10.004.
  95. ^ D'Angelo, G.; Durisen, R. H.; Lissauer, J. J. (2011). "Giant Planet Formation". In S. Seager. (ed.). Exoplanets. University of Arizona Press, Tucson, AZ. pp. 319–346. arXiv:1006.5486. Bibcode:2010exop.book..319D.
  96. ^ Chambers, J. (2011). "Terrestrial Planet Formation". In S. Seager. (ed.). Exoplanets. University of Arizona Press, Tucson, AZ. pp. 297–317. Bibcode:2010exop.book..297C.
  97. ^ Dutkevitch, Diane (1995). "The Evolution of Dust in the Terrestrial Planet Region of Circumstellar Disks Around Young Stars". PhD thesis, University of Massachusetts Amherst. Bibcode:1995PhDT..........D. Archived from the original on 2007-11-25. Retrieved 2008-08-23. Cite journal requires |journal= (help)
  98. ^ Matsuyama, I.; Johnstone, D.; Murray, N. (2005). "Halting Planet Migration by Photoevaporation from the Central Source". The Astrophysical Journal. 585 (2): L143–L146. arXiv:astro-ph/0302042. Bibcode:2003ApJ...585L.143M. doi:10.1086/374406.
  99. ^ Kenyon, Scott J.; Bromley, Benjamin C. (2006). "Terrestrial Planet Formation. I. The Transition from Oligarchic Growth to Chaotic Growth". Astronomical Journal. 131 (3): 1837–1850. arXiv:astro-ph/0503568. Bibcode:2006AJ....131.1837K. doi:10.1086/499807. Lay summaryKenyon, Scott J. Personal web page.
  100. ^ Ida, Shigeru; Nakagawa, Yoshitsugu; Nakazawa, Kiyoshi (1987). "The Earth's core formation due to the Rayleigh-Taylor instability". Icarus. 69 (2): 239–248. Bibcode:1987Icar...69..239I. doi:10.1016/0019-1035(87)90103-5.
  101. ^ Kasting, James F. (1993). "Earth's early atmosphere". Science. 259 (5097): 920–6. Bibcode:1993Sci...259..920K. doi:10.1126/science.11536547. PMID 11536547.
  102. ^ Aguilar, David; Pulliam, Christine (2004-01-06). "Lifeless Suns Dominated The Early Universe" (Press release). Harvard-Smithsonian Center for Astrophysics. Retrieved 2011-10-23.
  103. ^ Scott S. Sheppard (2013-01-04). "The Jupiter Satellite Page (Now Also The Giant Planet Satellite and Moon Page)". Carnegie Institution for Science. Retrieved 2013-04-12.
  104. ^ Schneider, J. "Interactive Extra-solar Planets Catalog". The Extrasolar Planets Encyclopedia. Retrieved 1 November 2019.
  105. ^ "Exoplanet Archive Planet Counts".
  106. ^ Johnson, Michele; Harrington, J.D. (February 26, 2014). "NASA's Kepler Mission Announces a Planet Bonanza, 715 New Worlds". NASA. Retrieved February 26, 2014.
  107. ^ "The Habitable Exoplanets Catalog - Planetary Habitability Laboratory @ UPR Arecibo".
  108. ^ Lopez, E. D.; Fortney, J. J. (2013). "Understanding the Mass-Radius Relation for Sub-Neptunes: Radius as a Proxy for Composition". The Astrophysical Journal. 792 (1): 1. arXiv:1311.0329. Bibcode:2014ApJ...792....1L. doi:10.1088/0004-637X/792/1/1.
  109. ^ Sanders, R. (4 November 2013). "Astronomers answer key question: How common are habitable planets?". newscenter.berkeley.edu.
  110. ^ Petigura, E. A.; Howard, A. W.; Marcy, G. W. (2013). "Prevalence of Earth-size planets orbiting Sun-like stars". Proceedings of the National Academy of Sciences. 110 (48): 19273–19278. arXiv:1311.6806. Bibcode:2013PNAS..11019273P. doi:10.1073/pnas.1319909110. PMC 3845182. PMID 24191033.
  111. ^ Drake, Frank (2003-09-29). "The Drake Equation Revisited". Astrobiology Magazine. Archived from the original on 2011-06-28. Retrieved 2008-08-23.
  112. ^ "Artist's View of a Super-Jupiter around a Brown Dwarf (2M1207)". Retrieved 22 February 2016.
  113. ^ Weintraub, David A. (2014), Is Pluto a Planet?: A Historical Journey through the Solar System, Princeton University Press, p. 226, ISBN 978-1400852970
  114. ^ Basri, G.; Brown, E. M. (May 2006), "Planetesimals to Brown Dwarfs: What is a Planet?", Annual Review of Earth and Planetary Sciences, 34: 193–216, arXiv:astro-ph/0608417, Bibcode:2006AREPS..34..193B, doi:10.1146/annurev.earth.34.031405.125058
  115. ^ Stern, S. Alan; Levison, Harold F. (2002), Rickman, H. (ed.), "Regarding the criteria for planethood and proposed planetary classification schemes", Highlights of Astronomy, San Francisco, CA: Astronomical Society of the Pacific, 12: 205–213, Bibcode:2002HiA....12..205S, doi:10.1017/S1539299600013289, ISBN 978-1-58381-086-6. See p. 208.
  116. ^ http://www.iau.org/static/resolutions/Resolution_GA26-5-6.pdf IAU 2006 General Assembly. International Astronomical Union. Retrieved January 26, 2008.
  117. ^ Lissauer, J. J. (1987). "Timescales for Planetary Accretion and the Structure of the Protoplanetary disk". Icarus. 69 (2): 249–265. Bibcode:1987Icar...69..249L. doi:10.1016/0019-1035(87)90104-7. hdl:2060/19870013947.
  118. ^ a b c Luhman, K. L.; Adame, Lucía; D'Alessio, Paola; Calvet, Nuria (2005). "Discovery of a Planetary-Mass Brown Dwarf with a Circumstellar Disk". Astrophysical Journal. 635 (1): L93. arXiv:astro-ph/0511807. Bibcode:2005ApJ...635L..93L. doi:10.1086/498868. Lay summaryNASA Press Release (2005-11-29).
  119. ^ Clavin, Whitney (November 9, 2005). "A Planet with Planets? Spitzer Finds Cosmic Oddball". Spitzer Space Telescope Newsroom. Archived from the original on July 11, 2007. Retrieved 2009-11-18.
  120. ^ a b Joergens, V.; Bonnefoy, M.; Liu, Y.; Bayo, A.; et al. (2013). "OTS 44: Disk and accretion at the planetary border". Astronomy & Astrophysics. 558 (7): L7. arXiv:1310.1936. Bibcode:2013A&A...558L...7J. doi:10.1051/0004-6361/201322432.
  121. ^ Close, Laird M.; Zuckerman, B.; Song, Inseok; Barman, Travis; et al. (2007). "The Wide Brown Dwarf Binary Oph 1622–2405 and Discovery of A Wide, Low Mass Binary in Ophiuchus (Oph 1623–2402): A New Class of Young Evaporating Wide Binaries?". Astrophysical Journal. 660 (2): 1492–1506. arXiv:astro-ph/0608574. Bibcode:2007ApJ...660.1492C. doi:10.1086/513417.
  122. ^ Luhman, K. L.; Allers, K. N.; Jaffe, D. T.; Cushing, M. C.; et al. (2007). "Ophiuchus 1622–2405: Not a Planetary-Mass Binary". The Astrophysical Journal. 659 (2): 1629–36. arXiv:astro-ph/0701242. Bibcode:2007ApJ...659.1629L. doi:10.1086/512539.
  123. ^ Britt, Robert Roy (2004-09-10). "Likely First Photo of Planet Beyond the Solar System". Space.com. Retrieved 2008-08-23.
  124. ^ Bailes, M.; Bates, S. D.; Bhalerao, V.; Bhat, N. D. R.; et al. (2011). "Transformation of a Star into a Planet in a Millisecond Pulsar Binary". Science. 333 (6050): 1717–20. arXiv:1108.5201. Bibcode:2011Sci...333.1717B. doi:10.1126/science.1208890. PMID 21868629.
  125. ^ "Should Large Moons Be Called 'Satellite Planets'?". News.discovery.com. 2010-05-14. Retrieved 2011-11-04.
  126. ^ On the origin of planets at very wide orbits from the re-capture of free floating planets, Hagai B. Perets, M. B. N. Kouwenhoven, 2012
  127. ^ D. R. Anderson; Hellier, C.; Gillon, M.; Triaud, A. H. M. J.; Smalley, B.; Hebb, L.; Collier Cameron, A.; Maxted, P. F. L.; Queloz, D.; West, R. G.; Bentley, S. J.; Enoch, B.; Horne, K.; Lister, T. A.; Mayor, M.; Parley, N. R.; Pepe, F.; Pollacco, D.; Ségransan, D.; Udry, S.; Wilson, D. M. (2009). "WASP-17b: an ultra-low density planet in a probable retrograde orbit". The Astrophysical Journal. 709 (1): 159–167. arXiv:0908.1553. Bibcode:2010ApJ...709..159A. doi:10.1088/0004-637X/709/1/159.
  128. ^ a b c d e Young, Charles Augustus (1902). Manual of Astronomy: A Text Book. Ginn & company. pp. 324–7.
  129. ^ Dvorak, R.; Kurths, J.; Freistetter, F. (2005). Chaos And Stability in Planetary Systems. New York: Springer. ISBN 978-3-540-28208-2.
  130. ^ Moorhead, Althea V.; Adams, Fred C. (2008). "Eccentricity evolution of giant planet orbits due to circumstellar disk torques". Icarus. 193 (2): 475–484. arXiv:0708.0335. Bibcode:2008Icar..193..475M. doi:10.1016/j.icarus.2007.07.009.
  131. ^ "Planets – Kuiper Belt Objects". The Astrophysics Spectator. 2004-12-15. Retrieved 2008-08-23.
  132. ^ Tatum, J. B. (2007). "17. Visual binary stars". Celestial Mechanics. Personal web page. Retrieved 2008-02-02.
  133. ^ Trujillo, Chadwick A.; Brown, Michael E. (2002). "A Correlation between Inclination and Color in the Classical Kuiper Belt". Astrophysical Journal. 566 (2): L125. arXiv:astro-ph/0201040. Bibcode:2002ApJ...566L.125T. doi:10.1086/339437.
  134. ^ a b Harvey, Samantha (2006-05-01). "Weather, Weather, Everywhere?". NASA. Retrieved 2008-08-23.
  135. ^ Winn, Joshua N.; Holman, Matthew J. (2005). "Obliquity Tides on Hot Jupiters". The Astrophysical Journal. 628 (2): L159. arXiv:astro-ph/0506468. Bibcode:2005ApJ...628L.159W. doi:10.1086/432834.
  136. ^ Goldstein, R. M.; Carpenter, R. L. (1963). "Rotation of Venus: Period Estimated from Radar Measurements". Science. 139 (3558): 910–1. Bibcode:1963Sci...139..910G. doi:10.1126/science.139.3558.910. PMID 17743054.
  137. ^ Belton, M. J. S.; Terrile, R. J. (1984). Bergstralh, J. T. (ed.). "Rotational properties of Uranus and Neptune". Uranus and Neptune. CP-2330: 327–347. Bibcode:1984NASCP2330..327B.
  138. ^ Borgia, Michael P. (2006). The Outer Worlds; Uranus, Neptune, Pluto, and Beyond. Springer New York. pp. 195–206.
  139. ^ Lissauer, Jack J. (1993). "Planet formation". Annual Review of Astronomy and Astrophysics. 31. (A94-12726 02–90) (1): 129–174. Bibcode:1993ARA&A..31..129L. doi:10.1146/annurev.aa.31.090193.001021.
  140. ^ Strobel, Nick. "Planet tables". astronomynotes.com. Retrieved 2008-02-01.
  141. ^ Zarka, Philippe; Treumann, Rudolf A.; Ryabov, Boris P.; Ryabov, Vladimir B. (2001). "Magnetically-Driven Planetary Radio Emissions and Application to Extrasolar Planets". Astrophysics and Space Science. 277 (1/2): 293–300. Bibcode:2001Ap&SS.277..293Z. doi:10.1023/A:1012221527425.
  142. ^ Faber, Peter; Quillen, Alice C. (2007-07-12). "The Total Number of Giant Planets in Debris Disks with Central Clearings". arXiv:0706.1684 [astro-ph].
  143. ^ Brown, Michael E. (2006). "The Dwarf Planets". California Institute of Technology. Retrieved 2008-02-01.
  144. ^ How One Astronomer Became the Unofficial Exoplanet Record-Keeper, www.scientificamerican.com
  145. ^ Jason T Wright; Onsi Fakhouri; Marcy; Eunkyu Han; Ying Feng; John Asher Johnson; Howard; Fischer; Valenti; Anderson, Jay; Piskunov, Nikolai (2010). "The Exoplanet Orbit Database". Publications of the Astronomical Society of the Pacific. 123 (902): 412–422. arXiv:1012.5676. Bibcode:2011PASP..123..412W. doi:10.1086/659427.
  146. ^ a b "Planetary Interiors". Department of Physics, University of Oregon. Retrieved 2008-08-23.
  147. ^ Elkins-Tanton, Linda T. (2006). Jupiter and Saturn. New York: Chelsea House. ISBN 978-0-8160-5196-0.
  148. ^ Podolak, M.; Weizman, A.; Marley, M. (December 1995). "Comparative models of Uranus and Neptune". Planetary and Space Science. 43 (12): 1517–1522. Bibcode:1995P&SS...43.1517P. doi:10.1016/0032-0633(95)00061-5.
  149. ^ Hunten D. M., Shemansky D. E., Morgan T. H. (1988), The Mercury atmosphere, In: Mercury (A89-43751 19–91). University of Arizona Press, pp. 562–612
  150. ^ Sheppard, S. S.; Jewitt, D.; Kleyna, J. (2005). "An Ultradeep Survey for Irregular Satellites of Uranus: Limits to Completeness". The Astronomical Journal. 129 (1): 518–525. arXiv:astro-ph/0410059. Bibcode:2005AJ....129..518S. doi:10.1086/426329.
  151. ^ Zeilik, Michael A.; Gregory, Stephan A. (1998). Introductory Astronomy & Astrophysics (4th ed.). Saunders College Publishing. p. 67. ISBN 978-0-03-006228-5.
  152. ^ a b Knutson, Heather A.; Charbonneau, David; Allen, Lori E.; Fortney, Jonathan J. (2007). "A map of the day-night contrast of the extrasolar planet HD 189733 b". Nature. 447 (7141): 183–6. arXiv:0705.0993. Bibcode:2007Natur.447..183K. doi:10.1038/nature05782. PMID 17495920. Lay summaryCenter for Astrophysics press release (2007-05-09).
  153. ^ Weaver, Donna; Villard, Ray (2007-01-31). "Hubble Probes Layer-cake Structure of Alien World's Atmosphere" (Press release). Space Telescope Science Institute. Retrieved 2011-10-23.
  154. ^ Ballester, Gilda E.; Sing, David K.; Herbert, Floyd (2007). "The signature of hot hydrogen in the atmosphere of the extrasolar planet HD 209458b" (PDF). Nature. 445 (7127): 511–4. Bibcode:2007Natur.445..511B. doi:10.1038/nature05525. hdl:10871/16060. PMID 17268463.
  155. ^ Harrington, Jason; Hansen, Brad M.; Luszcz, Statia H.; Seager, Sara (2006). "The phase-dependent infrared brightness of the extrasolar planet Andromeda b". Science. 314 (5799): 623–6. arXiv:astro-ph/0610491. Bibcode:2006Sci...314..623H. doi:10.1126/science.1133904. PMID 17038587. Lay summaryNASA press release (2006-10-12).
  156. ^ a b c Kivelson, Margaret Galland; Bagenal, Fran (2007). "Planetary Magnetospheres". In Lucyann Mcfadden; Paul Weissman; Torrence Johnson (eds.). Encyclopedia of the Solar System. Academic Press. p. 519. ISBN 978-0-12-088589-3.
  157. ^ Gefter, Amanda (2004-01-17). "Magnetic planet". Astronomy. Retrieved 2008-01-29.
  158. ^ Grasset, O.; Sotin C.; Deschamps F. (2000). "On the internal structure and dynamic of Titan". Planetary and Space Science. 48 (7–8): 617–636. Bibcode:2000P&SS...48..617G. doi:10.1016/S0032-0633(00)00039-8.
  159. ^ Fortes, A. D. (2000). "Exobiological implications of a possible ammonia-water ocean inside Titan". Icarus. 146 (2): 444–452. Bibcode:2000Icar..146..444F. doi:10.1006/icar.2000.6400.
  160. ^ Jones, Nicola (2001-12-11). "Bacterial explanation for Europa's rosy glow". New Scientist Print Edition. Retrieved 2008-08-23.
  161. ^ Molnar, L. A.; Dunn, D. E. (1996). "On the Formation of Planetary Rings". Bulletin of the American Astronomical Society. 28: 77–115. Bibcode:1996DPS....28.1815M.
  162. ^ Thérèse, Encrenaz (2004). The Solar System (Third ed.). Springer. pp. 388–390. ISBN 978-3-540-00241-3.

External links